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Abstract

Existence of tumor dormancy, or cancer without disease, is supported both by autopsy studies that indicate
presence of microscopic tumors in men and women who die of trauma (primary dormancy), and by long periods of
latency between excision of primary tumors and disease recurrence (metastatic dormancy). Within dormant
tumors, two general mechanisms underlying the dynamics are recognized, namely, the population existing at
limited carrying capacity (tumor mass dormancy), and solitary cell dormancy, characterized by long periods of
quiescence marked by cell cycle arrest. Here we focus on mechanisms that precede the avascular tumor reaching its
carrying capacity, and propose that dynamics consistent with tumor dormancy and subsequent escape from it can be
accounted for with simple models that take into account population heterogeneity. We evaluate parametrically
heterogeneous Malthusian, logistic and Allee growth models and show that 1) time to escape from tumor
dormancy is driven by the initial distribution of cell clones in the population and 2) escape from dormancy is
accompanied by a large increase in variance, as well as the expected value of fitness-determining parameters.
Based on our results, we propose that parametrically heterogeneous logistic model would be most likely to
account for primary tumor dormancy, while distributed Allee model would be most appropriate for metastatic dormancy.
We conclude with a discussion of dormancy as a stage within a larger context of cancer as a systemic disease.
Reviewers: This article was reviewed by Heiko Enderling and Marek Kimmel.
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Introduction
Long latency periods between treatment of primary
tumors and appearance of metastatic disease suggest
existence of tumor dormancy, which has been charac-
terized as “cancer without disease” [1]. It appears that
tumor dormancy can manifest itself not only in delayed
metastatic recurrences [2–5] but also in primary tumors.
Evidence for primary tumor dormancy is commonly found
in autopsy studies, where men and women who died from
trauma have been found to have a surprisingly high num-
ber of microscopic clinically unapparent tumors [6–9].
Furthermore, evidence from donor transplants has shown
that microscopic tumors can be transmitted from donors
who passed pre-transplantation screening as being free
from cancer for over 10–15 years [10–14], further impli-
cating the existence of cancer without disease.

A number of mechanisms have been proposed to ac-
count to explain the phenomenon of tumor dormancy.
These include cell cycle arrest [15–17], tumor manage-
ment by the immune system [18–20], age-dependent
decreased relative fitness with respect to somatic cells
[21], inability to secure blood supply [22–25], among
others [15, 26, 27]. Unfortunately, there exist technical
difficulties with investigating many of the hypotheses.
Even if one is successful at isolating appropriate cell
lines [22, 23, 28, 29], the typical experimental models
involve mouse xenographs, which may or may not be
applicable for these questions because of inter-species
compatibilities. Development of a strong theoretical
framework, including mathematical modeling, is thus
necessary to further our understanding of this phenomenon.
Two main mechanisms for tumor dormancy are gen-

erally recognized: tumor mass dormancy and dormancy
of solitary cancer cells, or quiescence [30–33]. Tumor
mass dormancy is characterized by a balance of prolif-
eration and apoptosis and can be viewed as the tumor
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having reached its pre-angiogenic carrying capacity
[15]. Changes in the carrying capacity, whether due to
variations in nutrient availability [34], or acquisition of
the ability to recruit blood vessels and avoid immune
surveillance [18], would allow for tumor escape. In con-
trast, solitary tumor dormancy, or quiescence, is char-
acterized by lack of proliferation due to long periods of
cell cycle arrest. While both mechanisms can lead to
the phenomenon of latent tumor growth, Wells et al.
argue based on their computer simulation study [35]
that quiescence is a more likely mechanism to underlie
metastatic dormancy.
In our previous work, we have looked at several ex-

amples of tumor growth being impacted by changes in
dynamic carrying capacity [36]. Here, we will focus on
studying a possible mechanism of escape from dor-
mancy that stems not from external limitations but
from intrinsic growth laws. Specifically, we propose that
behavior consistent with escape from dormancy can
come as a result of natural growth dynamics of hetero-
geneous populations. Therefore, we will focus on look-
ing at the tumor dynamics before it reaches its carrying
capacity as allowed by its microenvironment.
We will evaluate three different growth functions for

heterogeneous populations. Specifically, we will look at
parametrically heterogeneous populations that grow ac-
cording to Malthusian, logistic and Allee growth laws.
Several of these examples have been investigated in a
different context by Karev [37]. We will demonstrate
that a dynamics that is consistent with escape from
tumor dormancy after a long period of latency can be
generated due solely to heterogeneous nature of the
populations described by these three models. In addition
to changes in total population size, we will look at
changes in expected values of intrinsic parameters, as
well as variance and clone distributions, to demonstrate
what alterations occur in the time period preceding es-
cape from dormancy. We will conclude with a discussion
of how this stage of tumor growth fits into a larger con-
text of cancer as a systemic disease.

