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Abstract
Background: We study the selection dynamics in a heterogeneous spatial colony of cells. We use two spatial 
generalizations of the Moran process, which include cell divisions, death and migration. In the first model, migration is 
included explicitly as movement to a proximal location. In the second, migration is implicit, through the varied ability of 
cell types to place their offspring a distance away, in response to another cell's death.

Results: In both models, we find that migration has a direct positive impact on the ability of a single mutant cell to 
invade a pre-existing colony. Thus, a decrease in the growth potential can be compensated by an increase in cell 
migration. We further find that the neutral ridges (the set of all types with the invasion probability equal to that of the 
host cells) remain invariant under the increase of system size (for large system sizes), thus making the invasion 
probability a universal characteristic of the cells selection status. We find that repeated instances of large scale cell-
death, such as might arise during therapeutic intervention or host response, strongly select for the migratory 
phenotype.

Conclusions: These models can help explain the many examples in the biological literature, where genes involved in 
cell's migratory and invasive machinery are also associated with increased cellular fitness, even though there is no 
known direct effect of these genes on the cellular reproduction. The models can also help to explain how 
chemotherapy may provide a selection mechanism for highly invasive phenotypes.

Reviewers: This article was reviewed by Marek Kimmel and Glenn Webb.

Background
Cancerous cells within a tumor compete with one
another in a fast paced evolutionary system. At the
molecular level, mutations are introduced into the
tumoral genome; these mutations may be caused by
inherited deficiencies, loss of mismatch repair systems,
downregulation of the proofreading checkpoints, and
chromosomal instabilities. At the cellular level, these
mutations introduce changes in phenotype, some pro-
found but many others subtle. It is the emergence of these
mutations, as well as epigenetic events, which generates
the incredible flexibility and adaptability of the cancer
disease state.

While the effect of certain mutations on the cell's phe-
notype is reasonably well understood (induction of K-
Ras, loss of p53 and/or Rb, overexpression of matrix met-

alloproteases [1]), it is conceptually difficult to quantify
and analyze the level of genetic heterogeneity within a
given tumor. It is even more difficult to measure the
forces of natural selection in anything other than broad,
descriptive terms.

Speaking in broad evolutionary terms, we would like to
understand what cellular characteristics make certain
cells more fit than others. If a mutant is introduced in a
cell colony, what combinations of the mutant characteris-
tics and "background" characteristics make the mutant
cells win the evolutionary competition?

The idea that cancer is an evolutionary process has
been applied successfully by many computational biolo-
gists, as it allows them to use methods of theoretical pop-
ulation biology and ecology [2-8]. Here we focus on two
types of phenotypic changes induced by mutations. The
first type involves mutations in genes affecting cell prolif-
eration. Activation of some oncogenes, or inactivation of
tumor suppressor genes, change the cells' reproductive
capacity, and are thought to be early events in the natural
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history of many cancers [1]. The second type of genetic
change influence the cells' ability to migrate/move. Genes
of the second type, while commonly associated with
metastases, are also affected in primary tumors [9].

These two types of variation are thought to be impli-
cated in malignant transformations for many (if not all)
types of solid tumors. How do the two types of change
trade-off to create a mutant which is "fitter" than the
background? Questions of this kind are related to the
general theory of fitness landscapes, first introduced by
[10]. Fitness is viewed as a surface in a multidimentional
space, where the dynamics is assumed to be directed
toward local fitness maxima. The global maximum corre-
sponds to the evolutionarily stable strategy [11]. In sce-
narios where fitness of an individual strategy depends on
the current composition of the population (frequency-
dependent fitness), the formalism of fitness generating
functions is used [12].

In this paper we focus on a specific aspect of the gen-
eral problem of fitness landscapes. Namely, we provide a
qualitative framework to study the forces of selection act-
ing within a spatially distributed, stochastic colony of
cells, which can vary with regards to the two above men-
tioned characteristics. The models we construct for this
purpose are a spatial generalization of a well-known
Moran process, which was first introduced in [13]. This
process has been used recently in cancer modeling (see
[14-18]). The first spatial (1D) generalization of the
Moran process was described in [19], where we consid-
ered the process of one-hit and two-hit mutant fixation.
The simplicity of the (generalized) Moran process
enabled us to study analytically, as well as numerically,
the role of space in the processes of loss-of-function and
gain-of-function mutations, see also [20]. In this spatial
Moran process, the cells were allowed to divide in
response to a death of a neighboring cell on a 1D grid.

In this paper we construct two spatial generalizations of
the Moran process with cell migration. The first model
includes explicitly the processes of cell division, death
and migration. The second model implicitly describes
migration through the varied ability of cell types to place
their offspring a distance away, in response to another
cell's death. The advantage of the simplified model is its
analytical tractability. The two main findings are as fol-
lows:

• In both models, we find that migration has a direct
positive impact on the ability of a single mutant cell to
invade a pre-existing colony. A decreased fitness due
to lesser growth potential may be offset by an increase
in cell migration.
• The neutral ridges (the set of all types with the inva-
sion probability equal to that of the host cells) remain
invariant under the increase of system size (for large

system sizes), thus making the invasion probability a
universal characteristic of the cells selection status.

Our work is somewhat different from a large body of
recent literature where spatial cancer dynamics is studied
by means of cellular automata or agent-based modeling
(see the recent reviews [21-29] and the references
therein). Rather than adding on many biological pro-
cesses and subtleties to our model, we focus on under-
standing how just two forces, proliferation and migration,
trade-off to influence the overall fitness of cells.

