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Abstract
Background: Predicting and proper ranking of canonical splice sites (SSs) is a challenging problem
in bioinformatics and machine learning communities. Any progress in SSs recognition will lead to
better understanding of splicing mechanism. We introduce several new approaches of combining a
priori knowledge for improved SS detection. First, we design our new Bayesian SS sensor based on
oligonucleotide counting. To further enhance prediction quality, we applied our new de novo motif
detection tool MHMMotif to intronic ends and exons. We combine elements found with sensor
information using Naive Bayesian Network, as implemented in our new tool SpliceScan.

Results: According to our tests, the Bayesian sensor outperforms the contemporary Maximum
Entropy sensor for 5' SS detection. We report a number of putative Exonic (ESE) and Intronic (ISE)
Splicing Enhancers found by MHMMotif tool. T-test statistics on mouse/rat intronic alignments
indicates, that detected elements are on average more conserved as compared to other oligos,
which supports our assumption of their functional importance. The tool has been shown to
outperform the SpliceView, GeneSplicer, NNSplice, Genio and NetUTR tools for the test set of
human genes. SpliceScan outperforms all contemporary ab initio gene structural prediction tools on
the set of 5' UTR gene fragments.

Conclusion: Designed methods have many attractive properties, compared to existing
approaches. Bayesian sensor, MHMMotif program and SpliceScan tools are freely available on our
web site.

Reviewers: This article was reviewed by Manyuan Long, Arcady Mushegian and Mikhail Gelfand.
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Background
Precise removal of introns from pre-messenger RNAs (pre-
mRNAs) by splicing is a critical step in expression of most
metazoan genes. The process requires accurate recogni-
tion and pairing of 5' and 3' SSs by the splicing machinery.
Inappropriate splicing of a gene may result in the transla-
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tion of a nonfunctional protein. SS motifs are necessary,
but not sufficient, for the exact recognition of the exons.
Frequently degenerate donor, acceptor and branch point
motifs provide insufficient information for exact SS detec-
tion [1]. Figure 1 shows SS consensus signals for both 5'
and 3' exonic ends. The human transcribed regions have
plenty of motifs of unknown functionality with structure
very similar to the SS consensus signals (GT or AG dinu-
cleotide surrounded by proper context). These sites are
called splice-like signals and they outnumber the real sites
by several orders of magnitude.

Correct prediction of SSs appears to be the key ingredient
in successful ab initio gene annotation, since dynamic pro-
gramming procedures must see all the exon/intron
boundaries in order to find the optimal solution [2]. The
most sensitive sensor design predicting the least amount
of false positives is preferable. Another good feature of a
SS sensor is the ability to rank predicted SSs, i.e. to assign
a certain score characterizing the importance or strength
of a putative site of splicing.

Numerous approaches have been taken towards effective
detection of SSs. In our experiments, the highest perform-
ance for complete gene structural prediction has been
achieved with GenScan [3] and HMMgene [4] tools. Both
tools use three-periodicity in coding exons. Codonic com-
position of coding exons has particular probabilistic prop-
erties that allow gene finders to synchronize their
prediction engines with gene structure and efficiently
stitch exons in frame-consistent fashion [2].

However, all tools relying on three-periodic coding com-
ponents in their prediction algorithm suffer substantial
performance loss if confronted with noncoding exons. On
the other hand, the biological splicing process seems to be
indifferent to exonic coding potential [5,6]. To alleviate
the problem, gene structural prediction tools use informa-

tion sources directly related to the biological process of
splicing [7]. One of the promising mechanisms of SS def-
inition is signal interaction, i.e. putative SSs and various
ESEs, ISEs in addition to Exonic (ESS) and Intronic (ISS)
Splicing Silencers [see Subsection Splicing signals].

In this paper we introduce our new gene structural anno-
tation tool SpliceScan. Our tool is based on the Naive
Bayesian network that linearly combines the number of
splicing-related components to improve SS prediction.
Before we describe our tool, we discuss our approach to SS
sensor design [see Subsection Splice Sites sensor]. We dis-
cuss the MHMMotif tool we use to detect putative splicing
enhancers [see Subsection De novo motifs detection].

Splicing signals
Specificity in the splicing process derives partly from
sequences other than SS signals, including Exonic Splicing
Enhancer (ESE) and Exonic Splicing Silencer (ESS) signals
[8,9]. ESE signals are required for a constitutive exon def-
inition and for an efficient splicing of weak alternatively
spliced exons [10] (while ESS signals suppress the
removal of adjacent introns [9,11]), which may lead to
exon skipping. There are 10 serine/arginine-rich (SR)
Splicing Enhancer proteins known today (SRp20, SC35,
SRp46, SRp54, SRp30c, SF2/ASF, SRp40, SRp55, SRp75,
9G8 [12]) and approximately 20 hnRNP Splicing Silenc-
ing factors [13], among them the most studied hnRNP A1
complex [11]. Tra2β is reported to be the SR splicing reg-
ulator [12]. All the SR proteins have two structural motifs:
the RNA Recognition Motif (RRM) binding to certain
motifs in RNA; and the arginine/serine-rich (RS) domain
responsible for Protein-Protein interactions within splic-
ing complex [12].

Together with inefficient SS signals, the appropriate bal-
ance of ESE and ESS elements somehow allows fine tun-
ing of the splicing mechanism [9]. Both 5' U1 snRNP and

Consensus motifs for donor and acceptor SSsFigure 1
Consensus motifs for donor and acceptor SSs. Y-axis indicates the strength of base composition bias based on information 
content.
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3' U2AF65·U2AF35 were shown to interact with ESEs [12].
Cross-intron bridging may happen through hnRNP com-
plexes [14]. Experiments show that the 3' end definition is
not affected by intron bridging, but is defined solely by
the strength of the acceptor site polypyrimidine tract and
the position of splicing enhancers and silencers [10,15].

The silencing process is still poorly understood [16].
However, there are several models explaining the
observed antagonism between hnRNP complexes and SR
proteins [17]. For example, hnRNP A1 binds to the ESS
and hinders binding of SR proteins to a weak ESE located
just downstream of ESS [9]. Several rules have been iden-
tified for interaction of ESE/ESS factors with spliceosomal
assembly:

• ESE and ESS elements are frequently located in down-
stream exons [18];

• The precise mechanism by which hnRNP A1 binds the
ESS in the upstream exon and represses splicing of the
upstream intron remains unknown, although the 3' site is
a likely target for repression [9] as shown in Figure 2(c);

• Most splicing enhancers are located within 100 nucleo-
tides of the 3' SS and are not active further away [15];

• Each enhancer complex assembles independently for 3'
and 5' sites, and there is a minor interaction across an
intron [19], as shown in Figure 2(a);

• Based on current views of exon definition, each exon
should be recognized by the splicing machinery as an
independent unit [3,19], as shown in Figure 2(b);

• Analysis of the experimental data revealed that the splic-
ing efficiency is directly proportional to the calculated
probability of a direct interaction between the enhancer
complex and the 3' SS:

- Strong natural enhancers function at a greater distance
from the intron than weak natural enhancers do [18];

- The closer an ESE is to a SS, the more efficient it is [15];

- Multiple enhancer sites increase the probability of splic-
ing activation [15];

- Strong ESS sites may suppress an effect from ESE(s)
located upstream [9].

