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Abstract
Background: There has been a growing interest in computational discovery of regulatory
elements, and a multitude of motif discovery methods have been proposed. Computational motif
discovery has been used with some success in simple organisms like yeast. However, as we move
to higher organisms with more complex genomes, more sensitive methods are needed. Several
recent methods try to integrate additional sources of information, including microarray
experiments (gene expression and ChlP-chip). There is also a growing awareness that regulatory
elements work in combination, and that this combinatorial behavior must be modeled for
successful motif discovery. However, the multitude of methods and approaches makes it difficult
to get a good understanding of the current status of the field.

Results: This paper presents a survey of methods for motif discovery in DNA, based on a
structured and well defined framework that integrates all relevant elements. Existing methods are
discussed according to this framework.

Conclusion: The survey shows that although no single method takes all relevant elements into
consideration, a very large number of different models treating the various elements separately
have been tried. Very often the choices that have been made are not explicitly stated, making it
difficult to compare different implementations. Also, the tests that have been used are often not
comparable. Therefore, a stringent framework and improved test methods are needed to evaluate
the different approaches in order to conclude which ones are most promising.

Reviewers: This article was reviewed by Eugene V. Koonin, Philipp Bucher (nominated by Mikhail 
Gelfand) and Frank Eisenhaber.

Open peer review
Reviewed by Eugene V. Koonin, Philipp Bucher (nomi-
nated by Mikhail Gelfand) and Frank Eisenhaber. For the
full reviews, please go to the Reviewers' comments sec-
tion.

Introduction
Understanding the regulatory networks of higher organ-
isms is one of the main challenges of functional genomics.
Gene expression is regulated by transcription factors (TF)
binding to specific transcription factor binding sites
(TFBS) in regulatory regions associated with genes or gene
clusters. Identification of regulatory regions and binding
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sites is a prerequisite for understanding gene regulation,
and as experimental identification and verification of
such elements is challenging, much effort has been put
into the development of computational approaches.
Good computational methods can potentially provide
high-quality prediction of binding sites and reduce the
time needed for experimental verification. However, the
computational approach has turned out to be at least as
challenging as the experimental one, and a very large
number of different methods have been developed.

Computational discovery of regulatory elements is mainly
possible because they occur several times in the same
genome, and because they may be evolutionary con-
served. This means that novel regulatory elements may be
discovered by searching for overrepresented motifs across
regulatory regions. However, this apparently simple
approach is complicated by the fact that most binding site
motifs are short, and they may also show some sequence
variation without loss of function. Therefore most motifs
are also found as random hits throughout the genome,
and it is a challenging problem to distinguish between
these false positive hits and true binding sites.

One of the early origins of DNA motif discovery is the
computer program written in 1977 by Korn et al. [1] that
was able to discover sequence similarities in regions
immediately upstream of TSS. Both mismatches and flex-
ible gaps were accounted for, but using only pairwise
comparisons. This approach was further developed by
Queen et al. [2], comparing multiple sequences simulta-
neously. In this work, the exact requirements of a motif
was also defined clearly, with quorum constraints on
sequence support, max number of mismatches in occur-
rences, and max distances between occurrence positions
in the different sequences. In the same year, Stormo et al.
[3] introduced a Perceptron algorithm that calculated the
sum of independent weighted match scores for each posi-
tion of a motif aligned with a sequence. Similar to this,
Staden [4] introduced a position weight matrix with
weights corresponding to log-frequencies of nucleotides
in aligned motif occurrences. A very nice historical
account of the early development of motif models is given
in [5].

The most common approach to de novo computational
discovery of regulatory elements is to extract a set of
sequences from the genome, typically fixed size upstream
regions for a set of genes having e.g. similar functional
annotation or gene expression. An algorithm is then used
to discover the most overrepresented motifs according to
some motif model and statistical measure.

Several extensions to this basic approach may be used to
increase its sensitivity, by including additional prior

knowledge about gene regulation. Regulatory elements
are not randomly distributed, but tend to form clusters of
regulatory modules. The context of putative regulatory
elements may also be important, such as other nearby ele-
ments, the presence of CpG-islands, or the position in the
overall DNA structure. Individual genes in a gene set may
show different levels of co-regulation e.g. in a microarray
experiment, and this may be used as a weight function to
increase the influence from potentially important genes.
Finally, additional sources of information, such as regula-
tory regions of orthologous genes, will often be available.

More than a hundred methods have been proposed for
motif discovery in recent years, representing a large varia-
tion with respect to both algorithmic approaches as well
as the underlying models of regulatory regions. There is
also large variation regarding how methods are described
and tested, making it even harder to get a good overview
of the field. Many reviews of motif discovery methods
have therefore been written, with varying focus and
intended audience. The recent review by Pavesi et al. [6] is
a very accessible and broad introduction to the field. It
divides methods into consensus- and alignment-based,
and surveys the most established methods one at a time.
It also discusses background modeling, evaluation of
motifs and the practicalities of using these methods. The
review by Wasserman and Krivan [7] has a stronger focus
on the underlying biology of motif discovery in regulatory
regions. It also goes a bit more into the combinatorial
nature of binding sites, and touches upon issues such as
phylogenetic footprinting, CpG-islands and chromatin
structure. Finally, some reviews focus on specific tech-
niques such as phylogenetic footprinting [8], or on spe-
cific genomes [9].

Here we present a structured framework for describing
motif discovery methods, where we focus on the mode-
ling of regulatory regions, in particular in eukaryote
genomes, and with a finer level of detail compared to pre-
vious surveys. The emphasis is on how the multiple bind-
ing sites for modules of combinatorially acting regulatory
elements can be modeled, and how additional data
sources may be integrated into such models.

Our framework allows for a systematic and quite exhaus-
tive survey of recent methods. Here we survey methods
with respect to individual elements of our model, which
makes it easier to spot important differences and similar-
ities between methods. Furthermore, this approach
reveals important differences between methods on aspects
that in most papers are not discussed as deliberate
choices. Relevant examples are how matching scores of
several motifs in a module are combined, and how the
score of multiple binding sites for the same factor is calcu-
lated.
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As discussed e.g. by Tompa et al. [10] it is very difficult to
compare the performance of methods, in particular on
complex genomes like the human. Furthermore, methods
will also differ in aspects like average running time, need
for manual parameter-tuning, exhaustiveness of results,
general usability and so on. Individual methods may also
perform better on one type of genomes compared to oth-
ers, making it difficult to compare performance on a gen-
eral scale. We have therefore to a large extent deliberately
avoided comparing relative performance of individual
methods. We mainly indicate important elements of the
problem, and show the breadth of possible solutions that
have been tested, both when it comes to established ele-
ments of motif discovery, such as single motif models, as
well as less common approaches, such as the incorpora-
tion of DNA structure. However, there is a definite need
for more standardized routines for testing and comparing
alternative approaches to motif discovery, and the work
by Tompa et al. [10] is an important step in that direction.