Results
Explicit motility increases the invasion probability
We would like to investigate the effect of cellular motility
on the probability of invasion of type B cells. We consider
B-cells of higher (λ = 1.5), equal (λ = 1) and lower (λ = 0.9)
division potential compared to that of the background
cells A. We assume that the invading cells have a migra-
tion potential kB ≥ 0, and that the background is nonmo-
bile (kA = 0). We start from one cell of type B inserted
randomly in the background of A cells, with the grid size
of 21 × 21. 10 sets of 10000 simulations are performed,
with each simulation running until 1 species is extinct.
We then compute the probability of invasion for various
migration rates. The results are plotted in figure 1 as the
mean ± S.E. for each λ.

We discover that in this scenario motility has a positive
effect on invasion probability. While the cells which were
already dominant (circles) gained a slight extra advantage,
even cells with lower division rates (diamonds) were able
to invade when mobility rates became high. This effect is
also present when the background cell type is itself motile
as seen in figure 2 where kA = 1.0.

The result that an increased migration potential of
mutant cells increases their ability to invade, can be
explained intuitively. In the case of small mutant motility,
mutant cells tend to concentrate in one region, and the
expansion can only occur near the boundary of that
region. An increase in mutants' motility increases the
degree of mixing in the population, such that mutant cells
spread throughout the space. In this case, mutant growth
in enhanced as it can occur throughout the bulk of the
colony.

Identification of neutral ridges in the explicit model

Figure 2 shows that it is possible to find more than one

pair of parameters (kB, λ) which correspond to the same

probability of invasion. In other words, we can see that

different strategies-that is, different parameter sets (λ, kB)

relative to a specific background kA-may have the same

invasion probability. It is particularly interesting to inves-
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tigate these strategies for the probability of invasion

 (see figure 2, right panel) which corresponds to

the case where each cell as equal fitness (see Methods

section below, as well as prior work, e.g. [15]).
In figure 3 we show sets of pairs (kB, λ) corresponding

to P = 1/N for a fixed background, for three different val-
ues of kA. We observe that there is an inverse relationship
between λ and kB. In other words, increasing the motility
(kB) of invading cells will require a decrease in their
reproductive potential (λ) in order to maintain the same
level of invasion probability. An increase in either (or
both) of parameters kB and λ leads to an increase in inva-
sion probability.

We will say that all the strategies corresponding to the
invasion probability P = 1/N are neutral to (have the same
fitness as) the host cells A. We call the sets of all such
strategies "neutral ridges". The relationship between the
notions of invasion probability and fitness is discussed in
more detail below. While we were unable to derive a sim-
ple law which relates the values of kB, λ and kA corre-

sponding to P = 1/N, some features of their relationship
are worth noting. Firstly, there appears to be an asymp-
tote as kB T ∞, implying for each background kA there is a
minimum λ necessary for equal fitness strategies. That is,
no amount of increased motility can compensate for too
low a growth rate. Also, we notice that the distance
between points on the P = 1/N lines remains approxi-
mately constant throughout the parameter regime (for
example, the measured distance between the neutral
ridges corresponding to kA = 1.0 (circles) and kA = 0.1
(squares), is constant for different values of kB with the
accuracy of 2%). This implies that the law relating the
strategy parameters λ and kB is somewhat independent of
the background kA; the background parameter merely
shifts the relationship between λ and kB vertically in the
(kB, λ) plane.

The role of the division radius in the implicit model
We now begin analyzing the implicit model. To deter-
mine the effects that increasing the division radius has on
the ability of a cell with superior replicative fitness to
invade, a single mutant cell with replication potential rB =

P N= 1

Figure 1 Probability of invasion of mutant cells into a kA = 0 background with λ = 1.5 (circles), 1.0 (squares) or 0.9 (diamonds). Plots are the 
means ± SE of 10 sets of 10000 simulations.
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1.5 is introduced into a background of cells with replica-
tion potential rA = 1, see figure 4. All cells (mutant and
wild type) have division radius νA = νB = ν.

As seen in figure 4, increasing the division radius of all
cells increases the ability of a superior mutant to invade
the system. This is consistent with the previous result
that in a spatial Moran process with νA = νB = 1, the prob-
ability of mutant invasion is smaller than that for a space-
free model [19]. Increasing the division radius brings a
spatial model closer to a space-free model. The space-free
model is recovered as soon as the division radius is suffi-
ciently big such that the entire domain is contained inside
a circle of radius ν. This of course implies that there is a
limit to the extent increasing the division radius can
increase the invasion probability of a mutant phenotype.
If the division radius already spans the entire space,
increasing the radius further will have no effect on the
probability of the mutant cell to divide. A cell with such a
radius can be thought of as being governed by a nonspa-

tial, bulk tumor growth model, such as a capacity growth
or logistic law.

Interestingly, observe that increasing the radius from
1.0 (nearest neighbors) to 2.0 nearly recapitulates the the-
oretical results for a well-mixed system (invasion proba-
bility 0.33), see figure 4. This result is intriguing because,
for a two dimensional grid of size 441 total cells (21 by
21), a division radius of 2.0 represents approximately 2.7%
of the total area, and yet the results are nearly indistin-
guishable from a scenario in which all 441 cells can inter-
act with each other.

Level sets of invasion probability
Let us explore how the changes in both the growth poten-
tial and division radius of a mutant influence its invasion
probability. To that end, a single mutant cell with replica-
tion potential rB and division radius νB is introduced into
a background of cells with replication potential rA = 2.0
and division radius νA = 2.5, which corresponds to nA =
20. Results are plotted in figure 5 as contour levels, or

Figure 2 (Left) Probability of invasion of mutant cells into a kA = 1.0 background with = 1.1 (circles), 1.0 (squares) or 0.9 (diamonds). Plots 
are the means ± SE of 10 sets of 10000 simulations. (Right) Close-up of the low probability regime of the plot. The line indicated corresponds to P(In-
vasion) = 1/N, the point which describes equal fitness between invader and background.
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level sets, of invasion probability, as a function of rB and
nB.