Materials and methods
In order to investigate how dynamics consistent with
tumor dormancy and subsequent escape from it can re-
sult solely from population heterogeneity, we will require
the use of the parameter distribution technique, also
known as the Reduction Theorem. It was well described
in [37–40], and main results have been summarized in
[41]. We will apply it to describing the dynamics of para-
metrically heterogeneous populations that grow accord-
ing to Malthusian, logistic and Allee growth laws. Our
goal here is to use methods developed by G. Karev in
aforementioned publications to show how these results

can be applied to understanding one of the possible
mechanisms underlying tumor dormancy.
In our simulations, we will evaluate parameters necessary

to reproduce dynamics consistent with escape from dor-
mancy over approximately 10-year period (120 months).
Since we are focusing on modeling tumor dynamics in
the time preceding it reaching its carrying capacity, we
are looking at the microscopic tumor reaching a size of
approximately 1mm3, which is a limit imposed on non-
angiogenic tumor size by oxygen and nutrient con-
straints [22]. We realize that there exist tissue and
tumor-specific variations, and would like to emphasize
that these estimates can be varied based on data. Our
goal is to demonstrate that qualitative behavior of
tumor dormancy and escape from it can be reproduced
with these models.

Parameters and distributions
Choice of initial distribution
According to the principle of maximum entropy (MaxEnt),
if the mean value of the random variable is the only
quantity that can be estimated from observations or
other data, then the most likely distribution of the vari-
able is exponential with the estimated mean [42]. Since
no value of a biological characteristic, such as a growth
rate, can be infinite, then we should choose the trun-
cated exponential distribution in this interval as the ini-
tial distribution. Any other distribution can of course
be used, if there exist data or theoretical considerations
underlying its choice.

Parametrically heterogeneous Malthusian growth
Consider a population of cells xc(t), where each individ-
ual cell is characterized by an intrinsic growth rate c. A
set of cells that are characterized by the same value of c
is referred to as c-clone. The total size of the population

is given by N tð Þ ¼
X
A

xc tð Þ if c takes on discrete values

and N tð Þ ¼
Z
A
xc tð Þdc if c is continuous. A denotes the

range of possible values of parameter c.
The rate of change of xc(t) is given by

xc tð Þ0¼ cxc tð Þ: ð1Þ
Solution to this equation is xc(t) = ectxc(0). Distribution

of clones is by definition Pc tð Þ ¼ xc tð Þ
N tð Þ . From the defin-

ition of N(t) we can get that

N tð Þ ¼
Z
A
xc tð Þdc ¼

Z
A
xc 0ð Þectdc

¼ N 0ð Þ
Z
A
ectPc 0ð Þdc ¼ N 0ð ÞM0 t½ �; ð2Þ

where M0[t] = ∫Ae
ctPc(0)dc is by definition the moment
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generating function of the initial distribution of c-clones
in the population.
It can be shown [37] that the expected value of param-

eter c is given by

Et c½ � ¼ dM0 t½ �
dt

=M0 t½ � ð3Þ

and that variance of parameter c is given by

Vart c½ � ¼ M0 t½ �00
M0 t½ � −

M0 t½ �0
M0 t½ �

� �2

: ð4Þ

The equation for the rate of change of the total popu-
lation size thus becomes

dN
dt

¼ Et c½ �N tð Þ; ð5Þ

with Et[c] defined above.
For truncated exponential distribution on the interval

[0,1], the moment generating function is with parameter
of exponential distribution μ, is given by