Biological background
The system for transcriptional regulation of the eukaryotic
genome is complex. The regulatory processes are found at
several hierarchical levels, in particular at the sequence
level, the chromatin level and the nuclear level [11]. The
sequence level includes coding regions, regulatory bind-
ing sites and sequence elements affecting the 3-dimen-
sional fold of the chromatin fiber. It is mainly the binding
sites for transcription factors that will be discussed here.

In eukaryotic cells DNA is packed as chromatin, and this
affects transcriptional regulation. The basic unit consists
of 150 base pairs of DNA wrapped 1.7 times around a pro-
tein octamer, consisting of histones. This unit is called the
nucleosome, and it can exist in different structural and
functional states. Transitions between states are linked to
gene activity. These transitions are influenced by post-
translational modifications of histones, and this is often
described as the histone code. Also gene silencing by DNA
methylation is an important chromatin modification.

In addition to the linear (sequence) and pseudo-linear
(chromatin) organization of DNA, it is also organized in
a highly folded state. This brings together genome regions
that are far apart, which may affect the co-regulation of
these regions. However, we lack efficient tools for study-
ing global chromatin folding.

In particular the transcriptional regulation at the sequence
level has been extensively studied, and several reviews are
available, e.g. by Werner [12], Wray et al. [13] and Peder-
sen et al. [14]. The key regulatory region is the promoter
region, located upstream of the coding sequence. It is
often separated into the basal (or core) promoter, where
the transcriptional machinery is assembled, and the gen-

eral promoter, where most of the transcription factors
bind. The promoter basically integrates information
about the status of the cell, and adjusts the transcription
level according to this information. The transcription fac-
tors are proteins that bind to specific DNA motifs. These
motifs are short. The effective length may be just 4–6 base
pairs (bp) for a typical binding site, although the region
affected by the transcription factor (the footprint) is
longer, typically 10–20 bp. Each gene contains a large
number of binding sites, 10–50 binding-sites for 5–15 dif-
ferent transcription factors is not unusual. These transcrip-
tion factor binding sites are often organized in modules
consisting of several binding sites, where each module
produces a discrete aspect of the total transcription pro-
file. For many genes most of the binding sites are found
within a few kb upstream of the start site. However, the
variation is large, the size of the region where cis-regula-
tory elements are found can vary by nearly three orders of
magnitude from a few hundred bp to >100 kb. Regulatory
regions have also been found downstream, in introns and
even in exons of genes. The actual transcriptional regula-
tion is achieved through a complex, combinatorial set of
interactions between transcription factors at their binding
sites [15].

An integrated framework
As motif discovery methods can be very complex, with
many possible differences, several authors have proposed
frameworks for classifying motif discovery methods.
Brazma et al. [16] categorize motif discovery methods
with respect to whether they use explicit negative
sequence sets or not, expressiveness of the pattern models,
whether patterns are deterministic or statistical, and
whether the algorithms are pattern driven or sequence
driven. In a later paper Brazma et al. [17] define a three
step paradigm consisting of choosing a class of grammars
(motif model), designing a rating function (motif score),
and developing an algorithm. However, the major recent
advances in the field have been on modeling of regulatory
regions, rather than individual sites, and on integration of
additional data. The frameworks mentioned above are not
well suited to highlight developments in these directions.
We therefore use an extended, integrated framework for
the description of motif discovery methods, where both
the representation of the transcription factor based regula-
tory system itself, as well as additional sources of informa-
tion, can be represented.

The most basic level of our framework (Level 1) represents
the binding of transcription factors (TFs) to short contig-
uous sequence segments. These sequence segments are
modeled by single motif models that give a distinct score
for each sequence segment in a regulatory region. This
score is based on the match between the sequence seg-
ment and a motif consensus model, and on the prior
Page 3 of 16
(page number not for citation purposes)



Biology Direct 2006, 1:11 http://www.biology-direct.com/content/1/1/11
belief that any regulatory element may occur at the given
location.

The next level of our framework (Level 2) represents mod-
ules: clusters of TFs that bind to DNA in proximity to each
other, but with a certain flexibility regarding distance
between binding sites. This is modeled by a composite
motif model, consisting of a set of single motifs. Given a
set of positions, one for each single motif, the score of a
composite motif can be calculated from the score of single
motifs at given positions as well as inter-motif distances.

The third level of the framework (Level 3) represents how
several modules may act together, possibly in a combina-
torial manner, to determine the regulation of a single
gene. This is modeled by a gene score function that com-
bines composite motif scores across the regulatory
reglon(s).

The final level of our framework (Level 4) represents sev-
eral sets of modules acting on sets of genes, e.g. at the
genome level. Scores at this level are mostly used for eval-
uation and ranking of de novo discovered motifs. The eval-
uation is based either on overrepresentation of motifs, or
on correspondence between motif scores and experimen-
tal data.

A schematic view of our framework, reflecting the differ-
ent levels of regulatory processes, is given in Figure

1. The different elements of this figure will be described in
more detail in the following sections.

We will now use this framework to categorize a large
number of existing methods for motif discovery. Table 1
gives an overview of how various elements of our frame-
work are approached by selected methods, including both
novel and more established approaches. A larger table,
which includes most current methods, is available as sup-
plementary material [18].

Single motif models (Level 1)
Transcription factors bind to specific short segments of
DNA, transcription factor binding sites. This is the most
basic element of the regulatory system, and can be mod-
eled using single motif models. A single motif model is
defined as a function mg : �→� that maps a sequence position
p as a non-negative integer to a real numbered motif score
mg(p). It consists of a match score m*(p) and an occurrence
prior og(p).

The function mg(p) returns a value indicating whether an
occurrence of the motif is found at position p. This func-
tion is typically the product or sum of two conceptually
different functions. The match model, m*(p) gives the
degree of match between the substring beginning at posi-
tion p and an underlying consensus model. The occur-
rence prior, og(p), gives the prior belief that position p
represents a regulatory element for gene g.