First of all, we observe that increasing rB and νB (sepa-
rately or together) leads to an increase in the invasion
probability. This in itself is not surprising given that
larger values of the growth potential and division radius
will increase the mutants' probability to divide. Thus, if a
cell is free to choose any values of rB and νB, it will lead to
an unrestricted growth of both of these parameters,
which corresponds to the cells' climbing up the "hill" in
the fitness landscape of figure 5, which corresponds to
large rB and νB. In reality though this is hardly possible
and there are biological and energetic constraints on how
often a cell divides, and how far it can travel upon divi-
sion. Therefore "allowed" strategy trajectories in the (rB,
νB) space can be introduced where some external con-
straints do not allow a simultaneous large increase in
both parameters. For example, if we look at trajectories of
the type αrrB + αννB = const, where αr and αν are some
weights. We observe from figure 5 that the background

condition of rA = 2.0 and νA = 2.5 is able to resist most
invasions from mutant strategies which maximize one
trait at the cost of another (high ν with low r or vice
versa). Thus, in this case the mixed strategy is more fit
than those relying heavily on only one trait.

Identification of neutral ridges for implicit motility model

We will use the parameters of figure 5 and proceed

according to the following algorithm. By definition of the

division radius, small changes in νB may or may not lead

to a change in the number of sites within division range.

Therefore, we start by selecting a set of division radii νB,

and use the trace of the line of equal invasion probability

to provide initial estimates for a value of rB for each νB.

We then perform simulations over a small range of rB cen-

tered at the initial estimate and proceed until we have

found a candidate value rE for which the invasion proba-

Figure 3 Strategies of equal fitness (equal invasion probabilities) for background strategies of kA = 0 (diamonds), 0.l (squares) and 1.0 (cir-
cles).
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bility  after 10 sets of 10000 simulations. We

then confirm that the candidate pair (rE, νE) is in fact a

strategy of equal invasion probability by performing the

reverse experiment; that is, introducing a mutant cell

with strategy (2.0, 2.5) into a background population of

strategy (rE, νE).

The results of this and similar experiments with other

choices for rA and νA are presented in figure 6. In this con-

text, it is more convenient to talk about the number of

neighbors, n, for each type, rather than about their divi-

sion radii, ν. By the number of neighbors we mean the

number of slots in the vicinity of the cell which are within

the division radius ν of the cell. In figure 6, the mutant

growth potential, rB, is plotted against the inverse of

number of neighbors,  (see left panel). The three lines

correspond to three different background conditions,

including the one corresponding to figure 5 (squares).

The numerically calculated values are plotted together

with the fit by the function

In each case, the correlation coefficient is greater than

0.99, which confirms the observation that the growth

potential and the division radius of the cells of constant

invasion probability are inversely proportional to each

other.
The right panel of figure 6 replots the same data in

terms of the relative growth potential, rB/rA, and the rela-
tive number of neighbors, nA/nB. We observe that the
three neutral ridges from the left panel align.

We deduce that the neutral ridges satisfy the relation-
ship rAnA = rBnB.

In order to understand these results, let us consider the
following process. At each time-step, we ask: what is the
probability that a given cell, i, will divide in the next time-
step? This is proportional to the probability that an empty
space appears within radius ν of the given cell, which is
given by ni/N, and is weighted with each cell's growth
potential:

r = ±1
N S E..

nB
−1

r c nE E= / . (1)

P
ni N ri
nk N rkk

i =
∑

( / )
( / )

.

Figure 4 The probability of mutant invasion (with rA = 1, rB = 1.5), as a function of cells' division radius, νA = νB = ν. The simulations are per-
formed on a square grid of size 21 × 21.



Thalhauser et al. Biology Direct 2010, 5:21
http://www.biology-direct.com/content/5/1/21

Page 7 of 17

Figure 5 The level sets of the mutant invasion probability in the parameters space (nB, rB). The background parameters are rA = 2 and nA = 20.

Figure 6 Inverse relationship between rB and nB for strategies of equal fitness (P(Invasion) = 1/N). (Left) Strategies of equal fitness were com-
puted for background strategies of (rA, νA) = (2.5, 2.0) (diamonds), (2.0, 2.5) (squares), and (3.0, 3.0) (triangles). (Right) Plot of the same strategies of equal 
fitness scaled to their background environment.
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Once this quantity is calculated, we "flip a coin", and
replace an arbitrarily chosen cell with a cell of the given
type. In this process, in order for the cells of type B to
have the same invasion probability as cells of type A, the
probability of cell division for cells of type A should be
equal to the probability of division of cells of type B. That
is, rAnA = rBnB. Resolving this equation, we obtain nB =
(nArA)/rB. This is an inverse dependence with the propor-
tionality coefficient c = nArA.

Invasion probability and fitness

So far we have been investigating the probability of inva-

sion of type B starting from one such mutant. This proba-

bility is connected to the relative fitness of type B, which

we denote as . Relative fitness is a parameter that is

related to the rate of expansion of a phenotype. It is usu-

ally defined as the (averaged) frequency of the type in the

"next" generation divided by that in the current genera-

tion: . A related concept of invasion fitness

is defined as the exponential growth rate of the mutant

type in a host population. The connection of the relative

fitness parameter ( ) to the probability of invasion (ρ)

has the following useful properties:

(i) If ρ = 1/N (neutral mutant B) then  = 1 (the number

of neutral cells of type B stays constant on average, from

generation to generation).