M0 t½ � ¼ μ

eμ−1

� � eμ−et

μ−t

� �
; ð6Þ

the expected value is

Et c½ � ¼ et

et−eμ
þ 1
μ−t

ð7Þ

and the variance is

Vart c½ � ¼ 1

μ−tð Þ2 −
eμþt

eμ−etð Þ2 : ð8Þ

As mentioned above, we are looking to reproduce the
growth dynamics that commences with a period of very
slow growth for a period of approximately 120–240
months (10–20 years), which then rapidly increases,
reaching a size of ≈ 1mm3 as allowed by oxygen and nu-
trient limitations [22]. Here, we refer to the transitional
phase, during which population size increases rapidly, as
the escape phase of tumor growth.
As one can see in Fig. 1, even a simple parametrically

heterogeneous Malthusian growth model can reproduce
this effect. Until t ≈ 180, we can observe a period of
growth, where the growth rate Et[c] and the population
size N(t) increase very slowly. We will refer to this dy-
namics as dormancy phase. The dormancy phase is
followed by a transitional escape phase, where popula-
tion size increases very rapidly. In this example, where
the parameter of truncated exponential distribution is
μ = 195, the escape phase occurs at t ≈ 180 months =
15 years. During the escape phase, we can observe a
characteristic bell-shaped graph of Vart[c], where vari-
ance increases together with population size N(t) and
the expected value Et[c], and then decreases again as
the clones with the highest fitness become selected. In
this model, clones with the highest fitness are the ones
with the largest possible value of parameter c, which is
determined by the maximal value of growth rate par-
ameter c in on the interval, on which the initial distri-
bution was defined.

Fig. 1 Parametrically heterogeneous Malthusian growth model with respect to growth rate parameter c. Initial distribution is taken to be
truncated exponential, with distribution parameter μ = 195. Initial population size is N(0) = 0.001. a Population of cells N(t), which remains at
a negligible size until t ≈ 180. b The expected value Et[c] of Malthusian parameter c increases rapidly around the same time as the escape
phase of tumor growth. c Variance Vart[c] also increases dramatically during the escape phase but then decreases the clone with the
largest allowed value of c becomes selected (in this case it is Et[c]→ 1, since the exponential distribution was taken to be truncated
exponential on the interval c ∈ [0, 1]). d As the transition occurs, we can also see the distribution of cell clones change over time
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As one can see in Fig. 2, it is the initial composition of
the population, determined by the value of the parameter
of the initial distribution μ, which correlates with time to
the escape phase (larger value of μ corresponds to longer
time to escape phase). This pattern of correspondence of
population variance and the expected value of the Malthu-
sian growth parameter to time to the escape phase, re-
mains the same regardless of the value of μ.
Even though parametrically heterogeneous Malthu-

sian model already allows reproducing behavior that is
qualitatively similar to tumor dormancy and subse-
quent escape from it, the primary issue with it of
course lies in the fact that it allows unrestrained
growth. However large the growth rate parameter may
be, there always exist limitations on final population
size, whether they be space or nutrient-related, among
others. A microtumor cannot grow past a size allowed
by the organ and blood supply limitations, rendering
logistic growth model more applicable.

Parametrically heterogeneous logistic growth
Now let us consider a parametrically heterogeneous case
of the logistic growth model, which addresses the issue
of uncontrollable growth in finite time of the Malthusian
model. Similarly to the previous case, we are looking at
a population of cell clones xc(t), where each individual
cell is characterized by an intrinsic growth rate c. The
full equation is given by

xc tð Þ0¼ cxc tð Þ 1−
N tð Þ
K

� �
; ð9Þ

where N(t) is the total population size and K is the car-
rying capacity.
Let us introduce an auxiliary variable q(t), such that

dq tð Þ
dt

¼ 1−
N tð Þ
K

: ð10Þ

Then

dxc tð Þ
xc tð Þ ¼ cq tð Þ0 ð11Þ

and therefore

xc tð Þ ¼ xc 0ð Þecq tð Þ: ð12Þ
We can calculate total population size to be

N tð Þ ¼
Z
A
xc tð Þdc ¼

Z
A
xc 0ð Þecq tð Þdc

¼ N 0ð Þ
Z
A
Pc 0ð Þecq tð Þdc ¼ N 0ð ÞM0 q tð Þ½ �; ð13Þ

which follows from the definition of moment generat-
ing function M0[q(t)] for the initial distribution Pc(0).
Since in this case, the moment generating function of
the truncated exponential distribution on the interval
[0,1] is M0 q tð Þ½ � ¼ μ