To identify known ESE/ESS motifs, we used RRM binding
motifs from [20] as shown in Table 1. PolyA signals, that
could also be employed by splicing machinery, were
detected by oligos reported in [21].

Results and discussion
Bayesian sensor performance
We use the Receiver Operating Characteristic (ROC) to
compare performance of different sensors. A ROC curve is
a graphical representation of the tradeoff between the
false negative and false positive rates for every possible
cutoff. By tradition, the plot shows the false positive rate
(1 - Specificity) on the x axis and the false negative rate
(Sensitivity) on the y axis.

Sensitivity (Sn) and Specificity (Sp) were calculated
according to the formulas

Here TE is the number of accurately predicted exon
boundaries, AE is the number of annotated exon bounda-
ries in the test set and PE is the number of predicted exon
boundaries.

The accuracy of a test (i.e. the ability of the test to correctly
classify cases with a certain condition and cases without

Sn
TE

AE
= ( )1

Sp
TE

PE
= ( )2

Models of exon definition and ESS-ESE interactionFigure 2
Models of exon definition and ESS-ESE interaction.
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the condition) is measured by the area under the ROC
curve. An area of 1 represents a perfect test. The closer the
curve follows the left-hand and top borders of the ROC
space, the more accurate the test; i.e. the true positive rate
is high and the false positive rate is low. Statistically, more
area under the curve means that it is identifying more true
positives while minimizing the number of false positives.

To evaluate Bayesian sensor performance we compiled
three test sets:

1. 250 first multiexonic all-canonical SS genes picked
from the top of our GIGOgene annotation. This test set
includes 2,482 donor and 347,402 donor-like signals in
addition to 2,482 acceptor and 465,000 acceptor-like sig-
nals.

2. 1,072 human 5' UTR gene-annotated fragments,
including the first 50 nt from the CDS region. We picked
only GIGOgene annotations containing at least one
intron with all canonical SSs. Our 5' UTR test set includes
1,869 donor and 734,744 donor-like signals in addition
to 1,846 acceptor and 925,464 acceptor-like signals.

3. 183 rat multiexonic all-canonical SS genes we were able
to annotate with GIGOgene. This test set includes 1,405

donor and 240,539 donor-like signals in addition to
1,405 acceptor and 295,640 acceptor-like signals. The test
set is specifically included to evaluate cross-specie sensor
performance.

For experimental purposes on human test sets we
removed cross-correlating gene-annotated fragments
from the learning set. In experiments with human test sets
we BLAST-aligned the test set to the learning set and
removed all homologous fragments, both human and
mouse, with BLASTN hit expected value less than 10-10

and bitscore more than 75 bits. The experimental sensor
performance study is shown in Figure 4. ROC curve irreg-
ularities could be attributed to multimodal score distribu-
tion of splice and splice-like signal, as could be seen in
Figure 3. We did not removed cross-correlation between
the learning set and the test set of 183 rat genes.

Our Bayesian 5' SS sensor outperforms the recently intro-
duced Maximum Entropy SS sensor [22] and MDD sensor
used in GenScan tool [3] as could be seen in Figures 4(a),
4(c) and 4(e). Performance of the Bayesian 3' SS sensor is
similar to that of the Maximum Entropy SS sensor [22].

The 5' SS oligonucleotides tend to cluster, only 3,084 non-
amers got non-zero probability entries in the sensor table,
with the highest 40 ranked motifs shown in Table 2.
Among 2,482 true 5' SSs tested in the test set of 250
human genes, 13 nonamers had zero entries in the table
which stands for oligonucleotide miss rate of 0.52%. On
the other hand, acceptor SSs demonstrates great variabil-
ity and requires substantially larger learning sets [see Sub-
section Learning set size study].

Bayesian 3' SS sensor design seems to favor cross-correla-
tion between the learning set and test sequences; cross-
correlation removal worsened sensor ROC characteristics
[see Subsection Learning and test sets cross-correlation degree
study]. In reality, sensor performance should be as good or
better than reported because we used an extensive set of
genes in human and mouse genomes for learning, cover-
ing most gene families. Chances are high that a sequence
in question substantially cross-correlates with the learning
set we use. Test example with 183 rat genes confirms our
expectations, as could be seen in Figure 4(f), where ROC
of the Bayesian sensor prevails over all other sensor
designs.

Learning and test sets cross-correlation degree study
We study Bayesian sensor performance depending on the
degree of cross-correlation between the learning and test
sets. Test performance appears to be the best for experi-
ments with intersecting test and learning sets, denoted as
"Bayesian" in Figure 5. Removal of test set sequences from
the learning set corresponds to curves denoted as "Baye-

Table 1: Nucleotide symbols used: M → (A/C), R → (A/G), W → 
(A/U), Y → (C/U), S → (C/G), K → (G/U). (Table credit [20])

Protein High-affinity binding site Functional ESE

SRp20 WCWWC GCUCCUCUUCC
CUCKUCY CCUCGUCC

SC35 AGSAGAGUA GRYYMCYR
GWUWCCUGCUA UGCYGYY

GGGUAUGCUG
GAGCAGUAGKS
GUUCGAGUA

UGUUCSAGWU
AGGAGAU

9G8 (GAC)n

ACGAGAGAY
WGGACRA

SF2/ASF RGAAGAAC CRSMSGW
AGGACRRAGC

SRp40 UGGGAGCRGUYRGCUCGY YRCRKM

SRp55 YYWCWSG

TRA2β (GAA)n

nhRNP Al UAGGGW
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sian (cross-validation)" and further elimination of cross-
correlating sequences [see Subsection Bayesian sensor per-
formance] corresponds to "Bayesian (no cross-correla-
tion)" curves in Figure 5. Cross-correlation removal has a
dramatic effect on the performance of the 3' SS sensor as
shown in Figure 5(b). On the other hand, cross-correla-
tion has practically no effect on the performance of the 5'
SS sensor as shown in Figure 5(a).