(ii) If  T ∞, that is, if the mutants are strongly advanta-

geous, then ρ T 1.
(iii) The invasion probability and fitness are positively
correlated (the types that have a higher invasion prob-
ability ρ will have a higher fitness and vise versa).

The notions of fitness and probability of invasion are
both important in theoretical biology, and both have
advantages and disadvantages. Arguably, the notion of
invasion probability is more informative in our setting.

The fitness parameter is defined for a particular tempo-
ral dynamics. In our simple model, we use a discrete-time
Markov chain. This is an unrealistic way to treat the
mutant dynamics, but it preserves the invasion probabili-
ties. In other words, if one considers the long-term out-
comes of a stochastic process, the dynamics becomes
unimportant, and can be simplified in the way imple-
mented here. The expansion rate of cells (equivalent to
fitness) is dependent on this simplification and thus is
affected by this (unrealistic) aspect of our model.

The probability of invasion does not depend on the
exact way we choose the time-step for our updates. Thus
in this sense it is a better choice of a competitiveness
measure for our system. On the other hand, invasion
probability depends on the total number of cells, N. The
probability to invade a very small constant-size popula-
tion is higher than that for a large colony. We have inves-
tigated how the probability of invasion depends on N, and
found the following.

For non-neutral mutants, probability of invasion is a
monotonically decreasing function of N which saturates
for large values of N. In our experiments, we used 2D grid
size 21 × 21. We have also experimented with the size 31
× 31 (which yields N more than twice the original size),
and found no measurable change in the results (not
shown). More precisely, the calculated values of the mean
invasion probability for the larger grid size were within
the standard deviation of the mean obtained by the
smaller grid size, and vice versa. This is similar in spirit to
our earlier analytical results for the invasion probability
of the space-free Moran process (see equations (2)), and a
1D Moran process without motility (equation (3)). In that
case, as long as |r - 1|N Ŭ 1,

A more subtle situation arises when the mutant B is
neutral. Again using the example of our earlier analytical
findings, we can see that if |r - 1|N Ŭ 1,

that is, the invasion probability strongly depends on N.
Despite this fact, the notion of invasion probability
retains a degree of universality even in the case of neutral
mutations. Namely, we found numerically that the
expressions for the neutral ridges given by functions rBnB
= c are N-independent, that is, the proportionality con-
stant c does not change with N (not shown). This is con-
sistent with the derivation of the parabolic dependence of
the level sets for the invasion probability.

Ultimately, we are interested in the probability of inva-
sion as long as it is equivalent to the probability of
mutants to thrive. When considering cancer, it is irrele-
vant whether exactly all the host cells in an organ have
been replaced by the mutants (which is equivalent to
invasion, rigorously speaking). An important notion is
whether a mutant colony expands and persists inside an
organ for a long time, which, for large values of N and for
advantageous mutants, is very close to the probability of
invasion. This notion is more universal than the fitness of
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mutant cells because it is independent of the time-evolu-
tion or the system size. Another meaningful concept is
neutrality, which is basically a symmetry property: a neu-
tral mutant behaves just like any host cell, and has the
same invasion probability as any other cell (1/N). Its fit-
ness is 1 and its expansion rate (invasion fitness) is zero,
which is extremely hard to measure. Instead, measuring
the invasion probability gives us a useful tool to identify
the class of neutral mutants.

In the rest of this section we will discuss the probability
of invasion and make some inferences about the fitness of
the mutants. As explained above, the two notions are
positively correlated, so all the arguments resulting from
considering the level sets of the invasion probability hold
for the mutant fitness.

The optimal mutant strategy
We have established so far that the mutant cells of the fit-
ness equal to that of the host satisfy the relation rE = c/nE.
This type of relation applies to other constant levels of
invasion probability. In figure 7 we present the numeri-
cally obtained inverse relationship between rB and nB for
strategies of fixed invasion probability; these lines corre-
spond to the level sets in figure 5. The numerically calcu-
lated points are plotted together with the hyperbolas
(which look like straight lines in the coordinates we use

here); as in figure 6, the correlation coefficients are
greater than 0.99. We can see that for cells of a given inva-
sion probability we have r  1/n, which means that the fit-
ness function ρ (defined as the probability of type B to
invade) satisfies

Its levels correspond to a family of hyperbolas rbnB = c. 

Using the arguments of the previous section, we deduce 

that the same holds for the fitness function:

Moreover, we know that the function  is a monotoni-
cally increasing function of its argument, because the fit-
ness increases both with the growth potential and the
division radius. Thus we have

Using this information we can make some progress in
identifying likely evolutionary strategies of mutants

r r( , ) ( ).r n r nB B B B=

F F( , ) ( ).r n r nB B B B=

F

′ ≥F 0.