eμ−1

� �
eμ−eq tð Þ
μ−q tð Þ

� �
, the final equation for

q(t) ' becomes

Fig. 2 Parametrically heterogeneous Malthusian growth model with respect to growth rate parameter c. Initial distribution is taken to be truncated
exponential, with μ = 100 (dotted, red) 150 (solid, blue) and 200 (dash-dot, green). Initial population size is N(0) = 0.001. As one can see, the patterns of
behavior for (a) population size N(t), (b) expected value Et[c] and (c) variance Vart[c] remain qualitatively the same. Time to the escape phase is
determined by the initial composition of the population, determined by μ
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dq tð Þ
dt

¼ 1−
N 0ð Þ
K

M0 q tð Þ½ �

¼ 1−
N 0ð Þ
K

� �
μ

eμ−1

� � eμ−eq tð Þ

μ−q tð Þ
� �

; ð14Þ

which fully closes the system.
The distribution of clones over time is given by

Pc tð Þ ¼ xc tð Þ
N tð Þ ¼

xc 0ð Þecq tð Þ

N 0ð ÞM0 q tð Þ½ � : ð15Þ

As one can see in Fig. 3, the qualitative behavior in the
time preceding escape from dormancy is similar to that of
the parametrically heterogeneousMalthusianmodel (Fig. 3a)
with the distinction of a limiting size being reached after
the escape phase. For μ = 120 it occurs t ≈ 120 months =
10 years. The pattern of behavior of the expected value
Et[c] is qualitatively similar to that of the Malthusian model,
although in this case it does not reach the maximum value,
allowed by the interval of the truncated exponential distri-
bution, and remains below 1 (Fig. 3b). The dynamics of the
variance Vart[c] is however qualitatively different from the
previous case. It also increases dramatically in the moments
preceding escape from dormancy. However, it remains con-
sistently at a non-zero value even after the population has
reached its carrying capacity. Unlike the Malthusian model,
in the parametrically heterogeneous logistic growth model,
the population maintains heterogeneity at equilibrium and
does not select for a single clone.
Similarly to the distributed Malthusian model, time to

escape from dormancy is determined primarily by the ini-
tial distribution of the population (see Fig. 4). Noticeably,
the higher the value of μ and the later the onset of the

escape phase, the higher the variance at the steady state,
as can be proven through formulas (7) and (8).
Comparison of the two cases, namely, the parametric-

ally heterogeneous Malthusian and logistic models, can
be found in Fig. 5. As one can see, for identical initial
distributions and initial conditions, behavior in the time
preceding the escape phase is very similar. During the
escape phase, we can observe increase in the expected
value of the parameter c and rise in variance in both
models. However, in the case of a parametrically hetero-
geneous logistic population, Vart[c] > 0 is maintained
even at the steady state, which is more consistent with
our understanding of tumor biology.
As a point of observation, one can see that as t→∞,

q(t)→ q *, where q * is some constant. Therefore, as
t→∞, the population N(t) grows like a Malthusian
model at a finite moment in time, which allows main-
taining population heterogeneity. One could conceivably
interpret q(t) as the “internal time” of the population,
since with respect to q(t), growth of total population be-
comes Malthusian, with each clone growing irrespective
of the others [43]. One can interpret this observation as
a tumor growing according to some “internal clock” that
may be different from that of the surrounding tissues.

Parametrically heterogeneous Allee growth
Finally, let us consider a model of Allee-type growth.
The general form is

xi
0 ¼ cxi l−Nð Þ N−mð Þ; i ¼ c; l;m ð16Þ

where N(t) is the population size, l is the carrying capacity
of the population, m is the meta-stable point that divides