Learning set size study
Our experiments with learning set size indicate, that 5' SS
performance tolerates substantial decimation of the learn-
ing set without apparent quality loss, as shown in Figure
6(a). Decreased size of learning set causes substantial per-
formance loss for 3' SS sensor, as shown in Figure 6(b).

The learning set we collected [see Subsection Splice Sites
sensor] is not sufficiently vast for 3' SS sensor to avoid per-
formance loss in case of removed cross-correlation. Ideal
3' SS ROC curve should be similar to the "Bayesian" as
shown in Figure 5(b).

Detection of ISE signals
ISE motifs are essential components for understanding
splicing events. In order to predict ISE motifs located in
vicinity of 3' and 5' SS, we compiled two sample sets of
2,000 pre-donor and post-acceptor 150 nt fragments
known to be real with a high degree of confidence. For
fragment extraction we parsed results of GIGOgene [23]
spliced alignment of human RefSeq against the phase III

human DNA database from NCBI, picking only canonical
SSs from predicted multiexonic structures.

We applied MHHMotif to these sample sets of sequences,
and recovered motifs shown in Figure 7, where represent-
ative motifs were obtained from HMM components in
"generative mode" [see Additional file 1].

Intronic conservation study
We adopt conservation criteria to evaluate significance of
the putative ISE elements found [see Additional file 1]. We
subdivided set of all possible 8-mer oligonucleotides in
two subsets: hypothesis subset, i.e. all detected putative ISE
elements, and null-hypothesis subset – the rest of the possi-
ble oligos. To study evolutionary conservation we took
3,005 mouse-rat intronic alignments. In our conservation
study we considered only first 100 nt and last 100 nt of
each alignment, excluding very first 5 nt and very last 5 nt
for they playing role in SS highly conserved consensus sig-
nals.

We used sliding window of size 8 nucleotides to detect
positions matching the set of detected putative ISEs.
Ratios of conserved nucleotide positions vs. non-con-
served nucleotide positions were calculated for our hypo-
thesis set and null-hypothesis set elements. We removed
test pairs where either ISEs were not detected or non of the
nucleotides within putative ISEs changed. Alignments too
short to extract statistics regions were also removed.

Bayesian sensor histograms produced for 5' SS and 3' SS signals on the test set of 250 human genesFigure 3
Bayesian sensor histograms produced for 5' SS and 3' SS signals on the test set of 250 human genes.

(a) Donor histogram (b) Acceptor histogram
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ROC diagrams for Donor and Acceptor signalsFigure 4
ROC diagrams for Donor and Acceptor signals.
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(b) Sensors ROC diagram for 3 ′ SS (test set of 250 human
genes)
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(c) Sensors ROC diagram for 5 ′ SS (test set of 5 ′ UTR
fragments)
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(d) Sensors ROC diagram for 3 ′ SS (test set of 5 ′ UTR
fragments)
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(e) 5 ′ SS (test set of 183 rat genes)
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The following probabilities associated with a two-tailed
Student's paired t-test were found as shown in Table 3.
Detected putative ISE elements are on average more con-
served than other oligos. Statistically significant higher
evolutionary conservation suggests the biological impor-
tance of a significant fraction of these elements in the
splicing process.

Detecting ESE signals
To detect putative ESE signals we applied the MHMMotif
tool to the set of 2,000 distinct exons as we parsed the
human genome annotation of our GIGOgene tool. In our
experiments, motifs in Figures 8(a), 8(b), 8(c), 8(f), and

8(h) converged in two families with similar ESE signal sig-
nature but different convolution patterns supporting
either 5' or 3' exonic ends. We present putative motifs [see
Additional file 1]. Our set of putative ESE signals substan-
tially overlaps with ESEs suggested by Burge and co-work-
ers [24]. Among 202 detected putative ESE elements, 42
are present in this previously reported set of 238 ESEs,
which exceeds randomly expected overlap by 3.5 times.
Strong evolutionary conservation was found for these ESE
signals located near splicing signals [25].

Table 2: Probabilities of being true SS for first 40 statistically most highly ranked putative 5' SS. Probabilities are calculated based on 
number of times we spot certain nonamer acting as SS as opposed to splice-like signal in our learning set [see Subsection Splice Sites 
sensor]

Nonamer Probability Spotted as true signal Spotted as true-like signal

CCGGTAAGT 0.701 270 115
CCGGTGAGT 0.676 755 361
CGGGTAAGT 0.668 270 134
ACGGTGAGT 0.625 608 364
CGGGTGAGT 0.587 586 412
GCGGTAAGT 0.575 184 136
TCGGTAAGT 0.568 218 166
CAGGTAAGC 0.557 1326 1055
TCGGTGAGT 0.556 503 401
ACGGTAAGT 0.551 245 200
GCGGTGAGT 0.530 569 504
CAGGTGAGT 0.523 2561 2335
CAGGTAAGT 0.509 1437 1388
AAGGTGAGT 0.508 2013 1952
AAGGTAAGC 0.504 1057 1039
CGCGTAAGT 0.5 36 36
CCGGTAAGG 0.489 157 164
CAGGTAAGG 0.484 1667 1777
CGGGTAAGC 0.482 145 156
AAGGTAAGT 0.469 1389 1569
CAGGTAAGA 0.469 1917 2172
ACGGTAAGG 0.468 162 184
TCGGTAAGC 0.457 101 120
CCGGTAAGC 0.456 134 160
GAGGTAAGT 0.454 978 1175
ACGGTACGT 0.453 29 35
AAGGTACGT 0.452 193 234
AAGGTACGC 0.423 85 116
GAGGTGAGT 0.420 1717 2371
AAGGTAAGG 0.418 1318 1833
AAGGTAAGA 0.416 1610 2261
ACGGTAAGC 0.408 118 171
GAGGTAAGC 0.408 634 921
TCGGTAAGA 0.408 148 215
CCGGTAAGA 0.403 160 237
CGGGTAAGG 0.397 219 332
ACGGTAAGA 0.397 165 251
AAGGTGAGC 0.395 1325 2031
CAGGTGAGC 0.394 2073 3185
CAGGTACGT 0.392 231 358
Page 7 of 23
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SpliceScan performance
We use test sets [see Subsection Bayesian sensor perform-
ance] for the SpliceScan performance estimates. We chose
the second test set of non-coding 5' UTRs because it was
suggested that at least some introns in 5' UTRs may atten-
uate translation at the initiation stage [26,27]. Thus, a reli-
able prediction of introns and strength of splicing signals
in 5' UTRs is essential for 5' UTR studies.