Figure 7 Inverse relationship between rB and nB for strategies of fixed invasion probability. Strategies with invasion probability 0.25 (dia-
monds), 0.5 (squares) and 0.75 (diamonds) were computed for the background strategy in figure 5, ((rA, νA) = (2.5, 2.0).
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which aim to maximize the function . Let us suppose in
all generality that external biological and energetic con-
straints impose a relationship between the allowed values
of rB and nB, which we can write in the form

We further assume that this equation can be solved for
rB to obtain

and thus the characteristic levels of the function  are
given by

We can also safely assume that g' ≤ 0, because of the
nature of the constraints we consider; simply speaking, an
increase in the growth potential must lead to a somewhat
reduced division radius, thus making the function g
monotonically increasing. The function nBg(nB) can take
a variety of shapes. Here we restrict ourselves to the cases
where it has at most one internal extremum. Multiple
minima and maxima could occur, but they are a result of
specific biological facts which we cannot specify at the
present level of generality. Thus we focus on the simplest
types of generic behavior, keeping in mind that other
functions can be studied in a similar way. With at most
one internal extremum, there can be the following cases:

• The function nBg(nB) has an internal maximum.
Then the function  also has an internal maximum
at the corresponding point (νB, rB). This means that
the optimal strategy is to find an intermediate value of
growth potential and division radius, instead of maxi-
mizing them both.
• The function nBg(nB) is monotonically decreasing;
this could be a result of a constraint that small values
of ν are not allowed. Then, the maximum of F is
achieved for smallest possible values of nB and the
largest possible values of rB. In other words, the opti-
mal strategy is maximizing the growth potential
(within the allowed range) at the cost of the division
radius. This situation could arise in the following sce-
nario: suppose that increasing ν is "expensive", that is,
the constraint function f (rB, νB) depends stronger on
νB than it does on rB. Then, the value of the derivative,
|g'|, is relatively large, which shifts the location of the
maximum of the function νBg(νB) to the left. If the
dependence of νB is sufficiently strong, then this can

drive the location of the maximum outside the
allowed domain of νB. As a result, the optimal strategy
will be to find the smallest possible νB.
• The function nBg(nB) is monotonically increasing in
the allowed domain. Then, the maximum of F is
achieved for largest possible values of nB and the
smallest possible values of rB. Analogous to the previ-
ous argument, such scenarios could arise when
increasing νB is "cheaper" than increasing r.

To summarize, we find that the growth potential and
the division radius are two components of fitness which
play a very similar role in the probability of mutant inva-
sion. The fitness landscape has hyperbolic level sets in
terms of the growth potential and the number of neigh-
bors. A mixed strategy is optimal unless one of the two
fitness components (the growth potential or the number
of neighbors) is much more evolutionary "expensive". In
the latter case the less expensive characteristic should be
maximized at the expense of the other.

Discussion
A central idea of this paper is that the cell with the fastest
intrinsic growth rate is not always the most fit. Rather, it
is the culmination of ability to divide with increased
opportunity to do so. These forces must be balanced,
depending on the relative costs of both adaptations for a
cell.

We have demonstrated how relatively simple, two-com-
ponent, models can help explore the complicated phe-
nomenon of phenotypic heterogeneity. With the
multiphasic nature of fitness presented here, many differ-
ent strategies have equal or nearly equal fitness (figures 3
and 6). As the number of traits under consideration
increases, it is similarly expected that the potential com-
binations of strategies which lead to equal fitness will
increase. This would reflected in the existence of multidi-
mentional sets equivalent to neutral ridges described
here.

The heterogeneous nature of tumors provides a pri-
mary mechanism for resistance to current therapeutic
strategies. Tumors behave as fast evolutionary systems,
with many subtly different phenotypes coexisting, coop-
erating and/or competing within a shared environment.
Changes in phenotypes can arise de novo from altered
gene expression profiles, rapid cell proliferation outpac-
ing DNA repair mechanisms, loss of repair systems or
checkpoints, alterations to chromosomal integrity and
epigenetic events. The application of therapy (chemical,
radiation) to this system changes the selective forces act-
ing upon the various phenotypes, permitting rigorous
selection and so-called "punctuated evolution" within the
tumor [30]. These external forces can act to select and
advantage a phenotype that might otherwise be unlikely

F
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to achieve dominance, or to accelerate the rise of a given
phenotype within a population.

Fitness ridges, fitness landscapes and chemotherapy
Assessing the effectiveness of a therapeutic intervention,
via mass die-off and selection, underlies the difficulty in
studying, understanding and treating cancer. The plastic-
ity of the disease will alter parameters as the disease is
treated. Clearly, a predictive understanding of how
mutants penetrate both pre-treatment and post-treat-
ment tumors, will be critical for designing new therapy
strategies.

Our model can help understand how therapy influences
the fitness landscape of the tumor. We test the hypothesis
that a higher death rate generates a positive selective
pressure on a more mobile phenotype. Such a death rate
might describe a form of medical intervention. To test
this hypothesis, we allow significantly more than one cell
to die per iteration of our process. We begin with a sys-
tem composed of 10% mutant cells in a background of
wild type. At each step of the iteration, each cell in the
space has an independent probability to die of Pd. Thus,
after the mass death there will be on average (1 - Pd) * N
cells remaining in the system. The process described pre-

viously is then simulated without any new cell death until
the space is filled again. At the end of each such iteration
we determine the number of type A and type B cells in
the system. This process is repeated for a fixed number of
mass death events. We also determine whether or not one
cell type has completely invaded the system.

As seen in figure 8, increasing the number of cells
which die at each iteration strongly increases the ability
of the mutant cell to invade the system. In this figure, we
have chosen a background phenotype of kA = 0 and an
invading phenotype of λ = 0.8, kB as given. Note that as
shown in figure 1, this mutant is a poor invader in the sin-
gle death model; a mutant with a higher replicative fitness
(λ = 0.9, diamonds) was able to invade the background
less than 10% of the time at maximum motility. We con-
trast this result to figure 8, which shows that the
increased death rate clearly favors the more mobile phe-
notype. We observe enrichment of mutant cells as itera-
tions progress for all values of motility strength (kB) (left
panel). Furthermore, there is a striking increase in the
probability of mutant invasion (right panel).

