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Abstract

Background: Recent studies point to a great diversity of non-ribosomal peptide synthesis systems with major roles
in amino acid and co-factor biosynthesis, secondary metabolism, and post-translational modifications of proteins by
peptide tags. The least studied of these systems are those utilizing tRNAs or aminoacyl-tRNA synthetases (AAtRS) in
non-ribosomal peptide ligation.

Results: Here we describe novel examples of AAtRS related proteins that are likely to be involved in the synthesis
of widely distributed peptide-derived metabolites. Using sensitive sequence profile methods we show that the
cyclodipeptide synthases (CDPSs) are members of the HUP class of Rossmannoid domains and are likely to be
highly derived versions of the class-I AAtRS catalytic domains. We also identify the first eukaryotic CDPSs in fungi
and in animals; they might be involved in immune response in the latter organisms. We also identify a paralogous
version of the methionyl-tRNA synthetase, which is widespread in bacteria, and present evidence using contextual
information that it might function independently of protein synthesis as a peptide ligase in the formation of a
peptide- derived secondary metabolite. This metabolite is likely to be heavily modified through multiple reactions
catalyzed by a metal-binding cupin domain and a lysine N6 monooxygenase that are strictly associated with this
paralogous methionyl-tRNA synthetase (MtRS). We further identify an analogous system wherein the MtRS has
been replaced by more typical peptide ligases with the ATP-grasp or modular condensation-domains.

Conclusions: The prevalence of these predicted biosynthetic pathways in phylogenetically distant, pathogenic or
symbiotic bacteria suggests that metabolites synthesized by them might participate in interactions with the host.
More generally, these findings point to a complete spectrum of recruitment of AAtRS to various non-ribosomal
biosynthetic pathways, ranging from the conventional AAtRS, through closely related paralogous AAtRS dedicated
to certain pathways, to highly derived versions of the class-I AAtRS catalytic domain like the CDPSs. Both the
conventional AAtRS and their closely related paralogs often provide aminoacylated tRNAs for peptide ligations by
MprF/Fem/MurM-type acetyltransferase fold ligases in the synthesis of peptidoglycan, N-end rule modifications of
proteins, lipid aminoacylation or biosynthesis of antibiotics, such as valinamycin. Alternatively they might supply
aminoacylated tRNAs for other biosynthetic pathways like that for tetrapyrrole or directly function as peptide
ligases as in the case of mycothiol and those identified here.

Reviewers: This article was reviewed by Andrei Osterman and Igor Zhulin.

Findings
In addition to their role as basic players in protein
synthesis, both tRNAs and AAtRS participate in non-
ribosomal peptide synthesis [1]. These molecules, along
with peptide ligases, are key players in synthesis of the
oligopeptide chains of the Gram-positive type bacterial

cell-wall [2,3]. In peptidoglycan biogenesis, the N-acetyl-
muramyl-linked pentapeptide stem is synthesized by
Mur ligases of the P-loop kinase fold [4]. The terminal
D-Ala-D-Ala or D-Ala-D-lactate dipeptide of the stem is
synthesized by peptide ligases of the ATP-grasp fold [5].
ATP-grasp peptide ligases are also required for synthesis
of D-amino acid-containing cross-links of the Gram-
positive-type cell-walls, such as D-Asp, D-Glu and
D-Ala-D-Ser [6]. In contrast, glycine- and L-amino acid-
containing cross-links are synthesized by the Fem ligases
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of the GCN5-like acetyltransferase (GNAT) fold. These
enzymes utilize aminoacylated tRNAs as substrates for
peptide ligation, with aminoacylation of tRNAs being
catalyzed by the cognate AAtRSs [2,3]. Also related to
the Fem ligases are the protein argininyl and phenylala-
nyl/leucyl transferases that utilize aminoacylated R-
tRNA and F-/L-tRNAs to transfer these amino acids to
the N-termini of proteins [5]. Ligation of these amino
acids alters the N-termini of proteins and thereby affects
their stability based on the N-end rule [1]. Similarly,
tRNAs charged with the cognate amino acids by lysyl-
or alanyl-tRNA synthetases are used by bacterial
enzymes typified by Clostridium perfringens MprF in the
aminoacylation of membrane phosphatidylglycerol [7].
This neutralizes the charge of the membrane and conse-
quently makes it impermeable to antibacterial peptides.
We recently observed that in several bacteria, like acti-
nomycetes, the MprF-like proteins are fused to a paralo-
gous version of the lysyl-tRNA synthetase that is likely
to function exclusively in the context of lipid aminoacy-
lation [5]. Likewise, another MprF-like enzyme from
Streptomyces viridifaciens, VlmA, functions with a dis-
tinct seryl-tRNA synthetase paralog, VlmL in transfer-
ring serine to isobutylhydroxylamine in biosynthesis of
valinamycin [8]. Our recent analysis of peptide ligases
showed that MprF/VlmA-like enzymes are members of
the GNAT fold and specifically related to the Fem
ligases and R and F/L transferases [5]. Thus, this family
of GNAT fold enzymes has evolved to function in con-
junction with tRNAs, and regular or specific paralogous
AAtRSs, charging the cognate amino acids in synthesis
of amino acid derived antibiotics or in modifying lipids
and proteins.
Recently two peptide bond-forming systems that

depend on tRNAs or AAtRSs, but unrelated to the
GNAT fold enzymes, have been characterized. One of
these is the AlbC family of CDPSs involved in the synth-
esis of cyclic dipeptide (CDP) secondary metabolites,
such as the Streptomyces noursei antibiotic albonoursin,
a cyclo(L-Phe-L-Leu) derivative, the Bacillus subtilis
siderophore pulcherriminic acid, a cyclo(L-Leu-L-Leu)
derivative and a possible Mycobacterium tuberculosis
siderophore, which is a cyclo(L-Tyr-L-Tyr) derivative
[9]. These CDPSs use aminoacylated tRNAs as their
substrates to catalyze the formation of a given cyclic
dipeptide. Another distinct amide linkage is the amino-
sugar cysteine linkage seen in mycothiol, a low molecu-
lar weight reductant seen in several bacteria such as
Mycobacterium [10]. Formation of this linkage depends
on a member of the class-I AAtRS superfamily, MshC
which is a cysteinyl-tRS (CtRS) paralog that apparently
functions independently of tRNA. It is believed to first
adenylate the COOH group of cysteine followed by the
transfer of the cysteinyl group to the NH2 group of

glucosamine, thus resulting in a sugar-amino acid conju-
gate. These discoveries point to a remarkable variety of
non-ribosomal peptide synthesis systems that depend on
components recruited from the conventional protein
synthesis apparatus. However, the full diversity of these
systems and their catalytic possibilities remain to be
explored.
Recently, we undertook a systematic analysis of pep-

tide ligases and observed that majority of peptide ligases
could be unified into a small set of folds [5]. However,
the provenance of the CDPSs remains unclear as pre-
vious studies have failed to detect significant similarity
to any of these known peptide ligase domains [9]. Sec-
ondly, the extent to which AAtRSs might function as
peptide ligases remains unclear - is MshC a one-off
example or are there more such instances? We used
sensitive sequence analysis and comparative genomics
techniques to investigate these questions. Consequently
we found that the CDPSs belong to the HUP clade of
Rossmannoid folds and are likely to have been derived
from a class-I AAtRS-like precursor. We also present
evidence that there are other instances wherein class-I
AAtRSs participate in the synthesis of non-ribosomal
peptide metabolites, suggesting that their role in such
processes is a more general one.

Results and discussion
Sequence analysis of the CDPSs shows that it is a HUP
clade Rossmannoid domain related to the class-I AAtRS
catalytic domain
To understand the origins of the CDPSs we initiated
iterative PSI-BLAST searches [11] with different repre-
sentatives of the family such as AlbC from S. noursei
[9]. In addition to the previously characterized represen-
tatives from firmicutes, actinobacteria and Photorhab-
dus, we also recovered several divergent versions (e <
10-3 at the time of first detection) from other bacteria
such as Parachlamydia, Pseudomonas fluorescens, Legio-
nella, Sphingobium and Rickettsiella grylli prior to con-
vergence (For details on Material and Methods refer to
Additional file 1). These searches also detected homolo-
gous proteins in eukaryotes, such as the fungus Gibber-
ella, the annelid worm Platynereis and the sea anemone
Nematostella. All these versions were standalone pro-
teins with no fusions to any other domains. A multiple
alignment of the recovered representatives followed by
secondary structure prediction with the JPRED program
[12] revealed an a/b fold with five strand-helix units
comprising the core of the fold with helical inserts after
the second strand-helix unit and after the third strand
(Figure 1). The sequence conservation pattern revealed a
GxSxxp (where p is a polar residue, usually an aspara-
gine) between the first strand and helix (Figure 1). A
further conserved polar residue was found at the
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C-terminus of the 3rd predicted strand and a conserved
glutamate in the helical region between strand-3 and
strand-4 (Figure 1). These are predicted to comprise the
active site of the CDPSs. The presence of five strand-
helix units along with an active site loop after the first
strand and a possible active site residue after the 3rd
strand is reminiscent of the Rossmannoid domains and
suggested that the CDPSs could adopt such a fold [13].
To test this conjecture we used a Hidden Markov

Model (HMM) derived from the multiple alignment of
the CDPSs in a profile-profile comparison against a
library of HMMs generated from all known domains
with structural representatives in PDB using the
HHpred program [14]. This search recovered catalytic
domains of the class-I AAtRSs, namely tyrosyl-tRS
(PDB: 2cyc; p = 7 × 10-6) and tryptophanyl-tRS (PDB:
3foc; p = 4 × 10-5) and the HIGH-motif nucleotidyl-
transferase, phosphopantetheine adenylyltransferase
(1od6; p = 3 × 10-4) as the best hits. The class-I AAtRSs
and HIGH-motif NTases belong to the HUP (HIGH,
UspA, Photolyase/PP-loop) superclass of Rossmannoid
domains that, just as predicted for the CDPSs, contain a
core sheet with 5 strands [13]. In all members of the

HUP superclass the substrate-binding site is found in
the loop between strand-1 and helix-1, consistent with
the conservation pattern observed in the CDPSs. Indeed,
profile-profile matches align the above-mentioned pre-
dicted active site loop of the CDPSs with the corre-
sponding loop of the class-I aatRSs and HIGH NTases
(Figure 1). Furthermore, most class-I AAtRSs contain a
major insert, typically helical, between strand-3 of the
core Rossmannoid fold and the helix prior to strand-4
that form a “cap” over the active site [13,15]. This is
also the point of insertion of the helical insert observed
in the CDPSs (Figure 1). Hence, this insert might form
a cap over the core substrate-binding site in the CDPSs.
Together these observations indicate that the CDPSs are
novel members of the HUP superclass of Rossmannoid
domains. However, given their restricted distribution in
a relatively small set of bacteria and eukaryotes it is
likely that they were derived later in evolution from a
class-I AAtRS precursor like the YtRS or the WtRS (Fig-
ure 1). This would also explain how the CDPSs could
use aminoacyl tRNAs (AAtRNAs) as substrates in pep-
tide ligation–they are predicted to bind them at the
active site, similarly to the class-I AAtRSs. However, in

Figure 1 Alignment of the CDPS and class-I AAtRS catalytic domains. Sequences are labeled by their gene names, species abbreviations
and Genbank index numbers separated by underscores. PDB ids, if available, are also shown. Sequences are colored based on 85% consensus
derived from an alignment of the cyclopeptide ligases. A key for the coloring scheme, consensus abbreviations and secondary structure labels is
shown in the box below the alignment. Familial affiliations of the sequences are shown to the right. Species names are expanded in
Abbreviations.
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the CDPSs the HIGH motif was lost and a novel signa-
ture with a conserved serine was acquired, reminiscent
of another superfamily of HUP clade, namely the PP-
loop ATPases [13] (Figure 1). These changes are likely
to be essential features of the CDPSs required to form
the amide linkage from AAtRNAs, as opposed to the
adenylation followed by ester formation seen in ances-
tral AAtRS.
Previous studies on CDPSs have shown that they are

typically encoded in a conserved operon with a gene for
an enzyme of the cytochrome P450 family [16] (Figure
2). Studies in B.subtilis and M.tuberculosis indicate that
the cytochrome P450 is required for further oxidative
modification of the CDP (Figure 3). In M.tuberculosis it
catalyzes the cross-linking of the two tyrosine rings of
cYY [16]. In synthesis of B.subtilis pulcherriminic acid it
catalyzes the addition of oxygens to the nitrogens of the

diketopiperazin ring of CDP [9]. In contrast, the albo-
noursin-like operons found in certain actinomycetes
links the CDPS with an oxidoreductase of the nitrore-
ductase family (a Rossmann fold dehydrogenase), which
is likely to catalyze the a-b desaturation of the two
amino acid side chains in the dipeptide (Fig 2, 3).
Among the newly detected versions in this study we
found several conserved gene neighborhood associations
for AlbC-like CDPSs that might be indicative of alterna-
tive modifications and synthetic mechanisms for the
dipeptides generated by them. For example, in Burkhol-
deria sp. 383 and Pseudomonas fluorescens we observed
novel associations with genes encoding 2-oxoglutarate-
dependent dioxygenases that could potentially catalyze
hydroxylations of the amino acid side chains of the
dipeptide (Figure 2)[17]. Interestingly, in some actino-
mycetes, like Actinosynnema mirum and Streptomyces