Fig. 3 Parametrically heterogeneous logistic growth model with respect to growth rate parameter c. Parameter of truncated exponential
distribution on the interval c ∈ [0, 1] is taken to be μ = 120, initial population size is N(0) = 0.001, K= 1. As can be seen, (a) in this case population escapes
dormancy at t ≈ 120 months = 10 years. b The escape phase is accompanied by rapid increase in the expected value of c, as well as (c) a rapid increase
in variance, which remains at a non-zero value even when the population is at a steady state. d The distribution of clones over time also changes away
from the initial composition, albeit less dramatically than in the parametrically heterogeneous Malthusian model
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Fig. 4 Parametrically heterogeneous logistic growth model with respect to growth rate parameter c. Parameter of truncated exponential distribution
on the interval c ∈ [0, 1] is taken to be μ = 120, initial population size is N(0) = 0.001, K = 1. a Variations in the value of parameter μ determine
time to escape from dormancy, which is (b) accompanied by increase in the expected value Et[c] and (c) increase and stabilization in variance
Vart[c]. Noticeably, the higher the value of μ and the later the onset of the escape phase, the higher the variance at the steady state

Fig. 5 Comparison of distributed Malthusian and logistic growth models, with N(0) = 0.001, and with truncated exponential initial distribution on
the interval c ∈ [0; 1] with parameter of the distribution being μ = 100. For the logistic model, K = 1. As one can see, dynamics up to the escape
phase are identical but at the steady state, the logistic population maintains heterogeneity and consequently lower final Et[c]
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areas of attraction of the two equilibria 0 and m. Here, we
will consider Allee-type models, heterogeneous with re-
spect to each of the three parameters. We will first do the
transformation for all three models, and then compare
their behavior.

Distribution of growth parameter c
Similarly to the previous cases, consider a population
of clones xc(t) that are characterized by an intrinsic
heritable value of parameter c. Introduce an auxiliary
“keystone” variable q1(t) such that

q1 tð Þ0¼ l−N tð Þð Þ N tð Þ−mð Þ: ð17Þ
Then

xc tð Þ ¼ xc 0ð Þecq1 tð Þ; ð18Þ
N tð Þ ¼ N 0ð ÞM0 q1 tð Þ½ �; ð19Þ

Pt ½c� ¼ P0½c� ecq1ðtÞ

M0½q1ðtÞ�
: ð20Þ

The expected value Et[c] and variance Vart[c] of the
population are defined through the moment generating
function of the initial distribution according to formulas
(3) and (4), respectively.
As one can see in Fig. 6, escape from dormancy in

these types of models is more gradual compared to

Malthusian and logistic cases. The escape phase occurs
later with higher values of μ, and population growth
curves increase more or less gradually depending on
the value of μ (Fig. 6a). Similarly to previous cases, the
expected value of c starts to increase with population
size (Fig. 6b), as does the variance (Fig. 6c). As in the
case of the distributed logistic model, there is a correl-
ation between time to escape and variance: the higher
the value of μ, the later the onset of the escape phase
(such as for μ = 30) and the lower the predicted vari-
ance Vart[c] at the steady state, as can be shown
through formulas (7) and (8).
This kind of gradual escape might account for the

dynamics of slower growing tumors, such as some
prostate cancers [44]. This hypothesis warrants further
investigation.

Distribution of carrying capacity l
Now consider a population of cells xl that differs in the
value of the carrying capacity l. Rewrite Eq. (16) as

dxl tð Þ
dt

¼ cxl tð Þ l−N tð Þð Þ N tð Þ−mð Þ
¼ cxl tð Þ l N tð Þ−mð Þ−N tð Þ N tð Þ−mð Þð Þdt ð21Þ

Now define the following keystone variables:

Fig. 6 Allee growth model with distributed growth parameter c (c-distributed Allee model). The initial distribution is truncated exponential on
the interval c ∈ [0, 1]. Other parameters are m = 0.1, l = 1; the initial population size is N(0) = 0.2. a Time to escape is determined by the initial
population composition, given by parameter μ. b Expected value of c increases simultaneously with population size, (c) as does variance Vart[c].
Noticeably, later escape in this example correlates with lower variance at the steady state
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dp
dt

¼ cðNðtÞ−mÞ;

dq
dt

¼ cNðtÞðNðtÞ−mÞ:
ð22Þ

Then dxl tð Þ
dt ¼ xl tð Þ l dpdt −

dq
dt

� �
and consequently

xl tð Þ ¼ xl 0ð Þelp tð Þ−q tð Þ: ð23Þ
Total population size then is given by

N tð Þ ¼
Z
L
xl tð Þdl ¼

Z
L
xl 0ð Þelp tð Þe−q tð Þdl

¼ N0e
−q tð Þ

Z
L
P0 lð Þelp tð Þdl

¼ N0e
−q tð ÞM0 p tð Þ½ �: ð24Þ

The distribution of clones is

Pl t½ � ¼ xl tð Þ
N tð Þ ¼

xl 0ð Þelp tð Þ−q tð Þ

N0e−q tð ÞM0 p tð Þ½ �
¼ Pl 0½ � elp tð Þ

M0 p tð Þ½ � :

