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Abstract

Background: Operation of natural selection can be characterized by a variety of quantities. Among them, variance
of relative fitness V and load L are the most fundamental.

Results: Among all modes of selection that produce a particular value V of the variance of relative fitness, the
minimal value Lmin of load L is produced by a mode under which fitness takes only two values, 0 and some
positive value, and is equal to V/(1+V).

Conclusions: Although it is impossible to deduce the load from knowledge of the variance of relative fitness
alone, it is possible to determine the minimal load consistent with a particular variance of relative fitness. The
concept of minimal load consistent with a particular biological phenomenon may be applicable to studying several
aspects of natural selection.

Reviewers: The manuscript was reviewed by Sergei Maslov, Alexander Gordon, and Eugene Koonin.

Background
Let us consider the simplest model of selection, where
fitness w Î [0, wmax], which takes arbitrary distinct
values w1, ..., wk with probabilities p1, ..., pk, (k ≥ 1 is an
arbitrary number) is the only characteristic of an indivi-
dual. Then, selection in the population is completely
described by the probability distribution of fitness. Two
functionals of this distribution, load L and variance of
relative fitness V, are often used to characterize selec-
tion:

L = 1− w̄/wmax (1)

and

V =
k∑

j=1

pj(wj/w̄− 1)2 =
k∑

j=1

pjw
2
j /w̄

2 − 1 (2)

where

w̄ =
k∑

j=1

pjwj (3)

is the mean population fitness.
Informally, L relates fitnesses of individuals to the

maximal fitness existing within the population, and V
relates them to the mean fitness within the population.
Obviously, L and V are different characteristics of selec-
tion, in the sense that knowing one of them is usually
not enough to infer the other one. However, they are
not completely independent; in particular, both L and V
are equal to 0 if and only if selection is absent and the
probability distribution of w is concentrated at one
point, so that w̄= wmax. Here we investigate the relation-
ship between L and V.

Results
Theorem. Among probability distributions of w supported
on a fixed interval [0, wmax] (wmax > 0) that produce a
particular value of V, the minimal value of L, equal to
V/(1+V), is produced by a probability distribution that
consists of two atoms: 0, with probability V/(1+V), and
wmax, with probability I/(1+V).
Proof. Note that L = 1 - J1/wmax and V = J2/J21 − 1,

where Jn =
k∑
j=1

pjwn
j is the n-th moment of w. We need to

find the minimal value of L , and, thus, the maximal
value of J1, consistent with a given V. Because
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J2/J21, the ratio J2/J21 determines V and vice versa.
Because selection depends only on relative fitnesses, L
and V do not change when w is multiplied by a positive
constant c. Let us choose c = 1/wmax and consider a
normalized random variable s = w/wmax. This variable
takes values sj = wj/wmax, confined between 0 and 1,
with the same probabilities pj which characterize w. The

first two moments of s are given by I1 =
k∑
j=1

pjsj = J1/wmax

and I2 =
k∑
j=1

pjs2j = J2/w2
max. Obviously,I2 ≤ I1. Because

I2/I21 = 1 + V , we have I2/I1 = (1+V)I1 .Because the right-
hand side of the last equality does not exceed 1, I1 ≤ 1/
(1+V), where the equality is achieved only when I1 = I2.
This is possible only when all sj are equal to either 0 or
1, in other words, when the sums which define I1 and
I2contain only two terms. In this case, selection is extre-
mal in the sense that, under a given V, I1 is maximal
and, thus, L is minimal. Because maximal I1 is equal to
1/(1+V), minimal load Lmin is equal to V/(1+V).
Let us now calculate the probabilities p0 and p1 with

which the two values of fitness, zero and maximal,
occur under extremal selection. The expectation of s, I1
= 0 p0 + 1 p1. Thus, p1 = I1 and p0 = 1 - I1 . Thus,
under the maximal value of I1, p0 = V/(1+V) and p1 =
1/(1+V).