Figure 2 Examples of predicted operons of novel peptide biosynthetic systems. Genes are shown as arrows pointing from the 5’ to the 3’
end of the coding frame. Operons are labeled with the gi and species name of the primary AlbC, MtRS or cupin genes in that context. Gene
identifiers are derived from the genome annotation provided by NCBI. Other than the standard domain names the remaining identifiers are
provided in Abbreviations. In the AlbC operon AlbA encodes a nitroreductase family enzyme and AlbD a transmembrane protein.
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sp. AA4 the AlbC-like CDPS shows a neighborhood
association with genes encoding a methyltransferase and
an acyl-coA ligase. The former enzyme is related to ubi-
quinone methylases of the UbiE type and could modify
CDPs through methylation. The latter superfamily of
enzymes adenylates carboxylate groups and subsequently
ligates them to coA via a thiocarboxylate linkage to
form an acyl-coA [18]. Hence, these CDPSs could in
principle use aminoacyl-coAs generated by the action of
the above enzymes as a substrate, rather than AAtRNAs.
Indeed, enzymes of the acyl-coA ligase are part of the
large condensation domain-dependent non-ribosomal
peptide and polyketide synthesis systems [19]. In some
cases the CDPS gene co-occurs in predicted operons
with an additional peptide ligase (Figure 2) such as a
Mur ligase of the P-loop kinase superfamily (e.g. Desul-
fovibrio aespoeensis) or a GNAT fold ligase (e.g. Rickett-
siella grylli) that could mediate formation of further
peptide linkages. These operons might also contain a
SelA-like pyridoxal phosphate dependent enzyme

(PLPDE) that could synthesize a modified amino acid
that is incorporated into the peptide (Figure 2).
Beyond free-living bacteria with active secondary

metabolism systems we also found CDPSs in several
phylogenetically distant intracellular parasitic bacteria,
such as Legionella, Rickettsiella and certain chlamydiae
(Figure 1). Typically, these bacteria do not encode bio-
synthetic systems for secondary metabolites that are
common in strongly competing slow-growing forms like
actinomycetes and myxobacteria. Hence, the spread of
such CDPSs across diverse intracellular bacterial patho-
gens/symbionts suggests a potential role for particular
dipeptides in surviving in or manipulating host cells.
Detection of a CDPS in the plant pathogenic fungus
Gibberella zeae is consistent with early reports of the
generation of CDPs by such fungi with a bioactive effect
on their hosts [20]. Interestingly, the CDPS gene
encoded by the annelid Platynereis is induced as part of
the antibacterial innate immune response [21], suggest-
ing that CDPs might play a role as endogenously

Figure 3 Simplified scheme showing the core reactions catalyzed by the enzymatic systems described in this work. The figure shows
reaction schemes for the biosynthesis of the cyclopeptide albonoursin, the siderophore aerobactin, and possible substrates of enzymes encoded
by the systems based on the MtRS paralogs and reactions they could potentially catalyze.
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encoded antibiotics in the immune response of certain
animals.

Identification of a widespread methionyl-tRNA synthetase
paralog that might be involved in novel peptide synthetic
pathways
The above finding that the CDPSs are highly derived
offshoots of a class-I AAtRS-like domain, together with
the identification of the paralogous CtRS as the amino
acid ligase in mycothiol biosynthesis [10], indicated that
AAtRS homologs could also directly function as peptide
ligases. To investigate if other AAtRS could function in
such a capacity we hoped to use contextual information
from predicted operons and domain fusions to identify
potential candidates. Recently we identified a paralogous
version of the MtRS in several bacterial genomes that is
fused to a double-stranded b-helix domain of the metal-
binding cupin class [17]. Further analysis showed that
related paralogous MtRSs are encoded by several other
bacterial genomes - these lack fusion to the cupin
domain, but in all these cases a standalone cupin is
encoded by a neighboring gene in the genome (Figure
2). While a given bacterium might have 1-3 copies of
this paralogous MtRS, it always also contains the con-
ventional MtRS involved in protein synthesis (Additional
file 1). This suggested that the paralogous MtRS is likely
to be dedicated to a pathway involved in synthesis of a
distinct metabolite, separate from protein synthesis.
Given that the catalytic residues required for adenylation
of the amino acid are intact in this paralogous family
they are predicted to be catalytically active enzymes cap-
able of adenylating methionine (Additional file 1). This
also implies that the metabolite synthesized by these
enzymes is likely to be a derivative of methionine.
To better understand the provenance of these MtRS

paralogs, we included them in a phylogenetic analysis
along with the conventional MtRS. The resultant tree
showed that the conventional MtRSs fall in two major
clusters separated by a long internal branch (Additional
file 1). The first of these clusters is almost exclusively
comprised of bacterial, chloroplast and mitochondrial
MtRSs. Within this group several monophyletic bacterial
lineages can be recognized such as cyanobacteria
(including the chloroplast versions), firmicutes and var-
ious proteobacteria. This group is unified by the pre-
sence of a single Zn-ribbon inserted into the catalytic
domain (Additional file 1). The second cluster includes
the conventional MtRS from almost all archaea, eukar-
yotes (cytoplasmic) and certain bacterial lineages, such
as actinobacteria, chloroflexi, spirochetes and bacteroi-
detes. This group is typified by presence of an insert
with two Zn-ribbons or a variant thereof, i.e. a circularly
permutated Zn-ribbon arising from the loss of the N-
and C- terminal metal-chelating dyads, respectively of

the first and second Zn ribbons (Additional file 1). This
phylogenetic picture of the conventional MtRSs suggests
that the internal long-branch represents the primary
split between the archaeo-eukaryotic and bacterial
lineages, with subsequent lateral transfer of the archaeo-
eukaryotic versions to certain bacterial lineages along
with xenologous gene-displacement [15]. The newly
identified paralogous MtRSs, which are fused to or asso-
ciated with the metal-binding cupin domain, are only
found in bacteria and form a distinct cluster grouping
with the “archaeo-eukaryotic” type MtRSs, albeit sepa-
rated by a long branch (Additional file 1). This grouping
is supported by the fact that they possess a duplicated
segment-swapped Zn-ribbon, just like the “archaeo-
eukaryotic” type MtRSs. This paralogous MtRS is widely
distributed in various bacterial lineages, namely actino-
bacteria, proteobacteria and firmicutes. In particular, it
is frequently found in diverse actinobacterial species,
with Salinispora arenicola having three and Actinosyn-
nema mirum two distinct paralogs. Interestingly, it is
also found in several distantly related pathogenic or
symbiotic bacteria that are known to secrete compounds
into host cells: Ralstonia solanacearum (two paralogous
versions), Burkholderia phytofirmans, multiple Dickeya
species, Erwinia pyrifoliae, Pseudomonas syringae, Fran-
kia species, Sinorhizobium meliloti and Mesorhizobium
loti, which associate with plants and Yersinia pseudotu-
berculosis, Photorhabdus luminescens, Pseudomonas
entomophila, Bacillus cereus and Legionella pneumo-
phila, which infect animals. The affinities of this paralo-
gous group, suggest that it was probably founded by an
independent lateral transfer, perhaps from an archaeal
source, into a bacterial lineage. Given its wide presence
in actinobacteria, it is likely that this bacterial lineage
was the actinobacterial lineage, from where it dispersed
widely through lateral transfer to several distinct firimi-
cute and proteobacteria lineages, probably in shared
environments.

Contextual evidence suggests that the paralogous
methionyl-tRNA synthetases might catalyze synthesis of a
novel peptide
To better understand the biosynthetic pathway wherein
this MtRS paralog functions we resorted to genomic
neighborhood analysis, which, along with domain
fusions, has been shown to be a powerful tool to infer
functions of uncharacterized proteins [22]. This group
of MtRS paralogs is particularly suited for such analysis
as they are highly mobile in evolutionary terms and any
gene-neighborhood associations that are detected
between distantly related species are likely to be indica-
tive of functionally relevant interactions. We found two
gene neighborhood/domain-fusion associations that
occur without exception with all these MtRS paralogs
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(Figure 2): 1) the above-noted association with the
metal-binding cupin. 2) A neighborhood association
with a gene-encoding L-lysine 6-monooxygenase, a
Rossmann fold oxidoreductase that catalyzes the
NADPH-dependent hydroxylation of lysine at the N6
position. The N6-hydroxy-lysine is an intermediate in
the biosynthesis of a non-ribosomally condensed pep-
tide-derived siderophore, aerobactin [23]. In aerobactin
biosynthesis the N6 position is further modified by acet-
ylation by an acyltransferase of the GNAT fold (Figure
3). Interestingly, we found that several MtRS paralog
gene neighborhoods additionally encode a member of
the GNAT superfamily indicating that a similar reaction
is likely even in this system (Figures 2 and 3). These N6
modifications of lysine serve to block the ε-NH2 group,
thereby favoring dipeptide condensation utilizing the
main-chain a-NH2 by the aerobactin synthetase that
belongs to the protein kinase fold [5]. The NH2 group
of glucosamine, which is cysteinylated by CtRS in
mycothiol synthesis, is also initially blocked by an acetyl
group (i.e. as N-acetyl-glucosamine) prior to amide for-
mation [10]. Given that modifications of lysine N6 com-
parable to those seen in aerobactin biosynthesis are
predicted to be catalyzed by enzymes encoded in the
MtRS paralog gene neighborhoods, we reasoned that
the lysine N6 is likely to be modified similarly for pep-
tide bond formation even in this system (Figure 3). This
also suggests that the other enzyme common to all
these neighborhoods, the MtRS paralog, by analogy to
the CDPSs and the cysteinyl ligase in mycothiol bio-
synthesis, is likely to catalyze formation of a peptide
bond in this system (Figure 3). Thus, we propose that
the core of the biochemical pathway specified by this
conserved gene neighborhood involves the synthesis of
a dipeptide through the condensation of the adenylated
carboxyl group of methionine with the a-NH2 group of
a lysine derivative (i.e. modified at the N6 position).
The presence of a gene encoding acireductone dioxy-
genase, an enzyme involved in methionine salvage, in a
subset of these gene-neighborhoods is also consistent
with methionine being channeled into this metabolite
(Figure 2).
In some organisms there are gene neighborhood asso-

ciations suggestive of potential variations to the theme
of modification of the N6 lysine. A subset of these pre-
dicted operons (e.g. in Rhodococcus jostii and two of the
three paralogous gene-neighborhoods in Salinispora are-
nicola) also contain a tightly linked saccharopine dehy-
drogenase gene (Figure 2). This enzyme catalyzes the
formation of saccharopine by linking 2-oxoglutarate to
N6 of lysine. Thus, the modification of the ε-NH2 by
this enzyme might effectively be similar to the acetyla-
tion of this position (Figure 3). Further, several of the
predicted operons encode proteins such as (Figure 2): 1)

acyl-coA ligase which ligates coA to a fatty acid [18]; 2)
one or more acyl carrier proteins (ACP) that bear a ser-
ine-linked phosphopantetheinyl moiety, which in turn
carries an fatty acyl group as a thioester; 3) Acyl con-
densation enzymes, which catalyze the condensation of
an acyl-coA to another moiety resulting in an elongated
chain due to addition of the acyl element; 4) enzymes
that could catalyze a transacylase reaction that delinks
the fatty acid from the ACP or transesterifies it. These
transacylase-like enzymes might belong to the previously
recognized NTN-hydrolase superfamily or the a/b-
hydrolase superfamily or the BtrH family with a papain-
like fold [5], or are representatives of a novel family of
proteins that we determined as also belonging to the
papain-like fold (Additional file 1); 4) Acyl-coA dehy-
drogenases, which catalyze the modification of fatty
acids via desaturation. These genes are present in the
neighborhoods only if the gene cluster also encodes a
member of the GNAT fold, suggesting that they might
be involved in synthesis of an acyl-coA substrate that
could be used by the GNAT enzyme (in place of the
default acetyl-coA) to modify the N6 position of lysine.
However, in principle the ACP and associated enzymes
could also be used as a substrate for attachment of the
peptide synthesized by this system, comparable to what
is observed in butirosin biosynthesis and peptide synth-
esis by giant multidomain peptide synthetases [24,25].
The other universally present component of this system,
the metal-binding cupin, belongs to a large radiation of
such enzymes, which comprise of a single double-
stranded b-helix domain with four conserved positions
involved in chelating a metal ion [17,26]. They catalyze
two distinct types of reactions: 1) isomerization of line-
arized sugars through an enediol intermediate and 2) a
dioxygenase reaction, incorporating two oxygens into
the substrates (e.g. cysteine dioxygenase, wherein the SH
group of cysteine is oxidized to sulfinate). However,
unlike the 2-oxoglutarate-dependent dioxygenases of the
double-stranded b-helix fold they are not known to cat-
alyze single hydroxylations of substrates [17]. Given that
this cupin is tightly associated with the MtRS (either
fused or typically as the gene 5’ to the MtRS gene (Fig-
ure 2), it is possible that it functions in close association
with MtRS, perhaps catalyzing a reaction on methionine
(Figure 3). However, the exact nature of this modifica-
tion remains unclear as there are currently no prece-
dents for such modifications in other characterized
peptide modification systems.
Beyond the conserved core, majority of these neigh-