A schematic view of the integrated frameworkFigure 1
A schematic view of the integrated framework. A single motif, denoted by mg, consists of two parts, mg is how well the 
sequence matches a consensus, while og is a prior on whether any regulatory element is to occur at that position. A set of sin-
gle motifs, together with inter-motif distance restrictions (d), then forms a composite motif (cg). Finally, multiple occurrences 
of a composite motif in the regulatory regions of a gene is represented by a gene score Gc.
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Page 4 of 16
(page number not for citation purposes)



Biology Direct 2006, 1:11 http://www.biology-direct.com/content/1/1/11
Match models
In the most general sense, the match model m*(p) is a
function that gives a distinct score for any given substring.
However, the number of free parameters has to be
restricted to allow training of the model from a limited
number of examples (e.g. known regulatory elements).
Numerous match models have been proposed, and they
are often divided into two groups, deterministic models
with binary scores and probabilistic models with
weighted scores.

Probabilistic match models
The most widely used probabilistic model is without
doubt the position weight matrix (PWM), also known as
position specific scoring matrix (PSSM), that assumes
independence between positions [3]. The score of an
aligned substring is the log-likelihood of the substring
under a product multinomial distribution. PWM scores

can also be described in a physical framework as the sum
of binding energies for all nucleotides aligned with the
PWM [19].

Many different extensions to the basic PWMs have been
proposed in the literature. Most of these extensions con-
cern positional dependencies within a motif. There is an
ongoing discussion on the importance of such positional
dependencies, see for instance [20-22].

The most direct way of incorporating dependencies within
motifs is to extend the PWM to include pairs of correlated
positions [21,23]. Another straightforward approach is to
use a mixture model in which the motif occurs as one of a
limited number of stochastic prototypes [24]. Each sto-
chastic prototype may be a traditional PWM, or any other
model discussed in this section. A third extension is to
model probabilistic motifs as n'th order Markov chains

Table 1: Overview of methods. The match model is the consensus representation of a single motif, motif combination is how the 
component scores of a composite motif are combined, and distance score is how the conservation of inter-motif distances within a 
composite motif is modeled.

ALGORITHM NAME MATCH MODEL MOTIF COMBINATION DISTANCE SCORE

Weeder [42] mismatch - -
Dyad analysis [35] oligos dyad1 constraint
MCAST [71] PWM sum gap penalty
REDUCE [67] PWM dyad constraint2

MDScan [87] PWM - -
Gibbs sampler [97] PWM intersection3 uniform
MEME [98] PWM - -
LOGOS [73] DM HMM distribution
Motif regressor [89] PWM - -
ModuleSearcher [70] PWM sum window4

Stubb [48] PWM HMM window
GANN [60] flexible ANN5 window
ANN-Spec [86] PWM - -
(Wasserman) [58] PWM Logistic regr. window
CoBind [68] PWM sum window
Cister [72] PWM HMM distribution
SeSiMCMC [122] PWM - -
SMILE [40, 123] mismatch intersection constraint
BioProspector [49] PWM sum constraint
(Segal) [94] PWM - -
(Sinha) [33] reg.exp dyad constraint
ConsecID [56] PWM intersection window
SCORE [69] IUPAC intersection window
Gibbs recursive [52] PWM mixture model distribution
(Hong) [95] PWM - -
AlignACE [124] PWM - -
Improbizer [117] PWM - -
CisModule [119] PWM mixture model mixture model
(Thompson) [66] PWM Markov model constraint

1Two single motifs that both have to occur
2Separate constraints on each inter-motif distance
3Several single motifs that all have to occur
4All single motifs have to occur within a sequence window of restricted length
5Artificial neural network
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[25]. However, it is hard to find a good compromise
between a high n that may give too many free parameters
and a low n that may miss out the dependencies of inter-
est. If the relative importance of dependencies varies
within a motif, a variable-length Markov model (VLMM)
[26] may be preferable. Furthermore, if some long-range
dependencies seem to be significantly stronger than
dependencies between neighboring positions, the order
of the positions in the Markov chain may also be per-
muted before a VLMM is applied [27].

Another way to model dependencies is to use Bayesian
networks. Barash et al. [24] discuss different Bayesian net-
work models and conclude that the use of a Bayesian tree
model, or possibly a mixture of trees, is a good compro-
mise between the number of free parameters, the ability to
model dependencies, and computational tractability.
Similarly, Ben-Gal et al. [28] argue for variable order Baye-
sian nets.

Instead of focusing on dependencies between specific
nucleotides at different positions, Xing et al. [29] model
the distribution of conserved positions within a motif. In
this model there is an underlying Markov chain of posi-
tion prototypes. Each prototype defines a certain Dirichlet
distribution on the parameters of the multinomial nucle-
otide distribution at that position. The underlying Markov
chain favors transitions between position prototypes with
similar degrees of conservation. This makes it possible to
favor models where highly conserved positions are par-
tially contiguous rather than evenly spread out in the
motif. The work of Kechris et al. [30] achieves similar
properties by assigning conservation types (strong, mod-
erate or low) to blocks of motif positions.

Deterministic match models
A deterministic match model evaluates to a binary value
indicating either hit or no-hit. The three main kinds of
deterministic match models are oligos, regular expres-
sions and mismatch expressions.

The simplest deterministic model is the oligo model. This
is a function that is 1 for a single specific substring, and 0
for all other substrings. The oligo model was commonly
used in early motif discovery methods, but has also been
used in recent word-counting methods [31-33] and dic-
tionary models [34].

A regular expression model m*(p) returns 1 if the given
substring is matched by an underlying regular expression.
As reviewed by Brazma et al. [16], the models used in
motif discovery are typically composed of exact symbols,
ambiguous symbols, fixed gaps and/or flexible gaps. Reg-
ular expression models are used in e.g. [33,35-38].

Many methods use mismatch expressions as motif match
models, e.g. [39-44]. These models evaluate to 1 if the
number of mismatches (Hamming distance) between a
substring and the underlying consensus substring is below
a given threshold. A variant is described in [45], where the
threshold is on the sum of mismatches between all motif
occurrences and the underlying motif substring. A similar
variant, with a threshold on mismatches between occur-
rences in sequences arranged in a phylogenetic tree, is
described in [46].

The probabilistic models are much more expressive than
the deterministic models. In fact, all oligos, regular expres-
sions and mismatch expressions can be represented as
PWMs. However, a major benefit of the deterministic
models is that they often allow exhaustive discovery of
optimal motifs.