Performance of SpliceScan appears to be the best for short
non-coding 5' UTR gene fragments test set, as presented in
Figures 9(e) and 9(f). For the test set of 250 human genes
and 183 rat genes our tool predicts SSs better than
SpliceView [5], GeneSplicer [28], NNSplice [29], Genio
[30] and NetUTR [6].

Study of cross-correlation performance dependencyFigure 5
Study of cross-correlation performance dependency.
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Study of sensor performance based on learning set sizeFigure 6
Study of sensor performance based on learning set size.
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Conclusion
By trading complexity of sensor design for the size of
learning set we were able to substantially improve predic-
tion of the SSs. Bayesian 5' SS sensor demonstrated supe-
rior performance, as compared to existing approaches, in
all conducted experiments. Neither removal of cross-cor-
relation between the learning and test set, nor fourfold
decrease of learning set size were able to compromise the
sensor fidelity. Opposite observation were made with 3'
SS sensor, where performance is affected both by degree of
cross-correlation between learning and test set and the
size of the learning set. Bayesian 3' SS sensor demonstrates
comparable performance with the Maximum Entropy
sensor, when cross-correlation is removed between the
learning and test set. The sensor performance improves
substantially if we do not specifically remove cross-corre-
lation, as in case of 183 rat genes test set or experiments
with the degree of cross-correlation. We believe that per-
formance of our sensor could be generalized to a broad
variety of tetrapoda organisms; genes encoding splicing
RNP complexes are among the most conserved known
genes [31].

Using MHMMotif tool we were able to discover motif
families for ESE/ISE elements. Small fraction of our
detected putative ESE elements correspond to previously
reported ESE motifs [24], other elements could be consid-
ered as novel. Statistically significant average conservation
ratio for putative ISE elements, as compared to other
motifs, supports their functional importance in human
genome.

Our predicted ISE and ESE elements have substantial
impact on splicing, as we were able to improve SS predic-
tion using these elements. Based on linear model of splic-
ing factors interaction, SpliceScan has been able to
outperform SpliceView [5], GeneSplicer [28], NNSplice
[29], Genio [30] and NetUTR [6] tools in all the test cate-
gories.

SpliceScan did not to perform better than GenScan [3],
HMMgene [4], NetGene2 [32,33], MZEF [34], Geneid
[35,36] and ExonScan [7] on the test set 250 human genes
and 183 rat genes. The reason is that SpliceScan does not
rely on three periodicity property to discover the coding
exons. ExonScan, which uses exon definition model com-
bined with ESS/ESE elements for better prediction quality,

ISE motifs found in vicinity of 3' SS (Figures 7(a)-7(g)) and 5' SS (Figures 7(h)-7(m))Figure 7
ISE motifs found in vicinity of 3' SS (Figures 7(a)-7(g)) and 5' SS (Figures 7(h)-7(m)).
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is another tool implemented as splicing simulator with
objectives similar to SpliceScan. It has the same "average"
ROC profile for not using exonic coding potential statis-
tics. Exon definition model of ExonScan seems to work
better for internal boundaries prediction, but suffers in
case of predicting boundaries of incomplete exons, first
and last exons, as all the other tools do.

In our experiments on the human test sets we removed
cross-correlation from the learning set, that made per-
formance of our tool worse as it would normally be. Since
we do not have control over the learning sets of the com-
peting tools, performance of these tools is likely to be pos-
itively affected by overlaps between their learning sets and
our test sets. The test set of 183 rat genes exemplifies the
performance issues with the existing tools that were
trained on the human learning sets; they usually perform
worse when confronted with new sequences. ExonScan
does not seem to lose prediction quality when confronted
with sequences from other closely related organisms.

SpliceScan performs best on the set 5' UTR fragments
because of the SS definition model we use, i.e. we combine
all available information for a certain SS without manda-
tory requirement of large contexts or having other corre-
sponding exonic boundary.

Bayesian sensor, MHMMotif program and SpliceScan
tools are freely available on our web site [37].

Methods
Splice Sites sensor
SSs are known to contain complex interdependencies
between nonadjacent positions that could be attributed to
evolutionary pressure from very complex biological splic-
ing machinery. Recovery of these interdependencies is dif-
ficult problem in machine learning, but may lead to better
understanding of the splicing process and improved sen-
sor design.

Numerous approaches have been taken towards effective
detection of SS [38-50]. The earliest SS sensors were the

Table 3: T-test probabilities for putative ISE elements found

Putative ISE elements Test area Number of alignments Probability

Donor-related ISEs Post-donor region 2,544 7.22 × 10-82

Donor-related ISEs Pre-acceptor region 2,586 1.86 × 10-106

Acceptor-related ISEs Pre-acceptor region 2,487 8.39 × 10-95

Acceptor-related ISEs Post-donor region 2,235 6.39 × 10-59

ESE motifs repetitively detected in our MHHMotif runsFigure 8
ESE motifs repetitively detected in our MHHMotif runs.
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ROC diagrams for Donor and Acceptor applicationsFigure 9
ROC diagrams for Donor and Acceptor applications.
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(c) 5 ′ SS (test set of 183 rat genes)
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Weight Matrix Model (WMM) [51], Weight Array Model
(WAM) [52], and Windowed second-order WAM model
(WWAM) [3]. The Maximal Dependence Decomposition
(MDD) sensor mentioned in [3] outperformed previously
known 5' SS sensors. It explores long-range dependencies
in the donor 5' motif by iterative subdivision at each stage
splitting on the most dependent position, suitably
denned. Leaves of the resulting bifurcation tree appear to
be simple WMM models. Another approach, published in
parallel and implemented in the SpliceView program [5],
explores the same idea of creating WMM motif families
with a clustering algorithm, which leads to better per-
formance compared to simple WMM and WAM.

Various sensors were built later or in parallel based on
Bayesian Networks [53,54], Neural Networks [29,55] and
Boltzmann machine with Bahadur expansion [56]. Also
there was a recent study based on Support Vector Machine
(SVM) [57]. None of these methods were shown to out-
perform MDD for 5' SSs. A new Maximum Entropy sensor
[22], Permuted Markov Models [58] and approach based
on dependency graphs and their expanded Bayesian net-
work [59] outperformed MDD on 5' SSs.

Methods that use subdivision of SSs into families of con-
sensus motifs, such as MDD, SpliceView, Maximum
Entropy sensor and Permuted Markov Models, appear to
have the highest performance as they potentially can
reveal distant correlations by putting similar-looking
motifs into the same probabilistic class with its own con-
sensus.