Thus, we have demonstrated that application of a toxic
therapeutic intervention that results in gross tumor death
can significantly promote the invasion of a more motile

Figure 8 Effects of a mass death probability on motility phenotype fitness. (Left) Enrichment of slower growth, higher motility mutant cells (λ = 
0.8, kB > 0) into a background of kA = 0 cells under successive iterations of a mass death. Pd = 0.8. Plots correspond to kB = 1 (circles), kB = 2 (squares), kB 

= 3 (asterisks), kB = 4 (diamonds), kB = 5 (downward triangles), and kB = 10 (upward triangles). (Right) Probability of invasion of λ = 0.8 mutant cells as a 
function of motility strength (kB) under a mass death assumption (Pd = 0.8).
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mutant into the general tumor- in fact, our data suggest
that this advantages the invasive capacity of a motile
tumor relative to the faster proliferating tumor. This
somewhat unexpected observation may reflect the clini-
cal situation; many malignant tumors exhibit enhanced
expression of genes that promote motility, as discussed
below.

In the implicit migration model considered here we
found that the the fitness of cells depends on two parame-
ters, the growth potential and division radius. Moreover,
we demonstrated that it depends on the product of the
two. This is not an unusual finding in evolutionary biol-
ogy. Another example comes from virus dynamics, where
the fitness of viruses (measured in terms of their basic
reproductive ratio) can be calculated as a function of var-
ious parameters in predator-prey type models. It is typi-
cally proportional to the product of two quantities: the
infectivity of the virus and the inverse of the death rate of
infected cells. The former parameter can be roughly
related to the "motility" of the virus, or to how efficiently
it infects new cells, and in this sense it is roughly analo-
gous to our division radius. The inverse death rate of
infected cells is reflective of our growth potential since a
decrease in the cell's lifespan (a decrease in the inverse
death rate) leads to a decrease in the total number of
progeny.

Several papers have been devoted to studying optimal
viral strategies, especially given that the two components
of fitness are not independent [31-38]. In spirit, our
approach is similar to that. While there has to date been
little investigation into this area, it seems reasonable to
assume energy availability limits the total growth and
migration ability of an invasive cancer cell; that is, since
both growth and migration are energy-intensive pro-
cesses, an invasive cell will have to 'budget' its energy to
each.

Biological Applications
The model presented in this paper is a very crude approx-
imation of reality. Thus the prediction generated by the
model may or may not be relevant for biological applica-
tions. However, it is particularly compelling that several
genetic alterations have been discovered which are impli-
cated in promoting migratory and/or invasive pheno-
types, yet play no direct role in regulating cell division.
The in vivo selection for these phenotypes would appear
to indicate a strong selection for the fitness conferred. For
example, genes that regulate cell interaction with the
local extracellular milieu, [39] or those that promote
cytoskeleton dynamics [40] have been established to pro-
mote cell migration.

The class of small GTPases has been generally divided
into families, based on homology and role played in the
cell. The Ras family members k-ras, n-ras and h-ras have

been linked to cell proliferation, while Rho family mem-
bers such as Rac, RhoA and RhoC and Rac are small GTP
binding proteins the influence cytoskeletal remodeling
[41]. These diffierent family members exhibit significant
cross-talk, with Ras influencing motility somewhat and
Rho proteins sometimes contributing to proliferation.
The capacity of numerous cellular proteins found to be
elevated in cancer to influence both proliferation and
motility, and include a swath of oncogenic proteins such
as Src family kinases [42] mitogen activated family
kinases [43], and phosphoinnositide 3 kinases [44].

Nonetheless, cytoskeletal effectors which are tightly
linked to migration do promote cell invasion and tumor
malignancy. Effectors such as RhoC are not oncogenes
per se, as they do not transform primary cells, but none-
theless influence cell migration and tumorigeneicity
[45,46]. Moreover, other mediators in the cytoskeleton
control system have been shown to impact migration
potential and tumorigenicity. The protein ABI-1 is an
adaptor molecule which, upon RhoA activation, facili-
tates the formation of multiprotein complexes involved in
lamellipodia formation [47]. Overexpression of ABI-1
correlates well with migratory and invasion potential in
breast cancer cell lines, while suppression of this protein
led to the complete loss of migratory ability in once
highly invasive cell lines [47].

Coupled to the activity of the cytoskeleton are the cell
surface receptors mediating extracellular matrix interac-
tion. Integrins, and their associated proteins, have been
shown to be critical for motility and survival. For exam-
ple, the integrin associated protein focal adhesion kinase
(FAK) is a critical determinant of cell migration, yet simi-
lar to the small GTPases of the Rho family, the expression
of FAK is insufficient to transform primary cells [42,48].
Moreover, FAK expression is not essential for tumorigen-
esis, yet FAK expression promotes tumorigenicity and
invasion. Accordingly, FAK is found to be enriched in
aggressive human tumors. The common theme emerging
from these data is that, increased migratory capacity
results in a tumor cell with increased fitness. It is not yet
clear whether this fitness is sufficient to result in a pheno-
typic conversion of a tumor in vivo, and it would there-
fore be interesting to determine whether this occurs in a
preclinical model of tumor development. However, our
simplified model provides very similar results to those
seen in vivo with respect to the importance of migration,
and provides an interesting perspective on tumor cell fit-
ness during tumor progression. While the opportunity to
divide may often be related to factors that govern the
intrinsic proliferative potential of the individual cells, our
data suggest that migration can compensate for a lower
proliferative rate, and that migration may therefore be an
important selection factor during tumor progression in
patients. Strikingly, the study also points out the potential
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for chemotherapy to influence tumor phenotype in an
unintended manner.