borhoods encode several other enzymatic domains and
transporters and peptide-binding proteins of the peri-
plasmic binding protein superfamilies. While these tend
to vary between neighborhoods, their close genomic
linkage and predicted biochemistry suggests that they
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are part of the same biosynthetic pathway. One or more
genes encoding ATP-grasp enzymes or multi-domain
non-ribosomal peptide synthases with condensation
domains are encountered in several of these operons. By
analogy to other non-ribosomal peptide synthesis oper-
ons these enzymes are likely to catalyze the ligation of
additional amino acids [5]. Consistent with this,
enzymes for synthesis of other amino acids are also
encountered in these operons (Figure 2, Additional file
1). These include a PP-loop ATPase that is closely
related to the asparagine synthetase, suggesting that it
might catalyze formation of asparagine. Furthermore,
two ornithine generating enzymes, namely arginase and
glycine amidinotransferase, proline-generating ornithine
cyclodeaminase, citrulline-generating dimethylargininase
and different PLPDEs are also encoded by some of these
neighborhoods. The latter enzymes include the diamino-
butyrate transaminase, which synthesizes 2,3-diaminobu-
tyrate, and cysteine synthase which generates cysteine. It
is possible that amino acids generated by the action of
these enzymes are incorporated as further residues of
the peptide or alternatively they modify the peptide via
reactions such as decarboxylation (e.g. as catalyzed by
the PLPDE, BtrK, in butirosin biosynthesis [24]). Other
prevalent enzymes encoded by these predicted operons
are diverse redox enzymes belonging to distinct folds
(Figure 2): 1) First of these are Rossmann fold dehydro-
genases which utilize either FAD or NADH cofactors. 2)
Members of the flavin- or F420- dependent monooxy-
genase superfamily, which includes the monoxygenase
BtrO that hydroxylates the amino acid side-chain in
butirosin biosynthesis [24]. 3) double-stranded b-helix-
fold 2-oxoglutarate- dependent dioxygenases, such as
members of the JOR/JmjC superfamily, and the phyta-
noyl hydroxylase family of classical 2OGFeDOs [17]. 4)
SnoaB/ActVA-Orf6-type ferredoxin-fold monooxy-
genases that catalyze the insertion of a single oxygen
atom into substrates and are often found in the biosyn-
thetic pathways of several antibiotics [27]. 5) a-helical
diiron oxygenases of the heme oxygenase superfamily
[28]. The last 4 classes of above enzymes could in parti-
cular catalyze hydroxylation or oxygenation of side
chains of the peptide and/or the fatty acyl moiety if pre-
sent. Thus, in conclusion majority of these systems cen-
tered on the paralogous MtRS are predicted to catalyze
synthesis of a highly oxygenated derivative of the dipep-
tide Met-Lys, which in some cases might be further
extended with additional residues.
The presence of this system in diverse actinobacteria,

which are known to produce diverse secondary metabo-
lites, suggests that this peptide derivative might function
as an antibiotic. However, outside of actinomyctes, it is
primarily found in bacteria showing symbiotic or parasi-
tic associations with eukaryotic cells, which normally do

not encode any antibiotic production systems. In these
cases it is likely that this peptide metabolite has a role
in host-parasite interactions. Consistent with this, in
these organisms the predicted operons usually contain a
peptide-binding protein and a transmembrane efflux
transporter (Figure 2). One possibility is that it functions
as a siderophore in these cases, with the variability prob-
ably arising due to selection against siderophore-stealing
or host immunity.

Identification of a parallel peptide synthesis system
further supports the role of the MtRS paralog in peptide
ligation
We also identified another set of predicted operons that
closely paralleled the above system in diverse firmicutes,
cyanobacteria, proteobacteria and actinobacteria (Figure
2). These were centered on a distinctive protein that
combines a cupin domain, related to those fused or
associated with the MtRS, with an N-terminal uncharac-
terized region (e.g. FRAAL4157, gi: 111223558). Iterative
sequence searches seeded with this N-terminal region
using the PSI-BLAST program recovered significant
matches to the heme oxygenase superfamily of diiron
oxygenases that were also detected in the above system
(e.g. Frankia FRAAL4157 recovers the experimentally
characterized oxygenase Ct610, PDB: 1RCW from Chla-
mydia trachomatis, e = 10-3, iteration 8). The matches
showed that the N-terminal region of these proteins
contain two diiron oxygenase domains - the N-terminal
one predicted to be inactive and the C-terminal pre-
dicted to be active based on conservation of the iron-
chelating histidines and acidic residues [28]. Thus, these
proteins are predicted to possess two distinct oxygenase
capabilities, with the diiron oxygenase domain probably
functioning as a monoxygenase and the C-terminal
cupin domain as a dioxygenase. They are encoded in
predicted operons that show three related but distinct
themes (Figure 2): 1) the simplest of these combine the
gene encoding the oxygenase-cupin protein with one or
two enzymes involved in modifying amino acids such as
an amino acid methylase and a PLPDE. 2) The second
set of these predicted operons combine the oxygenase-
cupin gene with genes encoding one or two peptide
ligases of the ATP-grasp fold [5]. Additionally, these
operons encode a Rieske 2Fe-2 S iron-sulfur protein
involved in electron transport in redox reactions. 3) The
final set of predicted operons is similar to the above
operons - in place of the ATP-grasp peptide ligases they
encode giant multi-domain non-ribosomal peptide
synthetases with condensation domains and also acyl-
coA ligases, which could charge amino acids with coA
for use by the former enzymes. This set of operons also
encodes a protein of the uncharacterized “YqcI/YcgG”
superfamily that contains an absolutely conserved
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N-terminal cysteine (Additional file 1). Given that the
multi-domain non-ribosomal peptide synthetases might
utilize a protein anchor for elongation of peptides, it is
conceivable that the conserved cysteine of this family
serves as a means for anchoring the initial residue via a
thiocarboxylate linkage. Furthermore, all the three ver-
sions of these operons might additionally encode a
transmembrane efflux transporter, suggesting that the
metabolite synthesized by this operon is deployed in the
environment (Figure 2). It is possible that in these gene-
clusters, the cupin might play a role similar to the cog-
nate cupin in the systems centered on the MtRS para-
log, whereas the diiron oxygenase could function
similarly to the lysine N6-monoxygenase. The simplest
of these predicted operons are likely to modify a single
amino acid. Those containing either of the two unre-
lated types of peptide-bond forming enzymes appear to
be analogs of the system centered on the MtRS paralog
with distinct oxygenases associated with at least one
peptide ligase.

General conclusions
Previous studies have pointed to the utilization of
tRNAs and AAtRS in bacteria for the synthesis of
diverse metabolites [1,10]. In the current work we pre-
sent evidence that AAtRS are more widely used in such
processes than has been previously appreciated. The
examples uncovered in this study help illustrate the
spectrum of exaptation of the AAtRS in non-ribosomal
metabolite biosynthesis. Thus, we can now see a com-
plete progression in the synthetic processes involving
these enzymes: 1) Conventional AAtRS that ligate
amino acids to tRNAs to be used by GNAT fold
enzymes in peptidoglycan and N-end rule peptide liga-
tions. Here the regular AAtRS involved in protein synth-
esis provide AAtRNA substrates to be used by peptide
ligases. 2) Closely related paralogous AAtRS are dedi-
cated to provide AAtRNAs for particular pathways. The
membrane-associated bacterial KtRS are involved in
lipid aminoacylation whereas the paralogous StRS VlmL
is deployed in valinamycin biosynthesis. Both these
class-II AAtRS merely serve in charging their cognate
amino acids with tRNAs to be utilized by MprF-like
peptide ligases of the GNAT fold. Further evidence for
such paralogous class-II AAtRS functioning with MprF
fold enzymes is provided by a novel group of ortholo-
gous proteins encoded by several ascomycete and basi-
diomycete fungi (e.g. Aspergillus nidulans AN0314.2,
gi:67516065 [Additional file 1]). These proteins combine
an N-terminal aspartyl tRNA synthetase module with a
C-terminal MprF-like peptide ligase and might be
required for the synthesis of a fungus-specific peptide
metabolite. Similarly, a glutamyl tRNA synthetase para-
log is deployed in synthesis of δ-aminolevulinic acid, a

precursor for porphyrins [1]. 3) The paralogous CtRS
involved in mycothiol synthesis and the paralogous
MtRS. The example of the paralogous MtRS-based bio-
synthetic systems identified in this study points to the
generality of the principle that was first presented by
the CtRS paralog that functions as a cysteine ligase in
mycothiol synthesis. Both these class-I AAtRSs are likely
to represent a further development on the previous
theme wherein they have become peptide ligases them-
selves. However, these enzymes, like the above enzymes,
have diverged only to a limited degree relative to their
“universal” paralogs involved in protein synthesis. 4)
The CDPSs. The finding that the CDPSs are likely to be
derived from a class-I AAtRS catalytic domain indicates
the unexpected degree of divergence that might occur in
these enzymatic domains while retaining the basic cata-
lytic properties. Here, the catalytic domain has not only
diverged greatly from that of the original class-I AAtRS,
but it has also acquired new active site residues, con-
verting it into a self-contained cyclic peptide forming
enzyme, which can use charged amino acids, either of
same or different type as substrates.
More generally this pattern of recruitment and diversi-

fication of the AAtRS mirrors what has been previously
observed with other ligase domains, such as the ubiqui-
tin E1-ligase-like, ATP-grasp, glutamine synthetase-like
NH2-COOH ligase, GNAT fold, protein kinase-like and
condensation domains [5]. In particular, the niche pro-
vided by the development of secondary metabolism for
synthesis of antibiotics, siderophores, soluble cell-cell
signals and host-interaction molecules allowed for the
extensive diversification of these enzymes. These meta-
bolites are under constant selection due to development
of resistance, siderophore-stealing and host immunity,
which favors the emergence of biosynthetic diversity.
Concomitant to the diversification of ligases, there was
also a similar explosion in the diversity of peptide-modi-
fying enzymatic domains [5,17]. In particular, systems
such as those described here and elsewhere [17] point
to the recruitment of a great variety of oxygenases
belonging to unrelated protein folds that utilize molecu-
lar oxygen. This suggests that the emergence of the
extant type of bacterial secondary metabolism systems
received a tremendous impetus from the primary oxyge-
nation event in Earth’s history caused by cyanobacterial
photosynthesis [17]. The metal-binding cupins identified
in the current study are a potential example of the evo-
lutionary transition of an ancestrally sugar-binding dou-
ble-stranded b-helix domain to an amino acid/peptide
modifying enzyme. This latter activity was greatly devel-
oped in the 2-oxoglutarate-dependent enzymes that
emerged within this fold [17].
In conclusion, we hope that the identification of these

novel systems might spur further experimental
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investigations to test the presented hypothesis and to fill
in the details of the biochemistry of the enzymes
described here. Given the phyletic distribution of the
systems described here, such studies are likely to be of
potential importance to uncover novel metabolites and
aspects of host-parasite interactions.