We use a simpler sensor design based on 7-mer oligonu-
cleotide counting (16,384 possible oligos) in splice and
splice-like signals. We place 7-mer blocks within SS con-
sensus signals similar to Maximum Entropy Sensor
[22,60], as shown in Figure 10.

We used our GIGOgene [61] tool to collect an extensive
learning set of predicted human and mouse gene struc-

tures from which we extracted 179,079 donor and
34,258,282 donor-like signals (surrounding GT dinucle-
otide) plus 179,076 acceptor and 44,353,884 acceptor-
like signals (surrounding AG dinucleotide). Based on col-
lected oligonucleotide frequencies, we can evaluate the
probability of a 5' SS given an oligonucleotide (GT sur-
rounded by a context)

where P(ss) – prior probability of an oligonucleotide to be
5' SS, P(¬ss) – prior probability of an oligonucleotide to
be donor-like signal, P(oligo|ss) – likelihood of oligonu-
cleotide in case of 5' SS, P(oligo|¬ss) – likelihood of oligo-
nucleotide in case of donor-like signal. With the donor
sensor we output logarithm of the block 0, given certain
oligonucleotide, while in case of acceptor sensor we out-
put sum of probability logarithms for all blocks that are
calculated with formula similar to (3) under 3' SS condi-
tion. An advantage of our sensor design, compared to
other projects, is in use of an extensive learning set.
Because of the simple sensor structure we can combine
very large numbers of splice and splice-like signals in the
learning set without a dramatic learning time increase,
which substantially improves sensor performance [see
Subsection Bayesian sensor performance]. Close homologs
or repeating gene structures in the learning set do not
affect the resulting Bayesian SS sensor prediction quality;
repeating domains will equally contribute scores to nom-
inator and denominator in (3) with the resulting Bayesian
probability staying the same. Our learning set is well-bal-
anced, i.e. we use naturally occurring signals to calculate
proper signal/noise ratios.

De novo motifs detection
Detection and explanation of subtle motifs in human
genes is very important, since many mutations disrupting
these elements may affect gene transcription, splicing or
translation with possible severe consequences [62]. The

P ss oligo
P ss P oligo ss
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Blocks placement within consensusFigure 10
Blocks placement within consensus.
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problem could be formulated as a standard missing-value
inference and model parameter estimation. Many
approaches of motif detection are based on standard
machine learning techniques, such as Gibbs sampling and
Expectation Maximization (EM) algorithms. Among the
tools using these algorithms are MEME [63], AlignACE
[64], LOGOS [65], BioProspector [66], Gibbs Motif Sam-
pler [67] and many others. Different approaches explore
the idea of word enumeration, dictionaries and string
clustering, for example RESCUE-ESE technique [24] and a
recent method based on probabilistic suffix trees [68]. An
interesting method of using prior knowledge in motif
finding process has been presented in the LOGOS frame-
work [65], where specific knowledge of DNA-specific bell-
and U-shaped motifs signatures has been incorporated.
The RESCUE-ESE method [69] is based on a prior belief
that ESEs preferentially support weak SSs.

In design of our application we were primarily interested
in use of prior knowledge to detect constitutive splicing
enhancing elements. MHMMotif is designed to search for
motifs in pre-mRNA, the single-stranded molecule. Only
a fraction of sequences are assumed to have motifs of cer-
tain type within them. In our experiments we saw no
apparent correlation between mRNA factors, so we
assume that motifs are colocalized independently at a cer-
tain distance from target sites (e.g. TSS or SS). We also
assume that motifs come in a localized family, and many
of them are highly degenerate. Furthermore, motif fami-
lies could be subdivided into subfamilies, with overall pre-
diction quality improving.

As an example of preferential motif location, we present
in Figure 11 Logarithm of Odds (LOD) diagrams we
measured in the vicinity of SSs for two known ISE and ESE
motifs, GGG [70] and (GAC)n/ACGAGAGAY/WGGACRA
(9G8 binding site) [62]. We calculate LOD diagrams as

the logarithm of the ratio of signal concentration near SS
to the signal concentration near splice-like signal [see Sec-
tion Using detected signals to improve SS prediction]. The sig-
nals have distinct bell-shaped concentration increase or
decrease once we are getting closer to SS.

Our signal-detecting framework is purely based on Hid-
den Markov Models (HMM). HMM has many attractive
properties in the context of motif detection, such as a trac-
table probabilistic inference and learning procedure, flex-
ible topology, and ability to incorporate prior knowledge.

Using the mixture of Hidden Markov Models
Our strategy of motif detection is based on clustering with
Mixture of Hidden Markov Models (MHMM). MHMM
has a long record of successful implementations that
started in speech recognition [71] and later were used for
clustering protein families [72] and sequences [73]. To
simulate location constraints of motifs within mRNA we
use convolution of geometric states, that is described with
bell-shaped negative binomial distribution, characterized by
parameters p (probability to stay in the same state) and n
(number of consecutive states in convolution) [74]. To
detect motifs we fit our MHMM model, shown in Figure
12, to the set of sample sequences, using the Baum-Welch
algorithm described in [75,76]. The mixture component,
shown in Figure 12, is a Hierarchical HMM (HHMM) with
stack transformation to a plain HMM, as described in
[77].

Many contemporary motif finders [63,67] use Product
Multinomial (PM) model [65]. PM model corresponds to
the widely known binding motif consensus, which could
be easily visualized with logos [78]. The HMM motif
model is strictly more general than the standard PM
model, since the HMM model is capable of catching
dependencies between adjacent motif positions, which

LOD diagram for GGG signal, reported as an ISE (Figures 11(a), 11(b))Figure 11
LOD diagram for GGG signal, reported as an ISE (Figures 11(a), 11(b)). LOD diagram for 9G8 signals, reported as an ESE (Fig-
ures 11(c),11(d))
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used to be a major improvement to weight matrices (PM
model) [52]. Furthermore, a mixture of HMMs is poten-
tially able to recognize dependencies between nonadja-
cent positions, by subdividing motif families into several
subfamilies, each catching a specific group of dependen-
cies between local positions.

By implementing the MHMM topology, as shown in Fig-
ure 13, we simultaneously learn competing HMM compo-
nents of the mixture, so that they pick various competing
motifs. Our application MHMMotif picks signals even if
their observation frequency is low compared to simple
background, i.e. a statistically significant concentration of
a certain signal is not a primary detection criteria. Internal
signal structure and its preferential location are the main
conditions for our tool. This is another advantage of our
approach compared to existing methods.