Conclusions
We have formulated two spatial extensions of the Moran
process to study the effects of motility on the ability of a
new mutant cell to invade a pre-existing tumor. Our
results indicate that a mobility phenotype can be domi-
nant and able to invade a background of cells with higher
reproduction rates. Further, we have investigated how
differing combinations of replication and motility
strength blend to form equivalent fitnesses within the
tumor system. Finally, we have shown how outside influ-
ence on the system inducing mass death within the tumor
might unintentionally favor invasion and regrowth by a
more aggressively motility phenotype.

Methods
Previous work: the Moran process

The conventional Moran process is formulated as follows.

In a population of N cells, each cell is equipped with a

nonnegative replication rate. The process is a sequence of

updates. At each time-step, one cell is chosen randomly

for death and is then replaced by a progeny of another cell

(note that in this process, the probability to be picked for

death is the same for all cells, regardless of their type). To

choose which cell reproduces, one weighs in all cells rep-

lication parameters, such that the probability for cell i to

reproduce is given by , where rk is the replica-

tion rate of cell k, and the summation is performed over

all cells in the population.
In we assume that there are two distinct types in the

population, type A with replication parameter rA and type
B with replication parameter rB, then the stochastic pro-
cess can be formulated in terms of only one independent
random variable, the number of cells of type B. If there
are i cells of type B, then after one update the following
transitions are possible:

• i T i + 1 with probability Pi T i+1 = (N - i)/N × rBi/
(rA(N - i) + rBi), where the first term is the probability
that a cell of type A dies and the second term is the
probability for a cell of type B to divide;
• i T i - 1 with probability Pi T i-1 = i/N × rA(N - i)/(rA(N
- i) + rBi), where the first term is the probability that a
cell of type B dies and the second term is the probabil-
ity for a cell of type A to divide;
• i T i with probability 1 - Pi T i+1 - Pi T i-1.

We will refer to cells of type A as the host, or back-
ground, cells, and cells of type B as invading cells. In the
Moran process as it is formulated (that is, in the absence
of new mutations), only two outcomes are possible: either
type A wins and cells of type B disappear, or type B wins
and cells of type A disappear. The probability for mutants
to invade starting from one cell can be calculated analyti-
cally and is given by

In the special case of neutral mutants, rA = rB, we have ρ
= 1/N. This can be obtained from formula (2) by taking
the limit rB T rA. Also, this result follows from symmetry
considerations: a cell of type B if type B is neutral has the
same expansion properties as any of the host cells, and
the same probability to invade. Since inevitable one of the
N cells will invade, the probability of invasion is 1/N for
every cell, including the B cell.

First spatial generalization of the Moran process
In [19] we introduced and analyzed a first spatial general-
ization of the Moran process. We considered a 1D space,
where all the N cells were placed on a regular grid, at
locations 1, 2,, N. As before, we assume that the total
number of cells does not change. Cells are randomly cho-
sen for death. Each cell death is followed by a cell division
of one of its two neighboring cells, which places its
daughter cell at the empty slot. Cell death occurs ran-
domly and division is proportional to the relative fitness
of the cells.

In this spatial model, the probability of mutant invasion
in principle depends on the initial position of the mutant
cell. However, if we use periodic boundary condition, this
dependence disappears and we obtain that starting from
one cell, the probability of invasion is

where r ? rB/rA. It can be shown that  ≤ ρ, with the

equality corresponding to neutral mutants, r = 1.
In other words, for nonneutral mutants, the probability

to invade is smaller in a spatial model than it is in the
space-free Moran process.

Note that both the space-free Moran process and the
spatial generalization described above depend only on
the ratio of the replication parameters rB/rA.
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The explicit motility model
Our aim in this paper is to study selection processes act-
ing upon cells in spatial settings. The first step toward
that goal was made by creating a straightforward spatial
generalization of the Moran process described above.
However, this model is too simplistic. For example, start-
ing from one mutant cell, a mutant colony can only
spread as a solid, connected spot. This is a consequence
of the facts that (i) the model is one-dimensional, (ii) cells
only interact with their nearest neighbors and (iii) cells
are not allowed to migrate.

In this paper we introduce two spatial modifications of
the Moran process which are higher-dimensional, and
include cellular motility. This section describes a model
in which cell motility is explicitly incorporated. A simpler
model, in which motility implicitly described, is discussed
in the next section.
Spatial Moran algorithm
Suppose that N cells are placed on a rectangular grid in
2D (the algorithm generalizes straightforwardly to 3D),
where there is a cell of type A or B at each node. As in the
standard Moran process, the first event of an iteration is
the random selection of one cell to die. Then, one of four
events are possible:

1. a background cell divides;
2. an invading cell divides;
3. a background cell migrates;
4. an invading cell migrates.

In all these cases, the empty spot created by the initial
cell death is filled. If a migration event occurred, a new
empty space is created. The division and migration events
occur with rates rX and mX for X = A, B respectively, and
are contingent upon the number of each type, A and B,
within nearest neighbors distance of the empty space. If a
division event occurs, the iteration step is complete and a
new cell is selected for death. If a migration event occurs,
the migrating cell 'trades places' with the empty space and
a new event (division or migration) is selected. Thus, at
the beginning and end of each iteration, the environment
is completely filled; however, there may be many migra-
tion steps before a division event ends the step. If nA and
nB are the number of type A and B cells within the nearest
neighbor range of the empty site, then the probabilities of
each event are:

where we denoted K = nA(rA + mA) + nB (rB + mB).