Additional material

Additional file 1: Alignments and contextual information for AAtRS
paralogs and associated proteins. Materials and methods,
comprehensive multiple sequence alignments of domains described in
the text, the MtRS phylogenetic tree and all comprehensive gene
neighborhoods of the protein families described in the text. These can
be accessed at: ftp://ftp.ncbi.nih.gov/pub/aravind/AATRS/
Supplementary_material.html
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Note added in Proofs
After this paper had been accepted for publication there was a report in the
advanced online edition of Proc Natl Acad Sci USA ("Homologs of
aminoacyl-tRNA synthetases acylate carrier proteins and provide a link
between ribosomal and nonribosomal peptide synthesis by Marko Mocibob,
Nives Ivic, Silvija Bilokapic, Timm Maier, Marija Luic, Nenad Ban, and Ivana
Weygand-Durasevic; http://www.pnas.org/cgi/doi/10.1073/pnas.1007470107),
which described a paralogous class-II seryl tRNA synthetase (StRS) that was
shown to adenylate amino acids and transfer them to the thiol group of the
phosphopantetheinyl prosthetic group of an acyl carrier protein. It was
proposed that these acylated ACPs might be part of a non-ribosomal
peptide synthesis system. Our examination of the conserved gene
neighborhoods of this paralogous StRS revealed that in addition to the ACP
and a Rossmann fold monooxygenase/dehydrogenase, it was linked to
genes encoding a highly conserved uncharacterized protein, a glycosidase
and other proteins involved in liposaccharide biosynthesis (Additional file 1).
These associations suggest that rather than being involved in non-ribosomal
biosynthesis of a peptide, this system might catalyze the ligation of an
amino acid to the amino group on a cell-surface sugar derivative. We
predict that the tightly linked uncharacterized ORF (e.g. Agrobacterium
tumefaciens Atu2574) is the ligase that catalyzes the formation of this amide
bond whereas the associated Rossmann fold redox enzyme modifies the
amino acyl moiety, probably via monoxygenation. Thus, the StRS-based
pathway not only resembles the MtRS-based system reported by us but also
the mycothiol and bacillithiol biosynthesis pathways and the class-II KtRS
implicated in post-translational modification of elongation factor P (EF-P) in
a subset of bacterial species (Bailly M, de Crécy-Lagard V. Biol Direct. 2010
Jan 13;5:3).
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FindingsIn addition to their role as basic players in protein synthesis, both tRNAs and AAtRS participate in non-ribosomal peptide synthesis 1. These molecules, along with peptide ligases, are key players in synthesis of the oligopeptide chains of the Gram-positive type bacterial cell-wall 23. In peptidoglycan biogenesis, the N-acetyl-muramyl-linked pentapeptide stem is synthesized by Mur ligases of the P-loop kinase fold 4. The terminal D-Ala-D-Ala or D-Ala-D-lactate dipeptide of the stem is synthesized by peptide ligases of the ATP-grasp fold 5. ATP-grasp peptide ligases are also required for synthesis of D-amino acid-containing cross-links of the Gram-positive-type cell-walls, such as D-Asp, D-Glu and D-�Ala-D-Ser 6. In contrast, glycine- and L-amino acid-containing cross-links are synthesized by the Fem ligases of the GCN5-like acetyltransferase (GNAT) fold. These enzymes utilize aminoacylated tRNAs as substrates for peptide ligation, with aminoacylation of tRNAs being catalyzed by the cognate AAtRSs 23. Also related to the Fem ligases are the protein argininyl and phenylalanyl/leucyl transferases that utilize aminoacylated R-tRNA and F-/L-tRNAs to transfer these amino acids to the N-termini of proteins 5. Ligation of these amino acids alters the N-termini of proteins and thereby affects their stability based on the N-end rule 1. Similarly, tRNAs charged with the cognate amino acids by lysyl- or alanyl-tRNA synthetases are used by bacterial enzymes typified by Clostridium perfringens MprF in the aminoacylation of membrane phosphatidylglycerol 7. This neutralizes the charge of the membrane and consequently makes it impermeable to antibacterial peptides. We recently observed that in several bacteria, like actinomycetes, the MprF-like proteins are fused to a paralogous version of the lysyl-tRNA synthetase that is likely to function exclusively in the context of lipid aminoacylation 5. Likewise, another MprF-like enzyme from Streptomyces viridifaciens, VlmA, functions with a distinct seryl-tRNA synthetase paralog, VlmL in transferring serine to isobutylhydroxylamine in biosynthesis of valinamycin 8. Our recent analysis of peptide ligases showed that MprF/VlmA-like enzymes are members of the GNAT fold and specifically related to the Fem ligases and R and F/L transferases 5. Thus, this family of GNAT fold enzymes has evolved to function in conjunction with tRNAs, and regular or specific paralogous AAtRSs, charging the cognate amino acids in synthesis of amino acid derived antibiotics or in modifying lipids and proteins.Recently two peptide bond-forming systems that depend on tRNAs or AAtRSs, but unrelated to the GNAT fold enzymes, have been characterized. One of these is the AlbC family of CDPSs involved in the synthesis of cyclic dipeptide (CDP) secondary metabolites, such as the Streptomyces noursei antibiotic albonoursin, a cyclo(L-Phe-L-Leu) derivative, the Bacillus subtilis siderophore pulcherriminic acid, a cyclo(L-Leu-L-Leu) derivative and a possible Mycobacterium tuberculosis siderophore, which is a cyclo(L-Tyr-L-Tyr) derivative 9. These CDPSs use aminoacylated tRNAs as their substrates to catalyze the formation of a given cyclic dipeptide. Another distinct amide linkage is the amino-sugar cysteine linkage seen in mycothiol, a low molecular weight reductant seen in several bacteria such as Mycobacterium 10. Formation of this linkage depends on a member of the class-I AAtRS superfamily, MshC which is a cysteinyl-tRS (CtRS) paralog that apparently functions independently of tRNA. It is believed to first adenylate the COOH group of cysteine followed by the transfer of the cysteinyl group to the NH2 group of glucosamine, thus resulting in a sugar-amino acid conjugate. These discoveries point to a remarkable variety of non-ribosomal peptide synthesis systems that depend on components recruited from the conventional protein synthesis apparatus. However, the full diversity of these systems and their catalytic possibilities remain to be explored.Recently, we undertook a systematic analysis of peptide ligases and observed that majority of peptide ligases could be unified into a small set of folds 5. However, the provenance of the CDPSs remains unclear as previous studies have failed to detect significant similarity to any of these known peptide ligase domains 9. Secondly, the extent to which AAtRSs might function as peptide ligases remains unclear - is MshC a one-off example or are there more such instances? We used sensitive sequence analysis and comparative genomics techniques to investigate these questions. Consequently we found that the CDPSs belong to the HUP clade of Rossmannoid folds and are likely to have been derived from a class-I AAtRS-like precursor. We also present evidence that there are other instances wherein class-I AAtRSs participate in the synthesis of non-ribosomal peptide metabolites, suggesting that their role in such processes is a more general one.Results and discussionSequence analysis of the CDPSs shows that it is a HUP clade Rossmannoid domain related to the class-I AAtRS catalytic domainTo understand the origins of the CDPSs we initiated iterative PSI-BLAST searches 11 with different representatives of the family such as AlbC from S. noursei 9. In addition to the previously characterized representatives from firmicutes, actinobacteria and Photorhabdus, we also recovered several divergent versions (e < 10-3 at the time of first detection) from other bacteria such as Parachlamydia, Pseudomonas fluorescens, Legionella, Sphingobium and Rickettsiella grylli prior to convergence (For details on Material and Methods refer to Additional file 1). These searches also detected homologous proteins in eukaryotes, such as the fungus Gibberella, the annelid worm Platynereis and the sea anemone Nematostella. All these versions were standalone proteins with no fusions to any other domains. A multiple alignment of the recovered representatives followed by secondary structure prediction with the JPRED program 12 revealed an &alpha;/&beta; fold with five strand-helix units comprising the core of the fold with helical inserts after the second strand-helix unit and after the third strand (Figure 1). The sequence conservation pattern revealed a GxSxxp (where p is a polar residue, usually an asparagine) between the first strand and helix (Figure 1). A further conserved polar residue was found at the C-�terminus of the 3rd predicted strand and a conserved glutamate in the helical region between strand-3 and strand-4 (Figure 1). These are predicted to comprise the active site of the CDPSs. The presence of five strand-helix units along with an active site loop after the first strand and a possible active site residue after the 3rd strand is reminiscent of the Rossmannoid domains and suggested that the CDPSs could adopt such a fold 13.To test this conjecture we used a Hidden Markov Model (HMM) derived from the multiple alignment of the CDPSs in a profile-profile comparison against a library of HMMs generated from all known domains with structural representatives in PDB using the HHpred program 14. This search recovered catalytic domains of the class-I AAtRSs, namely tyrosyl-tRS (PDB: 2cyc; p = 7 � 10-6) and tryptophanyl-tRS (PDB: 3foc; p = 4 � 10-5) and the HIGH-motif nucleotidyltransferase, phosphopantetheine adenylyltransferase (1od6; p = 3 � 10-4) as the best hits. The class-I AAtRSs and HIGH-motif NTases belong to the HUP (HIGH, UspA, Photolyase/PP-loop) superclass of Rossmannoid domains that, just as predicted for the CDPSs, contain a core sheet with 5 strands 13. In all members of the HUP superclass the substrate-binding site is found in the loop between strand-1 and helix-1, consistent with the conservation pattern observed in the CDPSs. Indeed, profile-profile matches align the above-mentioned predicted active site loop of the CDPSs with the corresponding loop of the class-I aatRSs and HIGH NTases (Figure 1). Furthermore, most class-I AAtRSs contain a major insert, typically helical, between strand-3 of the core Rossmannoid fold and the helix prior to strand-4 that form a �cap� over the active site 1315. This is also the point of insertion of the helical insert observed in the CDPSs (Figure 1). Hence, this insert might form a cap over the core substrate-binding site in the CDPSs. Together these observations indicate that the CDPSs are novel members of the HUP superclass of Rossmannoid domains. However, given their restricted distribution in a relatively small set of bacteria and eukaryotes it is likely that they were derived later in evolution from a class-I AAtRS precursor like the YtRS or the WtRS (Figure 1). This would also explain how the CDPSs could use aminoacyl tRNAs (AAtRNAs) as substrates in peptide ligation--they are predicted to bind them at the active site, similarly to the class-I AAtRSs. However, in the CDPSs the HIGH motif was lost and a novel signature with a conserved serine was acquired, reminiscent of another superfamily of HUP clade, namely the PP-loop ATPases 13 (Figure 1). These changes are likely to be essential features of the CDPSs required to form the amide linkage from AAtRNAs, as opposed to the adenylation followed by ester formation seen in ancestral AAtRS.Previous studies on CDPSs have shown that they are typically encoded in a conserved operon with a gene for an enzyme of the cytochrome P450 family 16 (Figure 2). Studies in B.subtilis and M.tuberculosis indicate that the cytochrome P450 is required for further oxidative modification of the CDP (Figure 3). In M.tuberculosis it catalyzes the cross-linking of the two tyrosine rings of cYY 16. In synthesis of B.subtilis pulcherriminic acid it catalyzes the addition of oxygens to the nitrogens of the diketopiperazin ring of CDP 9. In contrast, the albonoursin-like operons found in certain actinomycetes links the CDPS with an oxidoreductase of the nitroreductase family (a Rossmann fold dehydrogenase), which is likely to catalyze the &alpha;-&beta; desaturation of the two amino acid side chains in the dipeptide (Fig 2, 3). Among the newly detected versions in this study we found several conserved gene neighborhood associations for AlbC-like CDPSs that might be indicative of alternative modifications and synthetic mechanisms for the dipeptides generated by them. For example, in Burkholderia sp. 383 and Pseudomonas fluorescens we observed novel associations with genes encoding 2-oxoglutarate-dependent dioxygenases that could potentially catalyze hydroxylations of the amino acid side chains of the dipeptide (Figure 2)17. Interestingly, in some actinomycetes, like Actinosynnema mirum and Streptomyces sp. AA4 the AlbC-like CDPS shows a neighborhood association with genes encoding a methyltransferase and an acyl-coA ligase. The former enzyme is related to ubiquinone methylases of the UbiE type and could modify CDPs through methylation. The latter superfamily of enzymes adenylates carboxylate groups and subsequently ligates them to coA via a thiocarboxylate linkage to form an acyl-coA 18. Hence, these CDPSs could in principle use aminoacyl-coAs generated by the action of the above enzymes as a substrate, rather than AAtRNAs. Indeed, enzymes of the acyl-coA ligase are part of the large condensation domain-dependent non-ribosomal peptide and polyketide synthesis systems 19. In some cases the CDPS gene co-occurs in predicted operons with an additional peptide ligase (Figure 2) such as a Mur ligase of the P-loop kinase superfamily (e.g. Desulfovibrio aespoeensis) or a GNAT fold ligase (e.g. Rickettsiella grylli) that could mediate formation of further peptide linkages. These operons might also contain a SelA-like pyridoxal phosphate dependent enzyme (PLPDE) that could synthesize a modified amino acid that is incorporated into the peptide (Figure 2).Beyond free-living bacteria with active secondary metabolism systems we also found CDPSs in several phylogenetically distant intracellular parasitic bacteria, such as Legionella, Rickettsiella and certain chlamydiae (Figure 1). Typically, these bacteria do not encode biosynthetic systems for secondary metabolites that are common in strongly competing slow-growing forms like actinomycetes and myxobacteria. Hence, the spread of such CDPSs across diverse intracellular bacterial pathogens/symbionts suggests a potential role for particular dipeptides in surviving in or