Since prediction of SS enhancing elements is still an active
research topic, we decided to supplement the known
enhancing motifs [see Subsection Splicing signals] with
newly discovered putative enhancers. Our initial assump-
tions of motif finding capability of MHMM were sup-
ported by successful preliminary test results on artificial
data sets, where known SF2/ASF [79] and SC35 [80] ele-
ments were detected against random background.
Another experiment on the sample set of 1,871 human
promoter segments (-150...+10 bps relative to initial
codon) from The Eukaryotic Promoter Database [81],
clearly identified known landmarks of this area, such as
OCT-1, NF-1 and AP-2 factors in addition to TATA-box,
CAT-box, GC-box and TATA-like A-box factor. Having pre-
liminary-encouraging results, we applied MHMMotif tool

to the splicing data sets [see Subsections Detection of ISE
signals and Detecting ESE signals].

Using detected signals to improve SS prediction
Found ESE and ISE motifs have been evaluated for the
ability to improve SS prediction with our new splicing
simulator SpliceScan. Our splicing model is based on var-
ious-strength SS interaction with signals, such as SS them-
selves, and Enhancing/Silencing motifs located nearby.

SS classification enhancement in our system follows Baye-
sian rule in terms of Logarithm of ODds ratio (LOD) [82]

The quantity Prob(D|H) is called the likelihood of the data
D (in our case ISE, ISS, ESE, ESS and competing SS signals)
under hypothesis H. The last term of (4) is the LOD ratio
of the prior probabilities of the Splice versus Splice-like
signals, obtained with the Bayesian sensor. The first sum
term in (4) takes into account the evidence provided by
the data and comes up with a valid posterior LOD ratio.
In order to make a noise-tolerant conversion of donor and
acceptor probabilistic sensor scores into prior LOD, we
approximate real signal score distribution histograms
with a mixture of Beta Probability Density Functions
(PDFs). The PDF of the Beta distribution is

and the mixture of n components is
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In our HHMM motif model B denotes background state – equiprobable emission of A, C, G, T. X is a special marker for sticky 
end handling to ensure proper convolution patterns. Sticky end of 10 X's is automatically added to every sample sequence by 
our tool.
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. Using the Expectation Maximization algorithm for mix-
ture learning, as explained in [83], we fitted the beta mix-
ture (5) to the donor and acceptor SS score histograms as
shown in Figure 14.

The donor histogram (shown in Figure 14(a)) was fitted
in the range from -25.1 to -0.38 with the mixture

Mixdonor(p) = 0.006 × Beta(p, 0.06, 0.91) + 0.994 × Beta(p,
14.27, 1.80)

and the acceptor histogram (shown in Figure 14(c)) was
fitted in the range from -111.01 to -19.19 with the mixture

Mixacceptor (p) = 0.83 × Beta(p, 48.42, 6.37) + 0.17 × Beta(p,
7.18, 1.85)

where we assume probability argument in the formula

We then calculated the Cumulative Distribution Function
(CDF) and subdivided the result probability into 10 equal
intervals with corresponding average LOD scores as
shown in Table 4.

We built LOD diagram for each of the enhancing motif
interacting with SS of different strengths (in range from 1
to 10), similar to shown in Figure 15. First, we measure
normalized signal concentrations around SS, as shown in
Figure 15(a). Using Matlab® polynomial interpolation we
approximated characteristics as could be seen in Figure
15(a). In order to find LOD characteristic, shown in Figure

15(b), we calculate , where

Prob(D|HSS) is normalized signal concentration at certain

location next to a SS and Prob(D|H¬SS) is normalized sig-

nal concentration at certain location next to a splice-like
signal. Signal LOD scoring happens as schematically
shown in Figure 15(c).

We were not able to use all the available enhancing/silenc-
ing signals for SS prediction. Part of the problem appears
that the linear LOD sum accumulates noise and can only
include limited number of factors. The signals we used for
donor enhancement are all ISE elements supporting 5' SS
shown in 7(h)-7(m), plus ESE element shown in Figure
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8(a), 8(d), 8(g) and 8(j) combined with hnRNP A1, poly
A and srp20 signals [see Subsection Splicing signals]. Sur-
prisingly, polyadenylation signal use contributed substan-
tial enhancement to the ROC diagram. We were not able
to use SF2/ASF and SC35 enhancing signals for having
LOD characteristics with indistinct enhancement profile.
For acceptor enhancement we used ISE elements support-
ing 3' SS shown in Figures 7(b), 7(c) and 7(e) plus ESE
element shown in Figure 8(a), 8(d) and 8(g) combined
with hnRNPAl, polyA and srp20 signals.

SS/SS interaction LOD diagrams are the key ingredient of
our prediction algorithm as they contribute most to SS
prediction enhancement. Figure 16 shows various interac-
tion diagrams. X-axis is the SS vicinity position, where SS
of strength 1 located at 0, Y-axis is the strength of interact-
ing signal and Z-axis is the LOD characteristic. The main
conclusion we make based in Figures 16(a) and 16(b) is
that weak signal preferentially avoids strong competitors
nearby, especially inside exon, as they can redefine exonic
boundary. Figures 16(c) and 16(d) indicate that weak sig-
nal (donor or acceptor) has preferential need for strong
complementing exonic boundary.

Donor and acceptor histograms approximated with a mixture of Beta distributionsFigure 14
Donor and acceptor histograms approximated with a mixture of Beta distributions.
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Reviewers' comments
Reviewer's report 1
Manyuan Long, Department of Ecology and Evolution, The
University of Chicago Chicago, United States, Email:
mlong@uchicago.edu

The authors attempted to develop a simple sensor to
detect splice and splice- site signals. A 7-mer was designed
to scan a sequence. The ROC diagrams (Fig. 3) showed its
obvious advantage, significantly higher specificity and
sensitivity than other methods. In addition, the authors
also used MHMM to detect ISE and ESE signals and used
found signals to improve SS prediction. I think that the
authors developed useful new methods for SS detection
and I favor its publication in Biology Direct. However, I

also have following minor concerns and hope them get
fixed in revision.

Page 1: "Figure 1...": is not original, some sources should
be cited (for example, the early work of Tom Schnider of
NCI in 1992?". Originality is something that a paper in
bioinformatics wants to emphasize.

Author response
For graphical representation of splicing motif consensuses we
extracted multiple splicing motifs from our database and used
WebLogo tool [78]to build the logos

Page 1: " the human transcribed region have plenty of
motif....": it should be pointed out how are these motifs
defined and why mentioned here? Is it relevant to the
intron splicing?

Author response
Many oligonucleotides have composition identical to known
potent splicing signals and at the same time are not supported
by spliced alignment. Ab initio SSs prediction has to filter out
such signals to predict the correct gene structure(s).