Discussion
We have shown that the minimal value of L, for a given
V, is achieved when individuals can only have either
zero fitness or a particular positive fitness wmax. The
fraction of those with zero fitness, which also equals the
minimal value of L, is determined by V and is equal to
V/(1+V). The analogous results can be proven, using
Stieltjes integrals, if w is a continuous random variable.
Of course, there is no maximal value of load consistent
with a particular V, because introducing an arbitrarily
small fraction of individuals with very high w will
increase L without affecting V.
The concept of (genetic) load is controversial. On the

one hand, the dependency of L on wmax, which may
represent fitnesses of only a tiny fraction of individuals,
or even describe fitness of some “ideal” individuals
which are too rare to be present in any population of a
realistic size, led to criticism of this concept [1]. Indeed,
two populations with different values of L may be essen-
tially the same, if the only difference between them is
due to presence vs. absence of a very small fraction of
individuals with a high w. On the other hand, L appears
to be an important characteristic of selection, because it
determines the minimal fecundity which is consistent
with survival of the population. In the simplest case of
an asexual population, the maximal number of offspring

that an individual must be capable of producing needs
to be at least 1/L, to ensure that w̄ ≥ 1 and, thus, that
the population does not go extinct [2].
The concept of minimal load may help to resolve this

controversy. If the minimal load, consistent, for exam-
ple, with a particular genomic rate of deleterious muta-
tions or a particular rate of changes of the environment,
is high, this means that the population under such con-
ditions cannot survive unless it consists of very fecund
individuals. Indeed, the load determines the minimal
fecundity which is still sufficient for a population to not
go extinct and, when the load is minimal, for a given V,
maximal-fecundity individuals are common in the popu-
lation. Also, the concept of minimal load may be helpful
for studying the properties of selection in nature.
Because measuring wmax is much harder than measuring
w̄, L is more difficult to measure than V and our result
provides a possibility for estimating L indirectly through
V, by establishing the lowest L consistent with an
observed V.
Before, we considered connections between L, V, and

selection differential in a more complex case of selection
acting on a quantitative trait x [3]. Note that, according
to the simplest version of Fisher’s Fundamental Theo-
rem [4], the selection differential of w, normalized by w̄,
is equal to V, because the mean population fitness after
selection is J2/w̄ (see [5], Chapter 3). Obviously, the
situation when fitnesses of an individual can take only
two values, 0 and wmax > 0, is analogous to truncation
selection in the case of selection acting on a quantitative
trait other than fitness.

Reviewers’ comments
Reviewer’s report 1
Sergei Maslov, Brookhaven National Laboratory, USA
This reviewer provided no comments for publication.

Reviewer’s report 2
Alexander Gordon, University of North Carolina at
Charlotte, USA
Review of the paper “On the relationship between

the generic load and the variance of relative fitness”
by Emmanuil E. Shnol, Elena E. Ermakova, and
Alexey S. Kondrashov
The authors show that among all probability distribu-

tions of fitness w supported on an interval [0,wmax] with
a given variance V of the relative fitness w/w̄, the smal-
lest possible value of the gene load L = 1 - w/w̄max

equals V/(1 + V) and is attained if and only if the fitness
takes only the values 0 and wmax with probabilities V/(1
+ V) and 1/(1 + V), respectively. The authors do this for
discrete probability distributions with finitely many
values wj but mention that this restriction is not
important.
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The statement and the proof are correct (although
quite a few changes are necessary, see “Corrections and
suggestions” below). However, this result is purely math-
ematical in nature. Its significance for population genet-
ics should be assessed by an expert in that field.
...
Review of the revised paper “On the relationship

between the load and the variance of relative fitness”
by Emmanuil E. Shnol, Elena E. Ermakova, and
Alexey S. Kondrashov.
A generalization.
Here we will show how, using a different idea, the the-

orem can be established in its full generality - without
assuming that the fitness w has a discrete distribution.
The proof is straightforward and relies on three simple
lemmas that follow the proof. The case V = 0 of the
theorem is trivial, so we will assume that V > 0.
Let w have a probability distribution supported on [0,

wmax] and not concentrated at its endpoints (that is, Pr
{0 <w <wmax} > 0). We can replace this distribution by a
new one that is supported on the two-point set {0,wmax}
and has the same mean w̄. (By Lemma 1, such a distri-
bution exists and is unique.) This new distribution has a
strictly greater variance (Lemma 2) and consequently a
strictly greater value of V than the original one: V >V0.
Let us further change the new distribution by continu-
ously increasing the mass of the atom at wmax and
decreasing the mass of the atom at 0 so that the total
mass remains equal to 1. Then w̄ will be strictly increas-
ing, while both w̄and Var w, and hence V = Var w/(w̄)2,
will be changing continuously. At the end, V = 0. There-
fore, at some intermediate point we will have V = V0