Occurrence priors
The genetic context of a regulatory element is important
for its activity. Distance to transcription start site,
sequence conservation in orthologous genes, DNA struc-
ture and presence of CpG-islands may be relevant factors.
In our model, these context features are represented by an
occurrence prior, og(p), representing the prior belief that
an (unspecified) regulatory element is located at a given
position p.

The simplest kind of occurrence prior is a motif abun-
dance ratio [47]. This ratio influences only the number of
substrings that count as occurrences. Another simple prior
is strand bias, which corresponds to an occurrence prior
that is higher on one strand than on the other [48]. Several
methods including Bioprospector [49] and TFBScluster
[50] optionally constrain the search to only one of the
strands, which corresponds to a binary strand bias.

Spatial distribution of binding sites
In higher organisms, regulatory elements may be located
far upstream of the gene, downstream of the gene, in
introns, and even in exons. Nevertheless, most known ele-
ments are located immediately upstream of the transcrip-
tion start site (TSS). In general, this can be represented by
a function giving the prior belief that a regulatory element
is located at a given position relative to the TSS. An occur-
rence prior based on the empirical distribution of element
locations in E. coli has been used in [51] and [52]. Never-
theless, the by far most common approach is to only
search for motifs in a fixed region upstream of TSS, which
corresponds to a binary function for og(p).

Conservation in orthologous sequences
The term phylogenetic footprinting is commonly used to
describe phylogenetic comparisons that reveal conserved
Page 6 of 16
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elements in regulatory regions of homologous (in partic-
ular orthologous) genes [53].

The reasoning behind phylogenetic footprinting is that
since regulatory elements are functionally important and
are under evolutionary selection, they should evolve
much more slowly than other non-coding sequences.
Moreover, genome-wide sequence comparisons and stud-
ies of individual genes have confirmed that regulatory ele-
ments are indeed conserved between related species [54].
More specifically, Krivan and Wasserman [55] reported
that highly conserved regions were around 320 times
more likely to contain regulatory elements than non-con-
served regions, based on findings from a set of liver-spe-
cific genes.

Several methods exploit information about conservation
in orthologous gene regulatory regions by searching for
motifs only in highly conserved sequence parts (typically
human-mouse orthologs) [44,48,56,57]. This approach
corresponds to using a binary occurrence prior that is 1 if
the conservation score is above a given threshold and 0
otherwise. Wasserman and Fickett [58] use non-binary
conservation scores, but they do not incorporate these
into the search as priors. Instead, they use conservation to
filter the discovered motifs. Similarly, Xie et al. [38] calcu-
lates the proportion of motif occurrences that are con-
served in related species, and uses this in the evaluation of
motif significance. Finally, Wang and Stormo [59] con-
structs phylogenetic profiles, representing the frequency
of nucleotides in each position based on multiple align-
ment of promoters in related species.

DNA structure
The three-dimensional structure of DNA, densely packed
as chromatin, inhibits transcriptional initiation in vivo
[14]. The bendability of a region, as well as its position in
DNA loops, may indicate whether it contains regulatory
elements or not. Only a few motif discovery methods take
DNA structure into consideration. Beiko and Charlebois
[60] average structure scores of all k-mers in a window
around a given position, independently of any particular
motif. Conversely, Pudimat et al. [61] incorporate helical
parameter features [62,63] in a Bayesian net that is specific
for each motif.

Nudeotide distribution
Both high GC content and presence of CpG-islands may
indicate that a region contains regulatory elements. The
method of Pudimat et al. [61] is one of a few methods that
take GC content and CpG-islands into consideration
when calculating motif scores.

Composite motif models (Level 2)
Clusters of binding sites for cooperating TFs, often called
modules, are believed to be essential building blocks of
the regulatory machinery. Werner [12] states that "Within
a promoter module, both sequential order and distance
can be crucial for function, indicating that these modules
may be the critical determinants of a promoter rather than
individual binding sites". The multitude of models devel-
oped for the discovery of modules is another indication of
the conceived importance of this. It is therefore natural to
define a computational motif model that represents a
combination of single motifs.

A composite motif model is defined as a function cg: 2N→� that

maps a set of single motif sequence positions  as non-negative

integers to a real numbered composite motif score cg( ). It con-

sists of single motifs g.

The function cg( ) consists of a set of (generally different)

single motifs g, with each single motif contributing with

a separate score at its position. In addition, functions may
be defined on the distances between single motifs. Given
a set of positions, the score of a composite motif will typ-
ically be the sum or product of individual single motif and
distance scores.

Distance functions
Many different models have been proposed to capture the
importance of inter-motif distances within a module. Sev-
eral methods put constraints on the distances between
consecutive motifs, requiring either fixed distances
[33,49], distances below thresholds [64-66], or distances
within intervals (e.g. [33,35,43,49,67]).

Another common way of capturing the importance of
proximity is to constrain all single motifs to be within a
window of a certain length (e.g. [48,58,68-70]). This cor-
responds to a threshold on the maximum distance
between any two single motifs. A more general approach
is to define non-binary score functions on the distances
between single motifs. This can simply be functions that
increase linearly with distance as in [71]. Similarly, a geo-
metric distribution on inter-motif distances follows
implicitly from many HMM models [72,73], and is
assumed explicitly in Gupta and Liu [74].

The conservation of inter-motif distances across modules
can also serve as a basis for distance score functions. Wag-
ner [75] calculates a distance score from the p-value of
observing the given degree of distance conservation in a
background model of Poisson-distributed inter-motif dis-

p

p

m

p

m
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tances. Similarly, Frech and Werner [76] calculate scores
by comparing the distances with a histogram of distances
between the same regulatory elements in other modules.

We have implicitly assumed in this discussion that dis-
tance is the number of base pairs between two positions
in the genome. It is in principle possible to measure dis-
tance in other ways. An example is to require all motifs in
a module to be on the same strand [36], which corre-
sponds to a simple binary distance function. More impor-
tantly, as our understanding of DNA folding increases,
new and more complex distance measures may appear.

Combining single motifs
There are many ways in which a set of single motif and
distance scores can be combined into a single measure.

For methods using deterministic match models and con-
straints on distances, all component scores are binary.
Furthermore, many probabilistic methods use thresholds
on single motif scores to obtain only binary values. The
composite motif score is then typically the intersection of
component scores (e.g. [56,75,77,78]). A variation of this
is to require that M out of N single motif scores are 1 [79].
Similarly, the count of binary single motif values can be
used directly as a composite motif score [33,80,81].