manipulating host cells. Detection of a CDPS in the plant pathogenic fungus Gibberella zeae is consistent with early reports of the generation of CDPs by such fungi with a bioactive effect on their hosts 20. Interestingly, the CDPS gene encoded by the annelid Platynereis is induced as part of the antibacterial innate immune response 21, suggesting that CDPs might play a role as endogenously encoded antibiotics in the immune response of certain animals.Identification of a widespread methionyl-tRNA synthetase paralog that might be involved in novel peptide synthetic pathwaysThe above finding that the CDPSs are highly derived offshoots of a class-I AAtRS-like domain, together with the identification of the paralogous CtRS as the amino acid ligase in mycothiol biosynthesis 10, indicated that AAtRS homologs could also directly function as peptide ligases. To investigate if other AAtRS could function in such a capacity we hoped to use contextual information from predicted operons and domain fusions to identify potential candidates. Recently we identified a paralogous version of the MtRS in several bacterial genomes that is fused to a double-stranded &beta;-helix domain of the metal-binding cupin class 17. Further analysis showed that related paralogous MtRSs are encoded by several other bacterial genomes - these lack fusion to the cupin domain, but in all these cases a standalone cupin is encoded by a neighboring gene in the genome (Figure 2). While a given bacterium might have 1-3 copies of this paralogous MtRS, it always also contains the conventional MtRS involved in protein synthesis (Additional file 1). This suggested that the paralogous MtRS is likely to be dedicated to a pathway involved in synthesis of a distinct metabolite, separate from protein synthesis. Given that the catalytic residues required for adenylation of the amino acid are intact in this paralogous family they are predicted to be catalytically active enzymes capable of adenylating methionine (Additional file 1). This also implies that the metabolite synthesized by these enzymes is likely to be a derivative of methionine.To better understand the provenance of these MtRS paralogs, we included them in a phylogenetic analysis along with the conventional MtRS. The resultant tree showed that the conventional MtRSs fall in two major clusters separated by a long internal branch (Additional file 1). The first of these clusters is almost exclusively comprised of bacterial, chloroplast and mitochondrial MtRSs. Within this group several monophyletic bacterial lineages can be recognized such as cyanobacteria (including the chloroplast versions), firmicutes and various proteobacteria. This group is unified by the presence of a single Zn-ribbon inserted into the catalytic domain (Additional file 1). The second cluster includes the conventional MtRS from almost all archaea, eukaryotes (cytoplasmic) and certain bacterial lineages, such as actinobacteria, chloroflexi, spirochetes and bacteroidetes. This group is typified by presence of an insert with two Zn-ribbons or a variant thereof, i.e. a circularly permutated Zn-ribbon arising from the loss of the N- and C- terminal metal-chelating dyads, respectively of the first and second Zn ribbons (Additional file 1). This phylogenetic picture of the conventional MtRSs suggests that the internal long-branch represents the primary split between the archaeo-eukaryotic and bacterial lineages, with subsequent lateral transfer of the archaeo-eukaryotic versions to certain bacterial lineages along with xenologous gene-displacement 15. The newly identified paralogous MtRSs, which are fused to or associated with the metal-binding cupin domain, are only found in bacteria and form a distinct cluster grouping with the �archaeo-eukaryotic� type MtRSs, albeit separated by a long branch (Additional file 1). This grouping is supported by the fact that they possess a duplicated segment-swapped Zn-ribbon, just like the �archaeo-eukaryotic� type MtRSs. This paralogous MtRS is widely distributed in various bacterial lineages, namely actinobacteria, proteobacteria and firmicutes. In particular, it is frequently found in diverse actinobacterial species, with Salinispora arenicola having three and Actinosynnema mirum two distinct paralogs. Interestingly, it is also found in several distantly related pathogenic or symbiotic bacteria that are known to secrete compounds into host cells: Ralstonia solanacearum (two paralogous versions), Burkholderia phytofirmans, multiple Dickeya species, Erwinia pyrifoliae, Pseudomonas syringae, Frankia species, Sinorhizobium meliloti and Mesorhizobium loti, which associate with plants and Yersinia pseudotuberculosis, Photorhabdus luminescens, Pseudomonas entomophila, Bacillus cereus and Legionella pneumophila, which infect animals. The affinities of this paralogous group, suggest that it was probably founded by an independent lateral transfer, perhaps from an archaeal source, into a bacterial lineage. Given its wide presence in actinobacteria, it is likely that this bacterial lineage was the actinobacterial lineage, from where it dispersed widely through lateral transfer to several distinct firimicute and proteobacteria lineages, probably in shared environments.Contextual evidence suggests that the paralogous methionyl-tRNA synthetases might catalyze synthesis of a novel peptideTo better understand the biosynthetic pathway wherein this MtRS paralog functions we resorted to genomic neighborhood analysis, which, along with domain fusions, has been shown to be a powerful tool to infer functions of uncharacterized proteins 22. This group of MtRS paralogs is particularly suited for such analysis as they are highly mobile in evolutionary terms and any gene-neighborhood associations that are detected between distantly related species are likely to be indicative of functionally relevant interactions. We found two gene neighborhood/domain-fusion associations that occur without exception with all these MtRS paralogs (Figure 2): 1) the above-noted association with the metal-binding cupin. 2) A neighborhood association with a gene-encoding L-lysine 6-monooxygenase, a Rossmann fold oxidoreductase that catalyzes the NADPH-dependent hydroxylation of lysine at the N6 position. The N6-hydroxy-lysine is an intermediate in the biosynthesis of a non-ribosomally condensed peptide-derived siderophore, aerobactin 23. In aerobactin biosynthesis the N6 position is further modified by acetylation by an acyltransferase of the GNAT fold (Figure 3). Interestingly, we found that several MtRS paralog gene neighborhoods additionally encode a member of the GNAT superfamily indicating that a similar reaction is likely even in this system (Figures 2 and 3). These N6 modifications of lysine serve to block the &epsi;-NH2 group, thereby favoring dipeptide condensation utilizing the main-chain &alpha;-NH2 by the aerobactin synthetase that belongs to the protein kinase fold 5. The NH2 group of glucosamine, which is cysteinylated by CtRS in mycothiol synthesis, is also initially blocked by an acetyl group (i.e. as N-acetyl-glucosamine) prior to amide formation 10. Given that modifications of lysine N6 comparable to those seen in aerobactin biosynthesis are predicted to be catalyzed by enzymes encoded in the MtRS paralog gene neighborhoods, we reasoned that the lysine N6 is likely to be modified similarly for peptide bond formation even in this system (Figure 3). This also suggests that the other enzyme common to all these neighborhoods, the MtRS paralog, by analogy to the CDPSs and the cysteinyl ligase in mycothiol biosynthesis, is likely to catalyze formation of a peptide bond in this system (Figure 3). Thus, we propose that the core of the biochemical pathway specified by this conserved gene neighborhood involves the synthesis of a dipeptide through the condensation of the adenylated carboxyl group of methionine with the &alpha;-NH2 group of a lysine derivative (i.e. modified at the N6 position). The presence of a gene encoding acireductone dioxygenase, an enzyme involved in methionine salvage, in a subset of these gene-neighborhoods is also consistent with methionine being channeled into this metabolite (Figure 2).In some organisms there are gene neighborhood associations suggestive of potential variations to the theme of modification of the N6 lysine. A subset of these predicted operons (e.g. in Rhodococcus jostii and two of the three paralogous gene-neighborhoods in Salinispora arenicola) also contain a tightly linked saccharopine dehydrogenase gene (Figure 2). This enzyme catalyzes the formation of saccharopine by linking 2-oxoglutarate to N6 of lysine. Thus, the modification of the &epsi;-NH2 by this enzyme might effectively be similar to the acetylation of this position (Figure 3). Further, several of the predicted operons encode proteins such as (Figure 2): 1) acyl-coA ligase which ligates coA to a fatty acid 18; 2) one or more acyl carrier proteins (ACP) that bear a serine-linked phosphopantetheinyl moiety, which in turn carries an fatty acyl group as a thioester; 3) Acyl condensation enzymes, which catalyze the condensation of an acyl-coA to another moiety resulting in an elongated chain due to addition of the acyl element; 4) enzymes that could catalyze a transacylase reaction that delinks the fatty acid from the ACP or transesterifies it. These transacylase-like enzymes might belong to the previously recognized NTN-hydrolase superfamily or the &alpha;/&beta;-hydrolase superfamily or the BtrH family with a papain-like fold 5, or are representatives of a novel family of proteins that we determined as also belonging to the papain-like fold (Additional file 1); 4) Acyl-coA dehydrogenases, which catalyze the modification of fatty acids via desaturation. These genes are present in the neighborhoods only if the gene cluster also encodes a member of the GNAT fold, suggesting that they might be involved in synthesis of an acyl-coA substrate that could be used by the GNAT enzyme (in place of the default acetyl-coA) to modify the N6 position of lysine. However, in principle the ACP and associated enzymes could also be used as a substrate for attachment of the peptide synthesized by this system, comparable to what is observed in butirosin biosynthesis and peptide synthesis by giant multidomain peptide synthetases 2425. The other universally present component of this system, the metal-binding cupin, belongs to a large radiation of such enzymes, which comprise of a single double-stranded &beta;-helix domain with four conserved positions involved in chelating a metal ion 1726. They catalyze two distinct types of reactions: 1) isomerization of linearized sugars through an enediol intermediate and 2) a dioxygenase reaction, incorporating two oxygens into the substrates (e.g. cysteine dioxygenase, wherein the SH group of cysteine is oxidized to sulfinate). However, unlike the 2-oxoglutarate-dependent dioxygenases of the double-stranded &beta;-helix fold they are not known to catalyze single hydroxylations of substrates 17. Given that this cupin is tightly associated with the MtRS (either fused or typically as the gene 5� to the MtRS gene (Figure 2), it is possible that it functions in close association with MtRS, perhaps catalyzing a reaction on methionine (Figure 3). However, the exact nature of this modification remains unclear as there are currently no precedents for such modifications in other characterized peptide modification systems.Beyond the conserved core, majority of these neighborhoods encode several other enzymatic domains and transporters and peptide-binding proteins of the periplasmic binding protein superfamilies. While these tend to vary between neighborhoods, their close genomic linkage and predicted biochemistry suggests that they are part of the same biosynthetic pathway. One or more genes encoding ATP-grasp enzymes or multi-domain non-ribosomal peptide synthases with condensation domains are encountered in several of these operons. By analogy to other non-ribosomal peptide synthesis operons these enzymes are likely to catalyze the ligation of additional amino acids 5. Consistent with this, enzymes for synthesis of other amino acids are also encountered in these operons (Figure 2, Additional file 1). These include a PP-loop ATPase that is closely related to the asparagine synthetase, suggesting that it might catalyze formation of asparagine. Furthermore, two ornithine generating enzymes, namely arginase and glycine amidinotransferase, proline-generating ornithine cyclodeaminase, citrulline-generating dimethylargininase and different PLPDEs are also encoded by some of these neighborhoods. The latter enzymes include the diaminobutyrate transaminase, which synthesizes 2,3-diaminobutyrate, and cysteine synthase which generates cysteine. It is possible that amino acids generated by the action of these enzymes are incorporated as further residues of the peptide or alternatively they modify the peptide via reactions such as decarboxylation (e.g. as catalyzed by the PLPDE, BtrK, in butirosin biosynthesis 24). Other prevalent enzymes encoded by these predicted operons are diverse redox enzymes belonging to distinct folds (Figure 2): 1) First of these are Rossmann fold dehydrogenases which utilize either FAD or NADH cofactors. 2) Members of the flavin- or F420- dependent monooxygenase superfamily, which includes the monoxygenase BtrO that hydroxylates the amino acid side-chain in butirosin biosynthesis 24. 3) double-stranded &beta;-helix-fold 2-oxoglutarate- dependent dioxygenases, such as members of the JOR/JmjC superfamily, and the phytanoyl hydroxylase family of classical 2OGFeDOs 17. 4) SnoaB/ActVA-Orf6-type ferredoxin-fold monooxygenases that catalyze the insertion of a single oxygen atom into substrates and are often found in the biosynthetic pathways of several antibiotics 27. 