ð25Þ

The expected value of l is Et l½ � ¼ M0 p tð Þ½ �0
M0 p tð Þ½ � :

The characteristics of the full system can thus be given
by Eq. (17), with N(t) defined above by Eq. (18).
In the l-distributed Allee model, increase in population

size during the escape phase is steeper (Fig. 7), similarly
to the logistic and Malthusian cases. Time to escape is
once again determined by initial population compos-
ition. One can see that for larger μ, population size de-
creases slightly before the escape phase (Fig. 7a). In
this model, variance increases during the escape phase
concurrently with both population size and Et[l], but
unlike most previous cases, rapidly decreases to zero
when the population has reached a steady state. Since
the l-distributed Allee model does not maintain hetero-
geneity at a steady state, it is less likely to be an appro-
priate model for our question.

Distribution of parameter m
Finally, consider the case, where each clone is character-
ized by an individual value of parameter m. Here, the
keystone equations are

qðtÞ0 ¼ NðtÞcðl−NðtÞÞ;
p0ðtÞ ¼ −cðl−NðtÞÞ: ð26Þ

Consequently, xm tð Þ0
xm tð Þ ¼ q tð Þ0þmp tð Þ0 , and xm(t) =

xm(0)e
q(t) +mp(t).

Fig. 7 Allee growth model with distributed carrying capacity l (l-distributed Allee model). The initial distribution is truncated exponential on the
interval l ∈ [0, 1]. Other parameters are m = 0.1, c = 1; the initial population size is N(0) = 0.2. a Time to escape is determined by initial population
composition, given by the parameter μ. b Expected value Et[l] increases simultaneously with population size, (c) as does variance Vart[l]. Noticeably,
variance increases much more gradually compared to the previous cases, and decreases rapidly after the population reaches a steady state
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The total population size is given by

NðtÞ ¼
Z

M
xm ð0ÞeqðtÞempðtÞdm ¼

Z
M
Pmð0ÞNð0ÞeqðtÞempðtÞdm ¼

¼ Nð0ÞeqðtÞ
Z

M
Pmð0ÞempðtÞdm ¼ Nð0ÞeqðtÞM0½pðtÞ�:

ð27Þ

As one can see in Fig. 8, populations that grow ac-
cording to the m-distributed Allee model exhibit a
unique behavior: the population size can decrease
dramatically in the months and even years preceding
the escape phase (Fig. 8a). Escape phase is once again
accompanied by increase in the expected value of m
(Fig. 8b), increase in variance (Fig. 8c) and change in
clone distribution (Fig. 8d). Noticeably, Vart[m] de-
creases after the population reaches a steady state,
with the equilibrated population becoming more
homogeneous over time. Furthermore, similarly to the
previous cases, the pattern of behavior remains con-
sistent for various initial population compositions, as
can be seen in Fig. 9. In this case, even though popu-
lation heterogeneity decreases after the population
has reached its carrying capacity, the decline in
Vart[m] occurs so slowly that it may conceivably rep-
resent the dynamics of metastatic dormancy, where
eventual selection for fewer clones and thus a gradual
decrease in heterogeneity is expected to occur [45].

Comparison of the three distributed Allee models
Now, let us compare all three parametrically heteroge-
neous Allee growth models. All the examples in Fig. 10
were chosen to describe escape from dormancy at ap-
proximately t = 100 to t = 120 months, or 8.3–10 years.
All three models provide dynamical behaviors that are
consistent with escape from dormancy.
Escape phase predicted by c-distributed Allee model oc-

curs in the most gradual way out of all of the examples,
and is accompanied by slight increase in the expected value
of c and a steady Vart[c] at equilibrium. A population that
grows according to l-distributed Allee model exhibits
sharper increase in population size during the escape
phase; its final population composition is the most homo-
geneous, with selection towards the largest value of l.
Finally, a population that grows according to them-distrib-

uted Allee model exhibits a more unusual dynamics, with
population size N(t) dropping to near-zero and remaining
dormant formanymonths and years before eventually rapidly
increasing in size. Like in every case described, the escape
phase in all of the populations is accompanied by increase in
both the expected value of the distributed parameter, and in
the variance. In this case, the population becomes less hetero-
geneous over time but does so much more gradually, com-
pared to populationwith distributed carrying capacity l.