and a strictly increased w̄.
This shows that, in order to maximize w̄ (or equiva-

lently, minimize L) for a given V > 0, it suffices to con-
sider distributions supported on the two-point set {0,
wmax} and having the prescribed value of V. But there is
exactly one such distribution (Lemma 3).This completes
the proof of the theorem.
Lemma 1. Given w0 Є (0,wmax), there exists exactly

one distribution consisting of two atoms, at 0 and wmax,
and whose mean w̄ equals w0.
Proof. Let Pr{w = wmax} = p; then w0 = pwmax, and we

should have p = w0/wmax.
Lemma 2. Suppose a random variable w is supported

on the interval [0,wmax] and has a given mean w̄ = w0 Є
(0,wmax). The variance Var w attains its maximum over
all such random variables if and only if w takes only two
values 0 and wmax (see Lemma 1).
Proof. Let u := w - wmax/2, so that -wmax/2 ≤ u ≤

wmax/2 and we want to maximize Var w ≡ Var u = Eu2

- (Eu)2 = Eu2 - (w0 - wmax/2)
2. Since |u| ≤ wmax/2, the

maximum is attained if and only if |u| ≡ wmax/2, or
equivalently w Є {0,wmax}, with probability 1.

Lemma 3. There exists exactly one distribution con-
sisting of two atoms, at 0 and wmax, and having a given
value of V (V > 0).
Proof. Let Pr{w = wmax} = p, so that Pr{w = 0} = 1 - p.

Then V = Var w/(w̄)2 = (p(1 - p) (wmax)
2)/(pwmax)

2 = (1
- p)/p = 1/p - 1, and we should have p = 1/(1 + V).

Reviewer’s report 3
Eugene V. Koonin, National Center for Biotechnology
Information, NIH, USA
This very brief manuscript defines and solves an

important problem in the theory of evolution. Shnol et
al. introduce the concept of the minimal genetic load
and prove that genetic load assumes the minimal value
when the fitness landscape is defined in the simplest
possible way, namely with only two fitness values ("fit”
and “unfit” individuals). In the extremely short but con-
structive Discussion, the authors explain why minimal
genetic load can be useful to describe population
dynamics. I have a variety of questions and minor sug-
gestions none of which invalidates the conclusions but
that could be useful to address. To begin with, I think
the Discussion is a bit too brief. I am not talking about
any extensive elaboration but I believe it would be use-
ful to try and give the reader some intuitive feeling
WHY the condition of the minimal genetic load is what
they show it is. I think this is doable and would improve
the manuscript.
The more important point comes here, at the start of

the Discussion: “The same results can be proven if w is
a continuous random variable.” First, it is not 100%
clear to me what “the same” means in this context.
That, although W is now a continuous variable, the
minimal value of L is reached when and only when all
individuals accumulate in just two points on the land-
scape? It would be best to explain. Second, “can be pro-
ven” leaves the reader with some uneasiness. If it is
simple, why not give the proof for this, more general
case? If it is hard, perhaps, briefly explain why and why
confidence it can be proven. If simple but tedious, per-
haps, make it an Appendix?
Then, I am somewhat uncertain about the exact

meaning of this key statement: “Indeed, if the minimal
genetic load, consistent, for example, with a particular
genomic rate of deleterious mutations or a particular
rate of changes of the environment, is high, this means
that the population under such conditions cannot sur-
vive unless it consists of very fecund individuals”. I this
paper, the minimal genetic load is defined in relation to
the variance of relative fitness; does the quoted state-
ment imply that V is deterministically depends on the
other variables mentioned in that sentence? I think clar-
ification would be helpful. Finally, a couple of minor
issues: I think it would be best to say in the Background
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section of the abstract that L and V are AMONG the
most fundamental characteristics of selection.
The proof of the theorem is written in a somewhat

unusual form, interspersed with comments which I
think mostly distract from the logic of the proof. It
would be best, I believe, to give the proof the way it is
normally done, then comment.
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