Page 2, the second paragraph, the caveat of current meth-
ods to detect SSs is pointed out: non-coding exons do not
have three-periodic coding components. The idea used is
the signal interaction: SSs, ISE, ESE, ESS and ISS. New
gene structural annotation tool SliceScan is developed
and reported in this paper. SS sensor is the key and several
majors SS sensors reviewed.

Page 3: in the proposal of a new sensor and compute P (7-
mer and SS), why to choose the 7-mer rather than 8-mer
or 6-mer should be explained. In addition, the sign – I
guess is "non-ss" should be defined. If my guess is correct,
this equation makes sense. Biology Direct is a journal for

Example of ISE signal interactionsFigure 15
Example of ISE signal interactions.
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(c) Signal scoring using LOD

Table 4: Prior LODs

Strength Probability Prior donor LOD Prior acceptor LOD

1 0–0.1 -6.89 -9.10
2 0.1–0.2 -3.53 -5.65
3 0.2–0.3 -2.54 -4.51
4 0.3–0.4 -1.41 -3.69
5 0.4–0.5 -0.50 -2.84
6 0.5–0.6 0.01 -2.38
7 0.6–0.7 0.60 -1.86
8 0.7–0.8 1.06 -0.89
9 0.8–0.9 1.99 -0.26
10 0.9–1.0 1.93 0.88
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general biology audience; not only for computational
biologist so the jargons and special signs should be
avoided or if having to use them, explanations should be
given.

Author response
7-mer is the size of donor consensus minus GT dinucleotide,
since it is always the same, as could be seen in Figure 1(a). For
the modelling of acceptor signal 7-mer appears to be optimal:
shorter oligonucleotide will have limited capability of represent-
ing long-range positional correlations, while longer oligonucle-
otides will produce large combinatorial table difficult to learn.

Page 7: I am not sure how they identify ISEs; section 3.2 is
unclear. It seems the conservation is the only criterion.
This might be reasonable in a narrow scale of evolution.
But given the high evolutionary rate of intron sequence
with a lot insertion-deletion (indels), I am suspicious of
its feasibility because of the difficulty in alignments to
identify the short homologous sequences. Although I do
not oppose the approach, a cautionary note in the discus-
sion should be given, which I think will be useful to col-
leagues.

LOD diagrams for Donor and Acceptor signal interactionsFigure 16
LOD diagrams for Donor and Acceptor signal interactions.

(a) Donor-Donor interaction (b) Acceptor-Acceptor interaction

(c) Acceptor-Donor interaction (d) Donor-Acceptor interaction
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Author response
ISE signals are predicted using EM learning of MHMM model
on intronic fragments of human genes. Main detection criteria
used:

1. Close localization of putative signals to the intronic bounda-
ries,

2. Constant size of putative enhancer,

3. Affinity of putative enhancing element to a certain HMM
profile.

To test hypothesis of their higher conservation, compared to
other oligonucleotides, we use mouse-rat intronic alignments
that have substantial conserved domains.

Typo: Page 12: should be put in a different place to make
reference continuous.

Reviewer's report 2
Arcady Mushegian, Stowers Institute, Kansas City, United
States

Email: ARM@Stowers-Institute.org

Good: 1. Part 2: the main idea appears to be to trade a
more complex model for a larger training set. This seems
to improve specificity of the splicing site detection.

Two relevant issues that are not discussed but should be:
a. In Figure 3, all ROC curves are still below the non-dis-
crimination line – is this acceptable.

Author response
We use ROC curve different from common True Positive Frac-
tion vs. False Positive Fraction plot, where diagonal is a non-
discriminant test result. In our test we know total number of
positive cases, so we can build Sn vs. 1 - Sp curve, which is more
informative for application comparison purposes.

b. Gain of the current method is more evident in the lower
FP zone, where sensitivity is also low.

Author response
All application ROC curves converge to one point with 100%
sensitivity and 0% specificity. The curves differ for lower sensi-
tivity values, where we can speculate about prediction quality.
Some applications, like NetUTR and ExonScan, have sensitiv-
ity artificially limited to ~50%. Performance analysis for
such applications makes sense only in lower sensitivity
quarters.

2. A repertoire of intronic splicing enhancers was detected,
which is interesting. Not so good: 1. Very unclear writing
at different levels:

a. Various inconsistencies and poorly defined terms, for
example on pg. 3–4, authors say that they compiled two
test sets, and then describe three. Or on pg. 4, line 8 and
further: what is "cross-correlating"?

Author response
Cross-correlation means the genes in learning and test set have
extensive homologous regions, which favorably affects sensor
performance on the test set and should be avoided for rigorous
comparison.

b. section 3.1 : MHMM is not described well: we see a mix
of introductory references on general HMMs, of more spe-
cialized references that may be telling something relevant
but we do not know that, and cat's cradle pictures which
are not self-explanatory (and what about these mu param-
eters?).

Author response
Here we try to reach reasonable compromise between complete
system definition and skipping details of well known results
from artificial intelligence community, which we reference.
Please refer to MHMMotif application source code for more
details.

2. The Results section mentions the programs that work
less well than SpliceScan. But we do not hear about com-
parison between SpliceScan (which barely gets over the
non-discrimination line) and half a dozen other, more
successful methods represented on the same plots. If the
goal of the work was to improve the ab initio approach (cf
a line in the abstract), this has to be maintained as the
message throughout the paper.

Author response
Our method has clear advantage in case of 5' UTR gene frag-
ment structural prediction according to ROC curves shown in
Figures 9(e)and 9(f). In case of gene structural prediction in
CDS area, one should use different application, such as GenS-
can, since SpliceScan does not have frame-consistent synchro-
nization component.

Overall, this manuscript reads more like the technical
report on the ongoing project than a stand-alone paper.

I declare that I have no competing interests.

Reviewer's report 3
Mikhail Gelfand, Institute of Information Transfer Problems,
Moscow, Russian Federation Email: gelfand@iitp.ru
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On "Method of predicting splice sites based on signal
interactions" by A.Tchourbanov et al., submitted to "Biol-
ogy Direct"

The problem of identification of donor and acceptor splic-
ing sites is not new, but far from solved, whereas identifi-
cation of sites regulating splicing (exonic/intronic splicing
enhancers/silencers) has emerged relatively recently.
Given the importance of both these problems for gene rec-
ognition and understanding alternative splicing, any
progress in this area is most welcome.