For methods that use non-binary single motif scores, a
common approach is to calculate the sum of single motif
and distance scores [71,76]. Some methods require that
all distance functions are 1, and if they are, composite
motif score is the sum of single motif scores
[68,70,82,83].Similarly, the method Modulescanner
sums only single motif scores above a threshold, and
MotifLocator sums the N highest single motif scores [70].
Another variation is to multiply the sum of single motif
scores with a motif density factor, calculated from the
length of the window that contains all the single motifs
[64]. Finally, a few methods take the composite motif
score to be the highest single motif score [42], or the low-
est single motif score [84].

Many specialized models have also been used to combine
single motif and distance scores, e.g. the hidden Markov
model (HMM) [73], history-conscious HMM (hcHMM)
[48], self-organizing map (SOM) [85], and artificial neu-
ral network (ANN) [60]. In all of these models, the score
of several homotypic and/or heterotypic single motifs are
combined in a relatively complex way.

Gene level models (Level 3)
In addition to the motif scores, which are defined for spe-
cific positions, we may also be interested in the presence
of motifs across the regulatory regions of a gene. The pos-
sibility of multiple binding sites for TFs is often not dis-

cussed explicitly in articles presenting motif discovery
methods. Scores at this level may, however, be relevant
both when predicting which genes are regulated by a TF or
module, and when evaluating the significance of a de novo
discovered motif.

A gene score model is defined as a function Gc: �→� that maps

a gene index g as a non-negative integer to a real numbered

gene score Gc(g). It consists of composite motif models cg( ).

The gene level score is calculated from composite motif

scores, cg( ), across the regulatory region of gene g, and is

referred to as gene score. For methods that only discover
binding sites for single TFs, the composite motif score is
simply the single motif score.

Multiple binding sites
The gene level score is often defined simply as the maxi-
mum motif score in the regulatory region(s) of a gene
[46,70,81,86,87]. This corresponds to an implicit
assumption of exactly one relevant occurrence of a motif
in the regulatory reglon(s).

It is, however, reasonable to assume that the presence of
multiple binding sites for TFs plays an important biologi-
cal role that should not be neglected. Many methods
therefore calculate gene score from all motif scores across
the regulatory region(s) of a gene. As motif scores are typ-
ically log-scores, most methods add the exponentials of
motif scores (e.g. [67,68,88-90]). A slight variation is to
only sum motif scores above a certain threshold [71].

In addition to these approaches, many variations have
been used to calculate gene score. Caselle et al. [91] and
Cora et al. [57,92] calculate gene score as the p-value of the
observed set of motif scores. Curran et al. [93] calculate
gene scores based on logistic regression. Similarly Segal et
al. [94] use a logistic function, and Hong et al. [95] a
hyperbolic tangent, on the sum of motif scores. Finally,
Beiko et al. [60] use an artificial neural network to com-
bine motif scores.

The dictionary models of Bussemaker et al. [34] and
Gupta and Liu [96] represent a special case, as they always
span whole regulatory regions. In these methods the score
of all valid segmentations of the region into contiguous
words from the dictionary is added together to form the
gene score.

Multiple modules
In addition to multiple binding sites for the same module,
a set of different modules may also be introduced at the
gene level. A gene may be seen as having several regulatory

p

p
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regions, with tight distance constraints between binding
sites within a regulatory region (module), and larger and
more variable distances between different regulatory
regions. Xing et al. [73] define an HMM that can represent
different modules of binding sites with different implicit
geometric distributions within and between modules.
This model can also represent different intra-module
background distributions in addition to the global inter-
module background distribution. This corresponds to a
gene score that is calculated from the scores of several dif-
ferent composite motifs across the regulatory regions of a
gene.

Genome level models (Level 4)
Motif scores at the genome level are generally used for sig-
nificance evaluation of de novo motifs, although it may in
some situations also be relevant to look at the presence of
motifs (TFs or modules) in different genomes. Here we
focus on the first situation, evaluation of motif signifi-
cance at the genome level. In most cases the genome level
score is based on just the (assumed) regulatory regions for
a selected subset of the genes.

A genome score model is defined as a function sc,F : �→� that
maps a genome index i as a non-negative integer to a real num-
bered genome score sc,F(i). It consists of a gene score model
Gc(g) and a gene membership function μF(g).

Genome score (motif significance) is typically based on
either the genome level overrepresentation of the motif,
or on the correspondence between gene scores and exper-
imental data.

Motif overrepresentation
Computational motif discovery is possible primarily
because motifs representing regulatory motifs are overrep-
resented. Many methods use this overrepresentation
directly when evaluating the significance of a discovered
motif. The exact way of calculating motif significance var-
ies from method to method, but can roughly be divided
into five different approaches.

The most direct approach is to determine overrepresenta-
tion by comparing observed motif scores with expected
scores from a background model. More specifically, the p-
value [37,69] and z-score [33,39] of the observed sum of
gene scores has been used. The background is typically a
higher order Markov model, with parameters estimated
from the sequences used for motif discovery. Shuffled
control sequences may also be used as background [97].

A simpler approach is to compare only the raw sum of
gene scores when ranking motifs. This is equivalent to the
first approach under the assumption of equal expected
scores for all motifs in the background model.

A third approach is to use a significance measure related
to the information content (IC) of discovered PWMs [98].
For methods that use mixture models of log-ratio PWMs
and background, the PWM with highest IC corresponds to
a maximum likelihood solution of the mixture model.

A common approach in deterministic motif discovery is to
calculate two separate values when evaluating motifs, one
concerning the support, or coverage, of a motif, and a sec-
ond concerning the unexpectedness of a motif
[40,99,100].

The fifth approach is completely different, and focuses
only on overrepresentation of motif combinations. Motif
significance is based on the observed versus expected
scores of composite motifs, given the observed score distri-
bution of single motifs. The significance can for instance
be the p-value of the observed composite motif scores in a
background model where all single motif occurrences are
randomly reshuffled [56].