5) &alpha;-helical diiron oxygenases of the heme oxygenase superfamily 28. The last 4 classes of above enzymes could in particular catalyze hydroxylation or oxygenation of side chains of the peptide and/or the fatty acyl moiety if present. Thus, in conclusion majority of these systems centered on the paralogous MtRS are predicted to catalyze synthesis of a highly oxygenated derivative of the dipeptide Met-Lys, which in some cases might be further extended with additional residues.The presence of this system in diverse actinobacteria, which are known to produce diverse secondary metabolites, suggests that this peptide derivative might function as an antibiotic. However, outside of actinomyctes, it is primarily found in bacteria showing symbiotic or parasitic associations with eukaryotic cells, which normally do not encode any antibiotic production systems. In these cases it is likely that this peptide metabolite has a role in host-parasite interactions. Consistent with this, in these organisms the predicted operons usually contain a peptide-binding protein and a transmembrane efflux transporter (Figure 2). One possibility is that it functions as a siderophore in these cases, with the variability probably arising due to selection against siderophore-stealing or host immunity.Identification of a parallel peptide synthesis system further supports the role of the MtRS paralog in peptide ligationWe also identified another set of predicted operons that closely paralleled the above system in diverse firmicutes, cyanobacteria, proteobacteria and actinobacteria (Figure 2). These were centered on a distinctive protein that combines a cupin domain, related to those fused or associated with the MtRS, with an N-terminal uncharacterized region (e.g. FRAAL4157, gi: 111223558). Iterative sequence searches seeded with this N-terminal region using the PSI-BLAST program recovered significant matches to the heme oxygenase superfamily of diiron oxygenases that were also detected in the above system (e.g. Frankia FRAAL4157 recovers the experimentally characterized oxygenase Ct610, PDB: 1RCW from Chlamydia trachomatis, e = 10-3, iteration 8). The matches showed that the N-terminal region of these proteins contain two diiron oxygenase domains - the N-terminal one predicted to be inactive and the C-terminal predicted to be active based on conservation of the iron-chelating histidines and acidic residues 28. Thus, these proteins are predicted to possess two distinct oxygenase capabilities, with the diiron oxygenase domain probably functioning as a monoxygenase and the C-terminal cupin domain as a dioxygenase. They are encoded in predicted operons that show three related but distinct themes (Figure 2): 1) the simplest of these combine the gene encoding the oxygenase-cupin protein with one or two enzymes involved in modifying amino acids such as an amino acid methylase and a PLPDE. 2) The second set of these predicted operons combine the oxygenase-cupin gene with genes encoding one or two peptide ligases of the ATP-grasp fold 5. Additionally, these operons encode a Rieske 2Fe-2 S iron-sulfur protein involved in electron transport in redox reactions. 3) The final set of predicted operons is similar to the above operons - in place of the ATP-grasp peptide ligases they encode giant multi-domain non-ribosomal peptide synthetases with condensation domains and also acyl-coA ligases, which could charge amino acids with coA for use by the former enzymes. This set of operons also encodes a protein of the uncharacterized �YqcI/YcgG� superfamily that contains an absolutely conserved N-�terminal cysteine (Additional file 1). Given that the multi-domain non-ribosomal peptide synthetases might utilize a protein anchor for elongation of peptides, it is conceivable that the conserved cysteine of this family serves as a means for anchoring the initial residue via a thiocarboxylate linkage. Furthermore, all the three versions of these operons might additionally encode a transmembrane efflux transporter, suggesting that the metabolite synthesized by this operon is deployed in the environment (Figure 2). It is possible that in these gene-clusters, the cupin might play a role similar to the cognate cupin in the systems centered on the MtRS paralog, whereas the diiron oxygenase could function similarly to the lysine N6-monoxygenase. The simplest of these predicted operons are likely to modify a single amino acid. Those containing either of the two unrelated types of peptide-bond forming enzymes appear to be analogs of the system centered on the MtRS paralog with distinct oxygenases associated with at least one peptide ligase.General conclusionsPrevious studies have pointed to the utilization of tRNAs and AAtRS in bacteria for the synthesis of diverse metabolites 110. In the current work we present evidence that AAtRS are more widely used in such processes than has been previously appreciated. The examples uncovered in this study help illustrate the spectrum of exaptation of the AAtRS in non-ribosomal metabolite biosynthesis. Thus, we can now see a complete progression in the synthetic processes involving these enzymes: 1) Conventional AAtRS that ligate amino acids to tRNAs to be used by GNAT fold enzymes in peptidoglycan and N-end rule peptide ligations. Here the regular AAtRS involved in protein synthesis provide AAtRNA substrates to be used by peptide ligases. 2) Closely related paralogous AAtRS are dedicated to provide AAtRNAs for particular pathways. The membrane-associated bacterial KtRS are involved in lipid aminoacylation whereas the paralogous StRS VlmL is deployed in valinamycin biosynthesis. Both these class-II AAtRS merely serve in charging their cognate amino acids with tRNAs to be utilized by MprF-like peptide ligases of the GNAT fold. Further evidence for such paralogous class-II AAtRS functioning with MprF fold enzymes is provided by a novel group of orthologous proteins encoded by several ascomycete and basidiomycete fungi (e.g. Aspergillus nidulans AN0314.2, gi:67516065 [Additional file 1]). These proteins combine an N-terminal aspartyl tRNA synthetase module with a C-terminal MprF-like peptide ligase and might be required for the synthesis of a fungus-specific peptide metabolite. Similarly, a glutamyl tRNA synthetase paralog is deployed in synthesis of &delta;-aminolevulinic acid, a precursor for porphyrins 1. 3) The paralogous CtRS involved in mycothiol synthesis and the paralogous MtRS. The example of the paralogous MtRS-based biosynthetic systems identified in this study points to the generality of the principle that was first presented by the CtRS paralog that functions as a cysteine ligase in mycothiol synthesis. Both these class-I AAtRSs are likely to represent a further development on the previous theme wherein they have become peptide ligases themselves. However, these enzymes, like the above enzymes, have diverged only to a limited degree relative to their �universal� paralogs involved in protein synthesis. 4) The CDPSs. The finding that the CDPSs are likely to be derived from a class-I AAtRS catalytic domain indicates the unexpected degree of divergence that might occur in these enzymatic domains while retaining the basic catalytic properties. Here, the catalytic domain has not only diverged greatly from that of the original class-I AAtRS, but it has also acquired new active site residues, converting it into a self-contained cyclic peptide forming enzyme, which can use charged amino acids, either of same or different type as substrates.More generally this pattern of recruitment and diversification of the AAtRS mirrors what has been previously observed with other ligase domains, such as the ubiquitin E1-ligase-like, ATP-grasp, glutamine synthetase-like NH2-COOH ligase, GNAT fold, protein kinase-like and condensation domains 5. In particular, the niche provided by the development of secondary metabolism for synthesis of antibiotics, siderophores, soluble cell-cell signals and host-interaction molecules allowed for the extensive diversification of these enzymes. These metabolites are under constant selection due to development of resistance, siderophore-stealing and host immunity, which favors the emergence of biosynthetic diversity. Concomitant to the diversification of ligases, there was also a similar explosion in the diversity of peptide-modifying enzymatic domains 517. In particular, systems such as those described here and elsewhere 17 point to the recruitment of a great variety of oxygenases belonging to unrelated protein folds that utilize molecular oxygen. This suggests that the emergence of the extant type of bacterial secondary metabolism systems received a tremendous impetus from the primary oxygenation event in Earth�s history caused by cyanobacterial photosynthesis 17. The metal-binding cupins identified in the current study are a potential example of the evolutionary transition of an ancestrally sugar-binding double-stranded &beta;-helix domain to an amino acid/peptide modifying enzyme. This latter activity was greatly developed in the 2-oxoglutarate-dependent enzymes that emerged within this fold 17.In conclusion, we hope that the identification of these novel systems might spur further experimental investigations to test the presented hypothesis and to fill in the details of the biochemistry of the enzymes described here. Given the phyletic distribution of the systems described here, such studies are likely to be of potential importance to uncover novel metabolites and aspects of host-parasite interactions.
FindingsIn addition to their role as basic players in protein synthesis, both tRNAs and AAtRS participate in non-ribosomal peptide synthesis 1. These molecules, along with peptide ligases, are key players in synthesis of the oligopeptide chains of the Gram-positive type bacterial cell-wall 23. In peptidoglycan biogenesis, the N-acetyl-muramyl-linked pentapeptide stem is synthesized by Mur ligases of the P-loop kinase fold 4. The terminal D-Ala-D-Ala or D-Ala-D-lactate dipeptide of the stem is synthesized by peptide ligases of the ATP-grasp fold 5. ATP-grasp peptide ligases are also required for synthesis of D-amino acid-containing cross-links of the Gram-positive-type cell-walls, such as D-Asp, D-Glu and D-�Ala-D-Ser 6. In contrast, glycine- and L-amino acid-containing cross-links are synthesized by the Fem ligases of the GCN5-like acetyltransferase (GNAT) fold. These enzymes utilize aminoacylated tRNAs as substrates for peptide ligation, with aminoacylation of tRNAs being catalyzed by the cognate AAtRSs 23. Also related to the Fem ligases are the protein argininyl and phenylalanyl/leucyl transferases that utilize aminoacylated R-tRNA and F-/L-tRNAs to transfer these amino acids to the N-termini of proteins 5. Ligation of these amino acids alters the N-termini of proteins and thereby affects their stability based on the N-end rule 1. Similarly, tRNAs charged with the cognate amino acids by lysyl- or alanyl-tRNA synthetases are used by bacterial enzymes typified by Clostridium perfringens MprF in the aminoacylation of membrane phosphatidylglycerol 7. This neutralizes the charge of the membrane and consequently makes it impermeable to antibacterial peptides. We recently observed that in several bacteria, like actinomycetes, the MprF-like proteins are fused to a paralogous version of the lysyl-tRNA synthetase that is likely to function exclusively in the context of lipid aminoacylation 5. Likewise, another MprF-like enzyme from Streptomyces viridifaciens, VlmA, functions with a distinct seryl-tRNA synthetase paralog, VlmL in transferring serine to isobutylhydroxylamine in biosynthesis of valinamycin 8. Our recent analysis of peptide ligases showed that MprF/VlmA-like enzymes are members of the GNAT fold and specifically related to the Fem ligases and R and F/L transferases 5. Thus, this family of GNAT fold enzymes has evolved to function in conjunction with tRNAs, and regular or specific paralogous AAtRSs, charging the cognate amino acids in synthesis of amino acid derived antibiotics or in modifying lipids and proteins.Recently two peptide bond-forming systems that depend on tRNAs or AAtRSs, but unrelated to the GNAT fold enzymes, have been characterized. One of these is the AlbC family of CDPSs involved in the synthesis of cyclic dipeptide (CDP) secondary metabolites, such as the Streptomyces noursei antibiotic albonoursin, a cyclo(L-Phe-L-Leu) derivative, the Bacillus subtilis siderophore pulcherriminic acid, a cyclo(L-Leu-L-Leu) derivative and a possible Mycobacterium tuberculosis siderophore, which is a cyclo(L-Tyr-L-Tyr) derivative 9. These CDPSs use aminoacylated tRNAs as their substrates to catalyze the formation of a given cyclic dipeptide. Another distinct amide linkage is the amino-sugar cysteine linkage seen in mycothiol, a low molecular weight reductant seen in several bacteria such as Mycobacterium 10. Formation of this linkage depends on a member of the class-I AAtRS superfamily, MshC which is a cysteinyl-tRS (CtRS) paralog that apparently functions independently of tRNA. It is believed to first adenylate the COOH group of cysteine followed by the transfer of the cysteinyl group to the NH2 group of glucosamine, thus resulting in a sugar-amino acid conjugate. These discoveries point to a remarkable variety of non-ribosomal peptide synthesis systems that depend on components recruited from the conventional protein synthesis apparatus. However, the full diversity of these systems and their catalytic possibilities remain to be explored.Recently, we undertook a systematic analysis of peptide ligases and observed that majority of peptide ligases could be unified into a small set of folds 5. However, the provenance of the CDPSs remains unclear as previous studies have failed to detect significant similarity to any of these known peptide ligase domains 9. Secondly, the extent to which AAtRSs might function as peptide ligases remains unclear - is MshC a one-off example or are there more such instances? We used sensitive sequence analysis and comparative genomics techniques to investigate these questions. Consequently we found that the CDPSs belong to the HUP clade of Rossmannoid folds and are likely to have been derived from a class-I AAtRS-like precursor. We also present evidence that there are other instances wherein class-I AAtRSs participate in the synthesis of non-ribosomal peptide metabolites, suggesting that their role in such processes is a more general one.Results and discussionSequence analysis of the CDPSs shows that it is a HUP clade Rossmannoid domain related to the class-I AAtRS catalytic domainTo understand the origins of the CDPSs we initiated iterative PSI-BLAST searches 11 with different representatives of the family such as AlbC from S. noursei 9. In addition to the previously characterized representatives from firmicutes, actinobacteria and Photorhabdus, we also recovered several divergent versions (e < 10-3 at the time of first detection) from other bacteria such as Parachlamydia, Pseudomonas fluorescens, Legionella, Sphingobium and Rickettsiella grylli prior to convergence (For details on Material and Methods refer to Additional file 1). These searches also detected homologous proteins in eukaryotes, such as the fungus Gibberella, the annelid worm Platynereis and the sea anemone Nematostella. All these versions were standalone proteins with no fusions to any other domains. A multiple alignment of the recovered representatives followed by secondary structure prediction with the JPRED program 12 revealed an &alpha;/&beta; fold with five strand-helix units comprising the core of the fold with helical inserts after the second strand-helix unit and after the third strand (Figure 1). The sequence conservation pattern revealed