Discussion
We propose that long latency periods between appear-
ance of cancer cells and disease manifestation, whether

Fig. 8 Allee growth model with distributed parameter m (m-distributed Allee model). The initial distribution is truncated exponential on the
interval m ∈ [0, 1], with parameter of the distribution being μ = 100. Other parameters are c = 1, l = 1; the initial population size is N(0) = 0.2.
a Total population size N(t) decreases in the months and years preceding the escape phase. b The expected value of m increases during the
escape phase, (c) as does variance of m. However, Vart[m] decreases dramatically at an equilibrium state. d Distribution of clones also changes
noticeably over time, selecting for clones with higher values of m
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for a primary tumor, or for a metastatic recurrence,
could be accounted for by tumor heterogeneity. We
investigate this hypothesis using several parametrically
heterogeneous mathematical models, including paramet-
rically heterogeneous Malthusian, logistic and Allee-type
growth models. Heterogeneity can be a result of either
heritable characteristics, such as proliferation and apop-
tosis rates; mutually influential epigenetic variability, or
epigenetic landscapes [46]; degree of adaptability to the
environment [21]; or even genetic mosaicism [47]. Within
the context of the models, such intrinsic variations were
accounted for with parameters of initial distribution of cell
clones in the population; these parameters may represent
degree of epigenetic variability, sensitivity to hormones, or
any other fitness-affecting characteristic of the initial tumor
population, depending on tumor type.
In our simulations, we looked at populations of cells

that undergo rapid growth after a prolonged period of
latency, the dynamics that we refer to here as the escape
phase. This escape from dormancy occurs after a simu-
lated period of 5–20 years. We were looking for the sim-
ulated tumor to reach a volume of 1mm3 as allowed by
oxygen and nutrient limitations [22], and are particularly
interested in the dynamics that precedes the simulated
tumor reaching its carrying capacity.

Parametrically heterogeneous growth models:
Malthusian, logistic and Allee
In our investigation, we have applied the Reduction the-
orem, which was developed by G. Karev [37–39], to
three population growth models, namely, Malthusian, lo-
gistic and Allee. The Reduction theorem, or parameter
distribution technique, allows subdividing the population
into subpopulations of cells that are characterized by a
particular value of some parameter. These subpopula-
tions are referred to as clones. The distribution of clones
changes over time, and this dynamics, as well as changes
in the corresponding statistical characteristics, such as
expected value of the parameter or its variance in the
population, can be monitored using the moment gener-
ating function of the initial distribution. Investigations
of parametrically heterogeneous Malthusian and logistic
models were done in [37]; some of the results are re-
interpreted here in the context of tumor growth.
Here, in Malthusian and logistic models, we distrib-

uted proliferation rate parameter c. In the Allee growth
model, we investigated three cases: populations were
assumed to be heterogeneous with respect either to
proliferation parameter c, or carrying capacity param-
eter l, or parameter m, which divides the domain of at-
traction of the two stable equilibria of the initial model.

Fig. 9 Allee growth model with distributed parameter m (m-distributed Allee model). The initial distribution is truncated exponential on the interval
m ∈ [0, 1]. Other parameters are c = 1, l = 1; the initial population size is N(0) = 0.2. a Time to escape is determined by the initial population
composition, given by the parameter μ. In the months and even yeas preceding escape from dormancy we can observe a sustained decrease in
population size. b Expected value of m increases simultaneously with population size, (c) as does variance Vart[m]. Noticeably, variance increases more
gradually compared to the previous cases, and decreases slowly after the population reaches a steady state, compared to the l-distributed Allee model
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In these examples, the initial distribution was taken to
be truncated exponential, on the interval [0; 1], with
distribution parameter μ.
The results can be summarized as follows. In all of