Correspondence with experimental data
In recent years, the development of microarray technology
has revolutionized studies of regulatory processes, in par-
ticular because it can be used to identify genes that are co-
regulated under specific conditions. Microarrays are used
to measure relative expression levels of genes in a set of
experiments. This may be e.g. time series experiments like
cell cycle studies or before/after experiments like stress
response studies and studies of malignant vs. normal tis-
sue. It is a reasonable hypothesis that genes showing syn-
chronized changes in expression levels share important
aspects of transcriptional regulation, e.g. transcription fac-
tor binding sites. Sets of genes showing co-regulation may
therefore be used for data mining for shared regulatory
motifs [101], although it has been shown that this type of
data mining is difficult and error prone [10]. A variant of
this approach is to cluster genes based on expression sim-
ilarity with specific transcription factors [102,103].

Recently, genome-wide binding analysis like ChIP/chip
experiments have appeared as an approach for more reli-
able identification of actual binding site regions
[104,105]. In a ChlP/chip experiment a known transcrip-
tion regulator is tagged with an antibody epitope, and the
tagged regulator is expressed in a suitable system where it
binds to DNA, either directly or via other proteins. The
complex is then chemically crosslinked, the DNA is frag-
mented, and the protein/DNA complex is isolated by
immunoprecipitation. The genomic position of the DNA
fragment is then identified by a microarray experiment.
This gives the location of binding sites for this specific reg-
ulator, although the relevance of the information may be
limited by the specific set of experimental conditions used
Page 9 of 16
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and the resolution of the experiment itself (DNA fragment
size and genome resolution on the microarray chip).

Besides ChIP/chip and microarray experiments, gene
groups are often formed from conserved orthologous
genes [46,88,106,107], or genes with similarities in func-
tional annotation [32,57]. Finally, genes that make up
functional pathways, genes that are homologous to regu-
lons from a well-studied species, and groups of genes
derived from conserved operons have also been used
[108].

Many methods cluster genes based on experimental simi-
larities, assigning each gene to a single group of putatively
co-regulated genes. All genes are then treated equally dur-
ing motif discovery, regardless of the degree of similarity
between a gene and the rest of the group (e.g.
[66,93,95,108,109]). However, as a gene may be co-regu-
lated with several groups of genes, depending on condi-
tions, it may make sense to use fuzzy sets to represent
prior grouping of genes. In our model, every gene g has a
weighted membership μF(g) in each fuzzy set F. Segal et al.
[81] and Liu et al. [87] are among the few authors that
have used weighted values for set membership during
motif discovery.

The correspondence between gene level scores and exper-
imental data may be used as a measure of motif signifi-
cance. This can be calculated in several ways. One
approach is to evaluate the fit of a logistic regression from
gene scores Gc(g) to membership values μF(g) [58,93]. A
simplification of this approach is to compare binary gene
scores with binary membership values, and calculate the
mismatch ratio [95] or ROC50 score [71]. Alternatively,
grouping of genes can be avoided altogether, and motif
significance can be measured as the fit of a linear regres-
sion directly from gene scores to observed log-expression
in microarray experiments [67,89,94].

Park et al. [110] consider the problem in the opposite
direction. They first discover motifs in the regulatory
regions of all genes and form groups of genes that share
common motifs. Motif significance is then measured as
the similarity in gene expression within the group formed
from the common motif.

Finally, Holmes and Bruno [111] calculate the joint like-
lihood of both shared motifs and expression similarity for
hypothesized gene groups.

Although several methods may be configured to use dif-
ferent kinds of experimental data [32,57,108], only a few
methods try to combine different kinds of data in a single
similarity measure. Takusagawa and Gifford [37] use the
GRAM algorithm [112] to cluster genes based on both

ChIP-data and gene expression data. Further work incor-
porating more kinds of experimental data and using fuzzy
set membership could give more robust priors on co-reg-
ulation and increase the sensitivity of motif discovery.

Some algorithmic concerns
An important trade-off in motif discovery is between rep-
resentational expressibility and computational efficiency.
For the case of binary priors and restricted deterministic
motif models, several algorithms exist that can exhaus-
tively discover the optimal motifs [99,100,113].

However, probabilistic motif discovery algorithms do not
guarantee returning the global optimum when applied to
realistic problems. These algorithms are typically based
either on iterative refinement or stochastic optimization.
Expectation maximization (EM) [98,114-117] is the most
widely used iterative refinement method, but variational
EM [73] has also been used. The stochastic optimization
technique most widely used for motif discovery is Gibbs
sampling [49,52,97,118], sometimes combined with gen-
eral Metropolis-Hastings [47,96,119]. Recently, genetic
algorithms [82], evolutionary Monte Carlo [74] and sim-
ulated annealing [27,81,120] has also gained some popu-
larity.

Seed-driven algorithms have been used with success in
deterministic motif discovery. They start by evaluating
seeds from a very restricted class of simple motifs, and
then expand promising seeds to full motifs either heuris-
tically [121] or exhaustively [100]. A promising approach
to motif discovery is first to use efficient deterministic
motif discovery, and then use the highest scoring deter-
ministic motifs as seeds for probabilistic motif discovery
with expressive models. In addition, motifs may first be
discovered in the sequence parts with highest priors, and
then be used as seeds for motif discovery in the full set of
sequences. The method of Liu et al. [87] is a good example
of such a strategy. Several overrepresented mismatch
expressions are first discovered in upstream regions of the
genes with highest group membership (μF(g)). The high-
est scoring mismatch expressions are then used as seeds
for probabilistic motif discovery in the whole set of
sequences.

Comparison of methods
Given the very large number of different methods for
motif discovery, it is obviously crucial to have good test
methods in order to identify the most promising
approaches. However, this has turned out to be a chal-
lenging problem by itself.

It is difficult to identify optimal test sets for benchmark-
ing. When comparing the performance of methods the
output has to be compared against some biological truth.
Page 10 of 16
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Even though biological sequences with experimentally
verified binding sites are available, they may contain addi-
tional (yet unidentified) binding sites that may show up
as false positives in motif discovery. Using implanted
motifs in synthetic background sequences may avoid this
problem, but creates new problems with respect to realis-
tic background sequences and motif distributions, in par-
ticular for composite motifs. It may also be difficult to get
enough data to get a good representation of the diversity
of regulatory regions.