In our simulations, we use a square grid with periodic
boundary conditions. At time 0 we introduce a single
type B mutant at a random position in the space grid
which is otherwise filled with type A cells. The process
described above is repeated until one species, A or B, has
been eliminated from the environment.
Model parameters: the growth and migration potentials
The explicit motility model is defined in terms of four cel-
lular characteristics: the growth potential, r, and the
migration potential, m, of the two cell types. We can nor-
malize the system to reduce the number of parameters to
three. Dividing the numerators and the denominators of
various probabilities by rA yields:

where  is the ratio of migration over division

potentials,  is the ratio of invader to background

growth potentials, and  = nA(1 + kA) + nBλ (1 + kB).
Note that increasing the migration potential in this

model is similar to decreasing the typical time-scale of
migration compared to that of cell division. It amounts to
an increase in the average distance traveled by a cell in
each iteration. An assumption of the model is that the
death rate of cells is low compared to the division rate. In
other words, we typically do not expect to have multiple
cell deaths within a migration radius of a given cell. This
is why we can complete each iteration (from a cell death
event to a division event) independently.

The implicit motility model
The advantage of the model described in the previous
section is the explicit representation of motility within
the cell population. A disadvantage is that the relation-
ships for determining equality amongst strategies were
found to be too complex to study analytically. Thus, we
designed a simpler model of motility, in which cell move-
ment is implicitly tied to the survival of new cell progeny.
In this section we present the formulation and the analy-
sis of this simpler model.
Model Scheme
Following the standard Moran process, at each time-step,
one cell is selected randomly to die, to be immediately
replaced by the progeny of one of its neighboring cells. As
before, the difference between the two phenotypes A and
B is reflected in their ability to reproduce. Suppose that
cells of type A have growth potential rA and division
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radius νA, and cells of type B have growth potential rB and
division radius νB (the distance over which a cell can place
its progeny); the biological meaning of these parameters
is discussed in the next subsection. The probability for
the empty slot to be filled by either the background (A)
type or mutant (B) type depends on the division radii and
growth potential of each.

Let the discrete parameters s, s' vary over all the points
in the grid, and denote d(s, s') the Euclidean distance
between the points s and s'. Further, we use indicator
function As (Bs) to take the value of 1 if point s contains a
cell of type A (B), and zero otherwise. Then, the probabil-
ity that a given empty slot s is filled by a progeny of a cell
of type A is given by

The probability for the slot to be filled by a progeny of a
cell of type A is PB = 1 - PA.

Note that the first spatial Moran process described
above is a special case of the implicit model which corre-
sponds to a 1D space and νA = νB = 1.
Model parameters: the growth potential and the division 
radius
In the process described above, each cell is characterized
by two parameters, rA (or rB) and νA (or νB). We call the
former the growth potential and the latter division radius.
Growth potential is a measure of, given that an empty
space has opened sufficiently close to a cell, how likely it
is that that cell will divide and fill the space. The corre-
sponding parameter, r, can take any positive values. It is
not in any sense a probability to divide, it instead mea-
sures how often the cell can divide compared to other
phenotypes in the colony. Thus, the results will only
depend on the ratios of growth potentials.

The division radius is a measure of what "sufficiently
close" in the prior definition represents. From a technical
standpoint, a division radius of 1.0 in a 2D square grid
corresponds to nearest neighbor interactions, while a
radius of 1.5 corresponds to next nearest neighbors.

This implicit model only tracks net division and migra-
tion events. Further, the model depends only on two
parameters: the relative growth potential rB/rA and the
relative division radius νB/νA (this follows from equation
(4). Thus, it is a simpler to analyze than the previous
model that accounts for migration explicitly. Note that as
currently implemented, all cells within the division radius
have equal growth potential. It is straightforward to gen-
eralize the model such that the growth potential depends
on the distance from the empty space.

It is important to note here that the implicit motility
model is not intended to be a mechanistic model of
growth and evolution of a spatially defined tumor. It is
instead an abstraction of a more mechanistic system, the
explicit motility model, made under a simplifying
assumption, which allows a more analytic treatment of
the results. The fundamental assumption allowing us to
construct the implicit motility model is that the timescale
of migration is much faster than the timescale of tumor
cell death in a fully formed tumor. Thus, the division
radius might be considered to be the average distance a
daughter cell migrates away from a parent cell before the
next death event occurs.

Reviewers' Comments
Glenn Webb: There is a continuum modeling approach
related to the issues raised in this paper given in the
paper. Transforming growth factor TGF-beta is known to
inhibit cell proliferation, and also increase cell motility
and decrease cell-cell adhesion [49]. A version of the
Fisher-Kolmogorov equation was used to quantify the
simultaneous effects of TGF-beta to increase the ten-
dency of individual cells and cell clusters to move ran-
domly and to decrease overall population growth.
Accompanying experiments demonstrated that TGF-beta
increased the percentage of mobile cells in an in vitro cell
population in a dose-dependent manner, consistent with
model simulations. Have the authors tried to develop
continuum models to quantify migratory impact on inva-
sive cell population dynamics?

Marek Kimmel: The paper introduces very interesting
spatial extensions of the Moran model with resulting con-
clusions concerning invasion by a mutant depending on
cell motility and division radius. However, mathematical
and simulation results provided, concern only aggregate
characteristics such as invasion probability, without dis-
cussing the spatial patterns emerging. These latter might
be interesting as demonstrated by a class of spatial mod-
els, which explore the consequences of linking the model
of spatial growth of precancerous cells with diffusion of
the growth factors [50]. The picture emerging from mod-
eling indicates that production of growth factors by cells
may lead to diffusion-driven instability, which in turn
may lead either to decay of both population, or to emer-
gence of local growth foci represented by spike-like solu-
tions. Interesting dependencies arise when two
mutualistic cell populations are considered. It would be
probably interesting to check if any of the models in the
current paper may lead to similar dynamics?
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