a GxSxxp (where p is a polar residue, usually an asparagine) between the first strand and helix (Figure 1). A further conserved polar residue was found at the C-�terminus of the 3rd predicted strand and a conserved glutamate in the helical region between strand-3 and strand-4 (Figure 1). These are predicted to comprise the active site of the CDPSs. The presence of five strand-helix units along with an active site loop after the first strand and a possible active site residue after the 3rd strand is reminiscent of the Rossmannoid domains and suggested that the CDPSs could adopt such a fold 13.To test this conjecture we used a Hidden Markov Model (HMM) derived from the multiple alignment of the CDPSs in a profile-profile comparison against a library of HMMs generated from all known domains with structural representatives in PDB using the HHpred program 14. This search recovered catalytic domains of the class-I AAtRSs, namely tyrosyl-tRS (PDB: 2cyc; p = 7 � 10-6) and tryptophanyl-tRS (PDB: 3foc; p = 4 � 10-5) and the HIGH-motif nucleotidyltransferase, phosphopantetheine adenylyltransferase (1od6; p = 3 � 10-4) as the best hits. The class-I AAtRSs and HIGH-motif NTases belong to the HUP (HIGH, UspA, Photolyase/PP-loop) superclass of Rossmannoid domains that, just as predicted for the CDPSs, contain a core sheet with 5 strands 13. In all members of the HUP superclass the substrate-binding site is found in the loop between strand-1 and helix-1, consistent with the conservation pattern observed in the CDPSs. Indeed, profile-profile matches align the above-mentioned predicted active site loop of the CDPSs with the corresponding loop of the class-I aatRSs and HIGH NTases (Figure 1). Furthermore, most class-I AAtRSs contain a major insert, typically helical, between strand-3 of the core Rossmannoid fold and the helix prior to strand-4 that form a �cap� over the active site 1315. This is also the point of insertion of the helical insert observed in the CDPSs (Figure 1). Hence, this insert might form a cap over the core substrate-binding site in the CDPSs. Together these observations indicate that the CDPSs are novel members of the HUP superclass of Rossmannoid domains. However, given their restricted distribution in a relatively small set of bacteria and eukaryotes it is likely that they were derived later in evolution from a class-I AAtRS precursor like the YtRS or the WtRS (Figure 1). This would also explain how the CDPSs could use aminoacyl tRNAs (AAtRNAs) as substrates in peptide ligation--they are predicted to bind them at the active site, similarly to the class-I AAtRSs. However, in the CDPSs the HIGH motif was lost and a novel signature with a conserved serine was acquired, reminiscent of another superfamily of HUP clade, namely the PP-loop ATPases 13 (Figure 1). These changes are likely to be essential features of the CDPSs required to form the amide linkage from AAtRNAs, as opposed to the adenylation followed by ester formation seen in ancestral AAtRS.Previous studies on CDPSs have shown that they are typically encoded in a conserved operon with a gene for an enzyme of the cytochrome P450 family 16 (Figure 2). Studies in B.subtilis and M.tuberculosis indicate that the cytochrome P450 is required for further oxidative modification of the CDP (Figure 3). In M.tuberculosis it catalyzes the cross-linking of the two tyrosine rings of cYY 16. In synthesis of B.subtilis pulcherriminic acid it catalyzes the addition of oxygens to the nitrogens of the diketopiperazin ring of CDP 9. In contrast, the albonoursin-like operons found in certain actinomycetes links the CDPS with an oxidoreductase of the nitroreductase family (a Rossmann fold dehydrogenase), which is likely to catalyze the &alpha;-&beta; desaturation of the two amino acid side chains in the dipeptide (Fig 2, 3). Among the newly detected versions in this study we found several conserved gene neighborhood associations for AlbC-like CDPSs that might be indicative of alternative modifications and synthetic mechanisms for the dipeptides generated by them. For example, in Burkholderia sp. 383 and Pseudomonas fluorescens we observed novel associations with genes encoding 2-oxoglutarate-dependent dioxygenases that could potentially catalyze hydroxylations of the amino acid side chains of the dipeptide (Figure 2)17. Interestingly, in some actinomycetes, like Actinosynnema mirum and Streptomyces sp. AA4 the AlbC-like CDPS shows a neighborhood association with genes encoding a methyltransferase and an acyl-coA ligase. The former enzyme is related to ubiquinone methylases of the UbiE type and could modify CDPs through methylation. The latter superfamily of enzymes adenylates carboxylate groups and subsequently ligates them to coA via a thiocarboxylate linkage to form an acyl-coA 18. Hence, these CDPSs could in principle use aminoacyl-coAs generated by the action of the above enzymes as a substrate, rather than AAtRNAs. Indeed, enzymes of the acyl-coA ligase are part of the large condensation domain-dependent non-ribosomal peptide and polyketide synthesis systems 19. In some cases the CDPS gene co-occurs in predicted operons with an additional peptide ligase (Figure 2) such as a Mur ligase of the P-loop kinase superfamily (e.g. Desulfovibrio aespoeensis) or a GNAT fold ligase (e.g. Rickettsiella grylli) that could mediate formation of further peptide linkages. These operons might also contain a SelA-like pyridoxal phosphate dependent enzyme (PLPDE) that could synthesize a modified amino acid that is incorporated into the peptide (Figure 2).Beyond free-living bacteria with active secondary metabolism systems we also found CDPSs in several phylogenetically distant intracellular parasitic bacteria, such as Legionella, Rickettsiella and certain chlamydiae (Figure 1). Typically, these bacteria do not encode biosynthetic systems for secondary metabolites that are common in strongly competing slow-growing forms like actinomycetes and myxobacteria. Hence, the spread of such CDPSs across diverse intracellular bacterial pathogens/symbionts suggests a potential role for particular dipeptides in surviving in or manipulating host cells. Detection of a CDPS in the plant pathogenic fungus Gibberella zeae is consistent with early reports of the generation of CDPs by such fungi with a bioactive effect on their hosts 20. Interestingly, the CDPS gene encoded by the annelid Platynereis is induced as part of the antibacterial innate immune response 21, suggesting that CDPs might play a role as endogenously encoded antibiotics in the immune response of certain animals.Identification of a widespread methionyl-tRNA synthetase paralog that might be involved in novel peptide synthetic pathwaysThe above finding that the CDPSs are highly derived offshoots of a class-I AAtRS-like domain, together with the identification of the paralogous CtRS as the amino acid ligase in mycothiol biosynthesis 10, indicated that AAtRS homologs could also directly function as peptide ligases. To investigate if other AAtRS could function in such a capacity we hoped to use contextual information from predicted operons and domain fusions to identify potential candidates. Recently we identified a paralogous version of the MtRS in several bacterial genomes that is fused to a double-stranded &beta;-helix domain of the metal-binding cupin class 17. Further analysis showed that related paralogous MtRSs are encoded by several other bacterial genomes - these lack fusion to the cupin domain, but in all these cases a standalone cupin is encoded by a neighboring gene in the genome (Figure 2). While a given bacterium might have 1-3 copies of this paralogous MtRS, it always also contains the conventional MtRS involved in protein synthesis (Additional file 1). This suggested that the paralogous MtRS is likely to be dedicated to a pathway involved in synthesis of a distinct metabolite, separate from protein synthesis. Given that the catalytic residues required for adenylation of the amino acid are intact in this paralogous family they are predicted to be catalytically active enzymes capable of adenylating methionine (Additional file 1). This also implies that the metabolite synthesized by these enzymes is likely to be a derivative of methionine.To better understand the provenance of these MtRS paralogs, we included them in a phylogenetic analysis along with the conventional MtRS. The resultant tree showed that the conventional MtRSs fall in two major clusters separated by a long internal branch (Additional file 1). The first of these clusters is almost exclusively comprised of bacterial, chloroplast and mitochondrial MtRSs. Within this group several monophyletic bacterial lineages can be recognized such as cyanobacteria (including the chloroplast versions), firmicutes and various proteobacteria. This group is unified by the presence of a single Zn-ribbon inserted into the catalytic domain (Additional file 1). The second cluster includes the conventional MtRS from almost all archaea, eukaryotes (cytoplasmic) and certain bacterial lineages, such as actinobacteria, chloroflexi, spirochetes and bacteroidetes. This group is typified by presence of an insert with two Zn-ribbons or a variant thereof, i.e. a circularly permutated Zn-ribbon arising from the loss of the N- and C- terminal metal-chelating dyads, respectively of the first and second Zn ribbons (Additional file 1). This phylogenetic picture of the conventional MtRSs suggests that the internal long-branch represents the primary split between the archaeo-eukaryotic and bacterial lineages, with subsequent lateral transfer of the archaeo-eukaryotic versions to certain bacterial lineages along with xenologous gene-displacement 15. The newly identified paralogous MtRSs, which are fused to or associated with the metal-binding cupin domain, are only found in bacteria and form a distinct cluster grouping with the �archaeo-eukaryotic� type MtRSs, albeit separated by a long branch (Additional file 1). This grouping is supported by the fact that they possess a duplicated segment-swapped Zn-ribbon, just like the �archaeo-eukaryotic� type MtRSs. This paralogous MtRS is widely distributed in various bacterial lineages, namely actinobacteria, proteobacteria and firmicutes. In particular, it is frequently found in diverse actinobacterial species, with Salinispora arenicola having three and Actinosynnema mirum two distinct paralogs. Interestingly, it is also found in several distantly related pathogenic or symbiotic bacteria that are known to secrete compounds into host cells: Ralstonia solanacearum (two paralogous versions), Burkholderia phytofirmans, multiple Dickeya species, Erwinia pyrifoliae, Pseudomonas syringae, Frankia species, Sinorhizobium meliloti and Mesorhizobium loti, which associate with plants and Yersinia pseudotuberculosis, Photorhabdus luminescens, Pseudomonas entomophila, Bacillus cereus and Legionella pneumophila, which infect animals. The affinities of this paralogous group, suggest that it was probably founded by an independent lateral transfer, perhaps from an archaeal source, into a bacterial lineage. Given its wide presence in actinobacteria, it is likely that this bacterial lineage was the actinobacterial lineage, from where it dispersed widely through lateral transfer to several distinct firimicute and proteobacteria lineages, probably in shared environments.Contextual evidence suggests that the paralogous methionyl-tRNA synthetases might catalyze synthesis of a novel peptideTo better understand the biosynthetic pathway wherein this MtRS paralog functions we resorted to genomic neighborhood analysis, which, along with domain fusions, has been shown to be a powerful tool to infer functions of uncharacterized proteins 22. This group of MtRS paralogs is particularly suited for such analysis as they are highly mobile in evolutionary terms and any gene-neighborhood associations that are detected between distantly related species are likely to be indicative of functionally relevant interactions. We found two gene neighborhood/domain-fusion associations that occur without exception with all these MtRS paralogs (Figure 2): 1) the above-noted association with the metal-binding cupin. 2) A neighborhood association with a gene-encoding L-lysine 6-monooxygenase, a Rossmann fold oxidoreductase that catalyzes the NADPH-dependent hydroxylation of lysine at the N6 position. The N6-hydroxy-lysine is an intermediate in the biosynthesis of a non-ribosomally condensed peptide-derived siderophore, aerobactin 23. In aerobactin biosynthesis the N6 position is further modified by acetylation by an acyltransferase of the GNAT fold (Figure 3). Interestingly, we found that several MtRS paralog gene neighborhoods additionally encode a member of the GNAT superfamily indicating that a similar reaction is likely even in this system (Figures 2 and 3). These N6 modifications of lysine serve to block the &epsi;-NH2 group, thereby favoring dipeptide condensation utilizing the main-chain &alpha;-NH2 by the aerobactin synthetase that belongs to the protein kinase fold 5. The NH2 group of glucosamine, which is cysteinylated by CtRS in mycothiol synthesis, is also initially blocked by an acetyl group (i.e. as N-acetyl-glucosamine) prior to amide formation 10. Given that modifications of lysine N6 comparable to those seen in aerobactin biosynthesis are predicted to be catalyzed by enzymes encoded in the MtRS paralog gene neighborhoods, we reasoned that the lysine N6 is likely to be modified similarly for peptide bond formation even in this system (Figure 3). This also suggests that the other enzyme common to all these neighborhoods, the MtRS paralog, by analogy to the CDPSs and the cysteinyl ligase in mycothiol biosynthesis, is likely to catalyze formation of a peptide bond in this system (Figure 3). Thus, we propose that the core of the biochemical pathway specified by this conserved gene neighborhood involves the synthesis of a dipeptide through the condensation of the adenylated carboxyl group of methionine with the &alpha;-NH2 group of a lysine derivative (i.e. modified at the N6 position). The presence of a gene encoding acireductone dioxygenase, an enzyme involved in methionine salvage, in a subset of these gene-neighborhoods is also consistent with methionine being channeled into this metabolite (Figure 2).In some organisms there are gene neighborhood associations suggestive of potential variations to the theme of modification of the N6 lysine. A subset of these predicted operons (e.g. in Rhodococcus jostii and two of the three paralogous gene-neighborhoods in Salinispora arenicola) also contain a tightly linked saccharopine dehydrogenase gene (Figure 2). This enzyme catalyzes the formation of saccharopine by linking 2-oxoglutarate to N6 of lysine. Thus, the modification of the &epsi;-NH2 