It is also difficult to know whether a test result actually
reflects the assumed methodological difference between
alternative approaches. Many methods will require differ-
ent degrees of parameter tuning. This may introduce bias
in test results, and makes automatic testing difficult. Typ-
ical examples of tunable parameters may be motif length,
expected number of motif occurrences, and inter-motif
distances. Also, many methods make use of additional
data, in addition to the actual sequences, in order to
increase performance. For instance, several methods
include phylogenetic footprinting using related organ-
isms. Finally, different implementations may have been
optimized and fine tuned to different degree. This makes
it difficult to distinguish between the performance of
underlying algorithmic approaches and the effect of sev-
eral years of tweaking on a specific implementation. If
radically different and possibly better performing
approaches are to be identified, it is essential that novel
algorithmic approaches are tested against existing meth-
ods in comparable frameworks and implementations.

These challenges make it difficult to actively compare the
performance of alternative approaches and use this as a
basis for recommendations. The seminal benchmark of
single motif discovery methods by Tompa et al. [10]
mainly concludes that biologists are advised to use a few
complementary tools in combination rather than relying
on a single one, and to pursue the top few predicted
motifs of each rather than the single most significant
motif of any given method. Some of the most established
methods, such as MEME, AlignACE and ANN-Spec, per-
formed reasonably well, at least on simple data (e.g.
yeast). However, the best method overall on these datasets
was the more recent method Weeder. Only single motif
discovery was tested in this work. No other study of com-
parable breadth has tested composite motif discovery
methods, probably because it is even more challenging to
find suitable test sets and to evaluate alternative methods
for composite motifs.

However, on a more general basis we believe that some
recent developments on expressive models for combina-
tion of motifs are particularly interesting. The method
"motif regressor" represents a relatively simple, yet prom-

ising approach [89]. First it uses the MDScan algorithm
[87] to discover single motifs based on CHiP-chip data.
Motifs that are too similar to the background distribution
are filtered out, and the remaining motifs are used as fea-
tures in a multiple regression from gene level scores of
motifs to gene expression levels. In this way, only motifs
that serve (independent) explanatory roles on gene
expression are retained. Another interesting approach is
the LOGOS method [73] that uses a hidden Markov
model (HMM) to model the combinatorial nature of
binding sites. Furthermore, single motifs are modeled by
a HMDM model [29] that promotes binding sites with
certain spatial distributions on single nucleotide conser-
vation. All of this is combined using a coherent probabil-
istic model.

Conclusion
The field of motif discovery brings together researchers
from several disciplines, in particular from biology, statis-
tics and informatics. Additionally, research in the field is
fairly recent and moving at a fast pace. This has resulted in
a broad range of computational methods that are
described with different vocabulary and different focus,
making it difficult to spot similarities as well as differences
between methods. Most papers on novel computational
methods tend to focus on the authors' own data sets and
scientific problems. Hence, the authors often put less
emphasis on giving a clear description of the algorithm
itself, e.g. precisely what it requires as input, how it evalu-
ates motifs, and what it returns as output. This makes it
harder to compare methods based on their descriptions.

When trying to compare the accuracy and computational
efficiency of methods by measurement, there are addi-
tional problems. The choice of data set, choice of perform-
ance measures and tuning of program parameters all have
strong influence on the relative performance of methods
[10].

Establishing a standardized framework for testing would
be an important contribution to the field. Such a frame-
work should include a collection of diverse data sets and
several complementary measures of performance. Fur-
thermore, a consensus on what constitutes essential
aspects of motif discovery methods could ease the com-
parison of methods, making it easier to choose between or
integrate different approaches. This could also make it
easier for researchers to identify the choices that have to
be made when a new model or approach is being devel-
oped, as well potential previous models where these
choices already have been evaluated. The integrated
model described in this paper may be one step towards a
common vocabulary and framework for this problem.
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When surveying recent literature we have made several
interesting observations. One is the sheer breadth of
approaches used in the field when it comes to how motifs
are modeled and how experimental information is inte-
grated. A somewhat related observation is the great varia-
tion between motif models, even when it comes to aspects
that are typically not discussed explicitly in papers, e.g.
how the gene level score is calculated. In other words,
some papers implicitly treat the chosen model as obvious
and the only possible solution, whereas comparison to
similar methods shows that there indeed are several pos-
sible approaches that should have been evaluated.

A third observation is that even though there are many
aspects of a basic motif model that can be improved, each
article typically considers only one of them. If we add
together the possible enhancements to different parts of
the models for regulatory regions, and the different kinds
of additional data that have been incorporated, based on
all papers in the field, wee see a much more complex and
enhanced model. Although such a model may be too
complex for a full implementation, one should at least
make deliberate choices with respect to which elements
are included in a given approach. Hopefully the integra-
tion of techniques and experiences across existing
approaches will give rise to refined and advanced meth-
ods with higher sensitivity than what we have seen so far.

Reviewers' comments
Reviewer's report 1
Eugene V. Koonin, National Institutes of Health, Bethesda,
MD, USA

This is a detailed and useful survey of the computational
approaches used for discovery of sequence motifs in DNA,
with an emphasis on transcription-factor-binding sites.
The paper is well-structured and properly referenced. I
believe that many researchers will find it helpful.

Reviewer's report 2
Philipp Bucher, Swiss Institute of Bioinformatics and Swiss
Institute for Experimental Cancer Research, Switzerland (nom-
inated by Mikhail Gelfand, Institute of Information Transfer
Problems, Moscow, Russia)

This article clearly responds to a need. The literature on
motif discovery methods has grown vast, confronting the
reader with a bewildering variety of methods and con-
cepts. The authors rightly point out that the different
methods are not always appropriately described in the sci-
entific articles. Underlying assumptions are often not
explicitly stated, and methodological choices are not men-
tioned as they may appear self-explanatory to the develop-
ers.

This comprehensive review makes and attempt to consol-
idate the field by providing a framework for categorizing
the large number of existing motif discovery methods. The
various methods are classified according to four hierarchi-
cal levels of genome organization: Individual motifs,
composite elements, genes, and genomes. This framework
is useful from a biological perspective as it allows for joint
presentation and comparison of methods that address
similar questions. A potential drawback is that technical
issues may be arbitrarily spread over different parts of the
manuscript. For instance, it is debatable whether the sig-
nificance measure related to the information content of a
PWM, which is used by MEME, should be presented under
the heading " genome level models".

What is lacking in this review is a historical perspective.
The manuscript focuses on recent work disregarding
largely how current concepts have evolved over time. I
would propose to add some of the earlier landmark
papers to the bibliography, for instance:

Korn LJ, Queen CL, Wegman MN. (1977) Computer anal-
ysis of nucleic acid regulatory sequences. Proc Natl Acad
Sci USA. 10:4401–4405. This is perhaps the first paper
describing a computer algorithm that helps to find an
over-represented sequence motif.