The authors attempt to address both problems in one
framework of Bayesian analysis. They apply Bayesian sen-
sors to detection of donor and acceptor splicing sites. The
exposition in this part (section 2, pp. 2–3) contains sev-
eral gaps. It is not clear how well the described approach
of 7-mer counting with subsequent Bayesian weighting
generalizes; in particular, it seems that the sensors will not
accept a completely new 7-mer as a site. If the authors
implicitly claim that all possible 7-mers have already been
observed in the training set, and the only problem is
proper weighting, this needs to be substantiated. A helpful
piece of data would be the rank distribution of 7-mers in
the positive and negative sets. How many 7-mers have
been observed only once in the positive set (and would be
missed if only half of that set were used for training)?

Author response
With cross correlation removed between learning set and the
test set, when testing on the set of 250 human genes, we had
miss rate of 0.52% for our 5'SS sensor, which is acceptably low
value. For 3'SS sensor overall miss rate is negligibly low, since
sensor topology is composite of several blocks. We show top 40
ranking 5'SS nonamers in Table 2. We added discussion on
sensor performance related to learning set size [see Subsection
Learning set size study/, where we show that Bayesian sensor
has preference for the large learning sets. For example, the sen-
sor could be successfully applied to recognition of the Transla-
tion Initiation Site (TIS) against upstream A UGs, where we
can collect large learning set. In the TIS sensor design we used
three strategically located heptamers, so that they can catch
both long-range dependencies and initial codon bias, as shown
below:

We used 42,883 TIS and 77,140 TIS-like signals from human,
mouse and rat RefSeq databases to learn our TIS Bayesian sen-
sor, which demonstrated, in our preliminary experiments, supe-

rior performance as compared to simple Kozak's consensus rule
(GCC)GCCRCCAUGG (where R = G or A) [84] and corre-
sponding weight matrix. However, the sensor design does not
generalize well to recognition of other signal types, such as tran-
scription factors, with very thin learning sets. 

Another missing part of exposition is a formula for com-
bining several sensors for acceptor site analysis. Is the final
score (probability) obtained by multiplying probabilities
assigned by the sensors?

Author response
Acceptor sensor uses product of block probabilities.

Given the possibility of over-fitting, the testing procedure
should be designed very carefully. Description in section
2.1 (pp. 3–4) does not address several issues, the most
important of which is the influence of homologous sites
in the training and testing data. The authors mention that
they have removed homologs from the human sets, but it
is not clear whether only human paralogs have been con-
sidered, or mouse homologs as well. It is not clear also
whether the rat set has been purged from homologs to
sites used in training. A minor note is that the text (end of
p.3) mentions two datasets, whereas three sets are listed.

The authors completely ignore the problem of alternative
splicing.

Author response
Both human and mouse homologs were removed from the
learning set in our experiments. Domains, paralogous to the rat
test set, were not been specifically purged from the learning set.
In the case of rat test set we were interested in the performance
test on similar, but substantially diverged organism, i.e. simu-
lation of practical sensor application. We considered prediction
of genomic structures the way they are annotated in GenBank.
Indeed, some of the predicted SSs could be alternatively com-
mitted, but this is another topic for study.

The behavior of ROC curves (Fig. 3) seems to be some-
what erratic. In particular, they are not even monotonic.
Probably that means that the distribution of scores on
positive and negative sets is not unimodal. Anyhow, these
distributions should be presented in addition to the ROC
curve data. On a technical side, it would be most helpful
if the data were plotted using uniform scales; otherwise it
is difficult to compare curves on different plots. The
authors should also explain how they produced ROC
curves for other methods: whether they had been re-pro-
grammed or some existing programs (stand- alone or
internet servers) were used, what versions, etc. Otherwise
these pieces of data are not easily reproducible.
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Author response
The distribution of scores returned by different methods is mul-
timodal, as shown in Figures 3(a)and 3(b). We used large
number of possible intermediate points to reproduce fine fea-
tures of the curves and to avoid possible graph extrapolation
between distant points. The curves were obtained using Java
web application, which sends queries of genomic structures to
different online tools, collects statistics and outputs data points
for ROC curves reconstruction. 

The last sections of the manuscript are somewhat fuzzy.
The authors identify a number of likely splicing enhanc-
ers/silencers, and then use these signals to improve site
detection (section 4). However, is absolutely is not clear,
how this improvement is implemented, nor whether the
results become stronger: the entire "Results" section (4.1)
consists of two short paragraphs and a huge figure featur-
ing the ROC curves. The test sets are not described: what
portions of adjacent exons and/or introns were consid-
ered? Again, the behavior of the ROC curves in many cases
looks absolutely erratic: they are convex, concave, and
even zigzagging. The reasons for that are not discussed.

Author response
Results of SpliceScan become much stronger compare to simple
Bayesian SS sensor. In our algorithm we try to guess the bound-
aries of region eligible for LOD scoring by looking at the sur-
rounding putative complementing SSs. For example, for 5' SS
we consider the nearest 3' SS downstream as the beginning of
next exon, and the first upstream 3' SS as the opposite side
exonic boundary. Weak signals are abundant, which results in
unnecessarily tight region boundaries. By relaxing requirements
for the region boundary candidates to be stronger than 1, we
substantially extend region boundaries and count additional
enhancing signals, which improves performance. However, fur-
ther relaxing of boundaries will put many signals in the wrong
spot (signals that assumed to be within intron region might
reside in exons with corresponding LOD score miscalculation),
which worsens the ROC characteristic. The maximum allowed
distance of the region expansion is -200...+ 300 bp for the 5'
SS and -300...+ 200 bp for the 3' SS. Many applications tend
to produce multimodal score distributions for the splice and
splice-like signals, which causes ROC curves jitter.

Minor remarks.

" P. 2. Splicing silencers are mentioned in the introduc-
tion, but not addressed during analysis. At that, it is not
clear how do the authors assign activation/repression
function to their identified motifs: they could well func-
tion as silencers.

" P. 7. The claim that ISEs have never been systematically
analyzed (section 3.2) is not correct.

" P. 7. What are the definitions of parameters in the for-
mula (conserved/non-conserved)?

" P. 9. The first sentence in the last paragraph on this page
is obscure. What are "SS of different strengths"? That is,
what groups of sites, or what strength intervals, or what-
ever have been used?

" P. 9. Definition of D: is it a competing SS or a splicing
enhancer?

" Ref. 9 = Ref. 11.

" Use of capitals in the reference list is erratic. "DNA",
"Markov", "Bayesian" need consistent capitals.

Overall, I believe that, although the study has produced
some interesting observations, and the authors' approach
seems promising, the manuscript in the present form is
rather raw and badly structured (it really looks like several
independent papers half-written and stitched together),
and several important points are not addressed at all.

I declare that I have no competing interests.
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