by this enzyme might effectively be similar to the acetylation of this position (Figure 3). Further, several of the predicted operons encode proteins such as (Figure 2): 1) acyl-coA ligase which ligates coA to a fatty acid 18; 2) one or more acyl carrier proteins (ACP) that bear a serine-linked phosphopantetheinyl moiety, which in turn carries an fatty acyl group as a thioester; 3) Acyl condensation enzymes, which catalyze the condensation of an acyl-coA to another moiety resulting in an elongated chain due to addition of the acyl element; 4) enzymes that could catalyze a transacylase reaction that delinks the fatty acid from the ACP or transesterifies it. These transacylase-like enzymes might belong to the previously recognized NTN-hydrolase superfamily or the &alpha;/&beta;-hydrolase superfamily or the BtrH family with a papain-like fold 5, or are representatives of a novel family of proteins that we determined as also belonging to the papain-like fold (Additional file 1); 4) Acyl-coA dehydrogenases, which catalyze the modification of fatty acids via desaturation. These genes are present in the neighborhoods only if the gene cluster also encodes a member of the GNAT fold, suggesting that they might be involved in synthesis of an acyl-coA substrate that could be used by the GNAT enzyme (in place of the default acetyl-coA) to modify the N6 position of lysine. However, in principle the ACP and associated enzymes could also be used as a substrate for attachment of the peptide synthesized by this system, comparable to what is observed in butirosin biosynthesis and peptide synthesis by giant multidomain peptide synthetases 2425. The other universally present component of this system, the metal-binding cupin, belongs to a large radiation of such enzymes, which comprise of a single double-stranded &beta;-helix domain with four conserved positions involved in chelating a metal ion 1726. They catalyze two distinct types of reactions: 1) isomerization of linearized sugars through an enediol intermediate and 2) a dioxygenase reaction, incorporating two oxygens into the substrates (e.g. cysteine dioxygenase, wherein the SH group of cysteine is oxidized to sulfinate). However, unlike the 2-oxoglutarate-dependent dioxygenases of the double-stranded &beta;-helix fold they are not known to catalyze single hydroxylations of substrates 17. Given that this cupin is tightly associated with the MtRS (either fused or typically as the gene 5� to the MtRS gene (Figure 2), it is possible that it functions in close association with MtRS, perhaps catalyzing a reaction on methionine (Figure 3). However, the exact nature of this modification remains unclear as there are currently no precedents for such modifications in other characterized peptide modification systems.Beyond the conserved core, majority of these neighborhoods encode several other enzymatic domains and transporters and peptide-binding proteins of the periplasmic binding protein superfamilies. While these tend to vary between neighborhoods, their close genomic linkage and predicted biochemistry suggests that they are part of the same biosynthetic pathway. One or more genes encoding ATP-grasp enzymes or multi-domain non-ribosomal peptide synthases with condensation domains are encountered in several of these operons. By analogy to other non-ribosomal peptide synthesis operons these enzymes are likely to catalyze the ligation of additional amino acids 5. Consistent with this, enzymes for synthesis of other amino acids are also encountered in these operons (Figure 2, Additional file 1). These include a PP-loop ATPase that is closely related to the asparagine synthetase, suggesting that it might catalyze formation of asparagine. Furthermore, two ornithine generating enzymes, namely arginase and glycine amidinotransferase, proline-generating ornithine cyclodeaminase, citrulline-generating dimethylargininase and different PLPDEs are also encoded by some of these neighborhoods. The latter enzymes include the diaminobutyrate transaminase, which synthesizes 2,3-diaminobutyrate, and cysteine synthase which generates cysteine. It is possible that amino acids generated by the action of these enzymes are incorporated as further residues of the peptide or alternatively they modify the peptide via reactions such as decarboxylation (e.g. as catalyzed by the PLPDE, BtrK, in butirosin biosynthesis 24). Other prevalent enzymes encoded by these predicted operons are diverse redox enzymes belonging to distinct folds (Figure 2): 1) First of these are Rossmann fold dehydrogenases which utilize either FAD or NADH cofactors. 2) Members of the flavin- or F420- dependent monooxygenase superfamily, which includes the monoxygenase BtrO that hydroxylates the amino acid side-chain in butirosin biosynthesis 24. 3) double-stranded &beta;-helix-fold 2-oxoglutarate- dependent dioxygenases, such as members of the JOR/JmjC superfamily, and the phytanoyl hydroxylase family of classical 2OGFeDOs 17. 4) SnoaB/ActVA-Orf6-type ferredoxin-fold monooxygenases that catalyze the insertion of a single oxygen atom into substrates and are often found in the biosynthetic pathways of several antibiotics 27. 5) &alpha;-helical diiron oxygenases of the heme oxygenase superfamily 28. The last 4 classes of above enzymes could in particular catalyze hydroxylation or oxygenation of side chains of the peptide and/or the fatty acyl moiety if present. Thus, in conclusion majority of these systems centered on the paralogous MtRS are predicted to catalyze synthesis of a highly oxygenated derivative of the dipeptide Met-Lys, which in some cases might be further extended with additional residues.The presence of this system in diverse actinobacteria, which are known to produce diverse secondary metabolites, suggests that this peptide derivative might function as an antibiotic. However, outside of actinomyctes, it is primarily found in bacteria showing symbiotic or parasitic associations with eukaryotic cells, which normally do not encode any antibiotic production systems. In these cases it is likely that this peptide metabolite has a role in host-parasite interactions. Consistent with this, in these organisms the predicted operons usually contain a peptide-binding protein and a transmembrane efflux transporter (Figure 2). One possibility is that it functions as a siderophore in these cases, with the variability probably arising due to selection against siderophore-stealing or host immunity.Identification of a parallel peptide synthesis system further supports the role of the MtRS paralog in peptide ligationWe also identified another set of predicted operons that closely paralleled the above system in diverse firmicutes, cyanobacteria, proteobacteria and actinobacteria (Figure 2). These were centered on a distinctive protein that combines a cupin domain, related to those fused or associated with the MtRS, with an N-terminal uncharacterized region (e.g. FRAAL4157, gi: 111223558). Iterative sequence searches seeded with this N-terminal region using the PSI-BLAST program recovered significant matches to the heme oxygenase superfamily of diiron oxygenases that were also detected in the above system (e.g. Frankia FRAAL4157 recovers the experimentally characterized oxygenase Ct610, PDB: 1RCW from Chlamydia trachomatis, e = 10-3, iteration 8). The matches showed that the N-terminal region of these proteins contain two diiron oxygenase domains - the N-terminal one predicted to be inactive and the C-terminal predicted to be active based on conservation of the iron-chelating histidines and acidic residues 28. Thus, these proteins are predicted to possess two distinct oxygenase capabilities, with the diiron oxygenase domain probably functioning as a monoxygenase and the C-terminal cupin domain as a dioxygenase. They are encoded in predicted operons that show three related but distinct themes (Figure 2): 1) the simplest of these combine the gene encoding the oxygenase-cupin protein with one or two enzymes involved in modifying amino acids such as an amino acid methylase and a PLPDE. 2) The second set of these predicted operons combine the oxygenase-cupin gene with genes encoding one or two peptide ligases of the ATP-grasp fold 5. Additionally, these operons encode a Rieske 2Fe-2 S iron-sulfur protein involved in electron transport in redox reactions. 3) The final set of predicted operons is similar to the above operons - in place of the ATP-grasp peptide ligases they encode giant multi-domain non-ribosomal peptide synthetases with condensation domains and also acyl-coA ligases, which could charge amino acids with coA for use by the former enzymes. This set of operons also encodes a protein of the uncharacterized �YqcI/YcgG� superfamily that contains an absolutely conserved N-�terminal cysteine (Additional file 1). Given that the multi-domain non-ribosomal peptide synthetases might utilize a protein anchor for elongation of peptides, it is conceivable that the conserved cysteine of this family serves as a means for anchoring the initial residue via a thiocarboxylate linkage. Furthermore, all the three versions of these operons might additionally encode a transmembrane efflux transporter, suggesting that the metabolite synthesized by this operon is deployed in the environment (Figure 2). It is possible that in these gene-clusters, the cupin might play a role similar to the cognate cupin in the systems centered on the MtRS paralog, whereas the diiron oxygenase could function similarly to the lysine N6-monoxygenase. The simplest of these predicted operons are likely to modify a single amino acid. Those containing either of the two unrelated types of peptide-bond forming enzymes appear to be analogs of the system centered on the MtRS paralog with distinct oxygenases associated with at least one peptide ligase.General conclusionsPrevious studies have pointed to the utilization of tRNAs and AAtRS in bacteria for the synthesis of diverse metabolites 110. In the current work we present evidence that AAtRS are more widely used in such processes than has been previously appreciated. The examples uncovered in this study help illustrate the spectrum of exaptation of the AAtRS in non-ribosomal metabolite biosynthesis. Thus, we can now see a complete progression in the synthetic processes involving these enzymes: 1) Conventional AAtRS that ligate amino acids to tRNAs to be used by GNAT fold enzymes in peptidoglycan and N-end rule peptide ligations. Here the regular AAtRS involved in protein synthesis provide AAtRNA substrates to be used by peptide ligases. 2) Closely related paralogous AAtRS are dedicated to provide AAtRNAs for particular pathways. The membrane-associated bacterial KtRS are involved in lipid aminoacylation whereas the paralogous StRS VlmL is deployed in valinamycin biosynthesis. Both these class-II AAtRS merely serve in charging their cognate amino acids with tRNAs to be utilized by MprF-like peptide ligases of the GNAT fold. Further evidence for such paralogous class-II AAtRS functioning with MprF fold enzymes is provided by a novel group of orthologous proteins encoded by several ascomycete and basidiomycete fungi (e.g. Aspergillus nidulans AN0314.2, gi:67516065 [Additional file 1]). These proteins combine an N-terminal aspartyl tRNA synthetase module with a C-terminal MprF-like peptide ligase and might be required for the synthesis of a fungus-specific peptide metabolite. Similarly, a glutamyl tRNA synthetase paralog is deployed in synthesis of &delta;-aminolevulinic acid, a precursor for porphyrins 1. 3) The paralogous CtRS involved in mycothiol synthesis and the paralogous MtRS. The example of the paralogous MtRS-based biosynthetic systems identified in this study points to the generality of the principle that was first presented by the CtRS paralog that functions as a cysteine ligase in mycothiol synthesis. Both these class-I AAtRSs are likely to represent a further development on the previous theme wherein they have become peptide ligases themselves. However, these enzymes, like the above enzymes, have diverged only to a limited degree relative to their �universal� paralogs involved in protein synthesis. 4) The CDPSs. The finding that the CDPSs are likely to be derived from a class-I AAtRS catalytic domain indicates the unexpected degree of divergence that might occur in these enzymatic domains while retaining the basic catalytic properties. Here, the catalytic domain has not only diverged greatly from that of the original class-I AAtRS, but it has also acquired new active site residues, converting it into a self-contained cyclic peptide forming enzyme, which can use charged amino acids, either of same or different type as substrates.More generally this pattern of recruitment and diversification of the AAtRS mirrors what has been previously observed with other ligase domains, such as the ubiquitin E1-ligase-like, ATP-grasp, glutamine synthetase-like NH2-COOH ligase, GNAT fold, protein kinase-like and condensation domains 5. In particular, the niche provided by the development of secondary metabolism for synthesis of antibiotics, siderophores, soluble cell-cell signals and host-interaction molecules allowed for the extensive diversification of these enzymes. These metabolites are under constant selection due to development of resistance, siderophore-stealing and host immunity, which favors the emergence of biosynthetic diversity. Concomitant to the diversification of ligases, there was also a similar explosion in the diversity of peptide-modifying enzymatic domains 517. In particular, systems such as those described here and elsewhere 17 point to the recruitment of a great variety of oxygenases belonging to unrelated protein folds that utilize molecular oxygen. This suggests that the emergence of the extant type of bacterial secondary metabolism systems received a tremendous impetus from the primary oxygenation event in Earth�s history caused by cyanobacterial photosynthesis 17. The metal-binding cupins identified in the current study are a potential example of the evolutionary transition of an ancestrally sugar-binding double-stranded &beta;-helix domain to an amino acid/peptide modifying enzyme. This latter activity was greatly developed in the 2-oxoglutarate-dependent enzymes that emerged within this fold 17.In conclusion, we hope that the identification of these novel systems might spur further experimental investigations to test the presented hypothesis and to fill in the details of the biochemistry of the enzymes described here. Given the phyletic distribution of the systems described here, such studies are likely to be of potential importance to uncover novel metabolites and aspects of host-parasite interactions.
http://www.pnas.org/cgi/doi/10.1073/pnas.1007470107
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