Queen C, Wegman MN, Korn LJ. (1982) Improvements to
a program for DNA analysis: a procedure to find homolo-
gies among many sequences. Nucleic Acids Res. 10:449–
456. Perhaps the first paper implicitly using a mismatch
model for motif discovery. It also presents an efficient
algorithm to find optimal motifs of this type.

Staden R. (1984) Computer methods to locate signals in
nucleic acid sequences. Nucleic Acids Res. 12:505–19.
First paper proposing PWMs with weights proportional to
the logarithms of the observed base frequencies.

Brendel V, Trifonov EN. (1984) A computer algorithm for
testing potential prokaryotic terminators. Nucleic Acids
Res. 12:4411–4427. This work extends position inde-
pendent weight matrices to dinucleotide matrices, thereby
accounting for nearest-neighbor dependencies.

Galas DJ, Eggert M, Waterman MS. (1985) Rigorous pat-
tern-recognition methods for DNA sequence sequence
analysis of promoter sequences from Escherichia coli. J.
Mol. Biol. 186:117–128. An early paper presenting a
method that takes into account a motif's distance to the
transcription start site.

Berg OG, von Hippel PH (1987) Selection of DNA bind-
ing sites by regulatory proteins, statistical-mechanical the-
ory and application to operators and promoters. J. Mol.
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Biol. 193: 723–750. Provides a physical (thermodynamic)
interpretation of PWMs.

Author response: We have added a brief historical overview
to the introduction, including most of the references mentioned
here.

Regarding present-day genome-wide approaches, the fol-
lowing two papers may be worthwhile to mention: Xie X,
Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K,
Lander ES, Kellis M. (2005) Systematic discovery of regu-
latory motifs in human promoters and 3' UTRs by com-
parison of several mammals. Nature. 434:338–345.

Wang T, Stormo GD. (2005) Identifying the conserved
network of cis-regulatory sites of a eukaryotic genome.
Proc Natl Acad Sci USA. 102:17400–17405. Epub 2005
Nov 21.

Author response: These references have been added to the
article.

Reviewer's report 3
Frank Eisenhaber, Institute of Molecular Pathology, Vienna,
Austria

The question on how to determine the occurrence of reg-
ulatory elements in nucleic acid sequences is in the center
of biomolecular sequence analysis since many decades.
The literature has become large, it is not easy to oversee
and to evaluate. Thus, a review in this area is appropriate.

The present revised MS of Sandve and Drablos has an
acceptable style and language, the article is well structured
and easy to read.

The authors wish to present their quite formalized, inte-
grated framework (level 1 – small motif binding sites,
level 2 – clusters of sites in close proximity (= modules),
level 3 – combinations of modules in the regulatory
region of a gene, level 4 – sets of modules in regulatory
regions of sets of genes) for organizing the vast literature
and for delineating the elementary recognition tasks in
the prediction of regulatory elements.

From the very beginning (last paragraph in the introduc-
tion), the authors refrain from a comparison of various
methods with respect to their performance. Moreover,
there is no quantitative assessment in the manuscript that
allows to estimate what can be expected from the group of
methods described in this review in general. It is the pity
reality that prediction of regulatory regions is pretty unre-
liable with both false-positive and false-negative predic-
tion rivalling the number of true predictions.

The following manuscript text is merely a compilation of
the variations in mathematical formulations used in the
different methods in the literature. For assessing the rela-
tive merit of the various approaches, the authors do not
have appropriate criteria. Although a performance com-
parison is difficult and gold standard test sets are not read-
ily available, it would nevertheless give some hint on the
reliability of methods and their relative accuracy. The
comparative work of Bajic VB, Tan SL, Suzuki Y, Sugano S.
(Promoter prediction analysis on the whole human
genome. Nat Biotechnol. 2004 Nov;22(11):1467–73) is
focused on a very specifc type of a regulatory region but it
is at least a beginning of a large-scale performance evalu-
ation. If the authors do not wish to get involved in such a
comparative study, they should at least provide a review of
published data. To a certain extent, this has been provided
in an additional section in the revised version but the
wording appears very polite and a quantification of per-
formance is not provided. To emphasize the view of a
practitioner, this is what matters.

Author response: We acknowledge the concern about evalu-
ation of methods, which is why we have included an expanded
section in the revised version discussing comparison of motif
discovery methods. However, we do not feel that it is currently
possible to give clear recommendations on the issues considered
in our survey. We have elaborated more on the reasons for this
in our revised manuscript. As our focus is on the recent devel-
opment of methods taking combinatorial mechanisms and
additional data into consideration, the benchmark of Tompa et
al. (2005) could only give limited guidance. The recent article
of Bajic et al. is also very interesting, but it considers methods
for promoter prediction and in particular prediction of tran-
scription start sites (TSS). These methods are related to, but still
somewhat different from the methods considered in our survey
that predict locations of binding sites.

It would be another way to assess methods by their imple-
mentation of true biological mechanisms into their for-
mal approaches. I wonder that biological literature on
transcription regulation is not considered in this review. A
comprehensive survey is not indicated for this review. But
for the purpose of gussing future ways out of the difficul-
ties, one might analyze the experimental data available for
a few well-studied transcription complexes and genes reg-
ulated by them. Even if a method yet fails to perform in a
large-scale test, it might be a good start for further devel-
opment if its mathematical/analytical formulations cap-
tures major mechanistic aspects of the biological process
of recognizing regulatory sequences. Another mathemati-
cal reformulation of existing approaches will certainly not
change the status of the field.

Author response: We completely agree that it would be ben-
eficial to have access to a good state of the art overview over the
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biological aspects of transcription regulation, from the point of
view of motif discovery. However, we feel that such an overview
will be outside the scope of this review, and probably more
suited as a separate review paper.

The increasing availability of data from high-throuput
methodologies (e.g., microarray (ChIP) data) for certain
DNA-binding protein complexes will possibly change the
situation for developing prediction tools in the near
future.

In its present form, the review can be useful for people in
the field since some part of the vast literature is organized
in a reasonable way. At the same time, the review does not
give guidance to the reader, which lines of prediction tool
development are most promising and what conditions
must be fulfilled to move the field out of its apparent stag-
nation.

Author response: Our strong focus on methods using differ-
ent types of data in an integrated analysis, combined with a
critical attention to implementation details, should be read as a
guidance to the reader.
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