the cases, the escape phase was accompanied by dra-
matic increase in both the variance and the expected
value of the parameter under investigation. Time to the
onset of the escape phase was determined by the initial
composition of the population, as given by the value of
parameter μ. The values of μ for different models varied
from 5 to 200.
In the case of the Malthusian parametrically heteroge-

neous model, the population variance spiked during the
escape phase but then declined dramatically, resulting in
an uncontrollably growing population with the largest
permissible value of parameter c (Figs. 1 and 2). In the
logistic parametrically heterogeneous model, the popula-
tion maintained a degree of heterogeneity at the equilib-
rium state, once it has reached its carrying capacity
(Figs. 3 and 4), which is more likely in application to
tumor growth, as tumors are known to be heteroge-
neous [45, 46, 48]. Distributed Malthusian and logistic
models are compared in Fig. 5.

Distributing the logistic equation required introducing
an auxiliary “keystone” variable q(t) (in parallel with key-
stone species in ecology, which have disproportionately
large effect on the population relative to their abun-
dance). This variable can be interpreted as the “internal
time” of the population, since with respect to q(t),
growth of total population becomes Malthusian, with
each clone growing irrespective of the others [49]. Thus
one can hypothesize that in this case, the population of
tumor clones may be growing according to its own in-
ternal clock.
The Allee growth model with distributed proliferation

parameter c (the c-distributed Allee model) also maintains
population heterogeneity at an equilibrium state (Fig. 6).
Moreover, in this case, the escape phase occurs very grad-
ually compared to the other models. The Allee growth
model with distributed carrying capacity parameter l (the
l-distributed Allee model) does not maintain heterogen-
eity at the equilibrium state (Fig. 7); the escape phase
occurs less gradually compared to the c-distributed Allee
model but more so than any of the other models. The
Allee growth model with distributed parameter m (the
m-distributed Allee model) demonstrates the most

Fig. 10 Comparison of the three parametrically heterogeneous Allee growth models. The initial distribution is truncated exponential on the interval [0, 1]
for all three models. Parameters are c= 1, l = 1, m=.1 for each respective model; the initial population size is N(0) = 0.2. a The total population size N(t) for
all three models, with c-distributed Allee model increasing most gradually, l-distributed Allee model remaining at a steady size before increasing, and
m-distributed Allee model predicting a decrease in population size to near-zero until the escape phase. b Expected value of each of the parameters for
their respective models and (c) variance of each of the parameters for their respective models. In every case, escape phase is accompanied by increase in
both the expected value and variance. The c-distributed model maintains heterogeneity at a steady state; l-distributed model rapidly becomes more
homogeneous at the steady state; m-distributed model slowly gradually loses heterogeneity over time after the escape phase
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unusual of the behaviors. In this case, one can observe de-
crease in population size to near-zero zero for a prolonged
period of time before the escape phase (Figs. 7 and 8).
Population heterogeneity decreases after the escape phase
but not as rapidly as Malthusian or l-distributed Allee
models. The behavior of this model is most consistent
from a theoretical point of view with metastatic dor-
mancy, as will be discussed further. A comparison of all
three distributed Allee models is given in Fig. 10.

Primary dormancy, metastatic dormancy, both, or neither?
While it is more likely that mechanisms governing meta-
static dormancy differ from those underlying primary
tumor dormancy, it is possible that a subset of metastatic
dormant tumors, which have disseminated very early,
might be growing according to growth laws proposed here.
A number of experimental models have suggested that

metastatic spread can occur at very early stages of pri-
mary tumor development [50]. Newman and Cisneros
[51] have investigated the question of whether, from a
theoretical point of view, dissemination using few very
specialized cells (“special forces”) or seeding a large
number of non-specialized cells (“infantry”) would be
more effective for metastatic colonization. Their analysis
has shown that in fact both strategies are equally likely
(or unlikely) to seed disseminated tumors. Therefore, it
is possible that a tumor that has disseminated early [48,
50, 52, 53] might be growing according to the same laws
in an unprimed environment, much like a primary dor-
mant tumor, and escape dormancy at a time propor-
tional to the time when it was disseminated. That is,
everything else being equal, if a secondary tumor be-
came initiated 5 years after the initial tumor started
growing, it would appear 5 years after the primary tumor
was detected, without any additional factors necessarily
affecting the dynamics.

Furthermore, while there exists a close clonal relation-
ship between primary and disseminated tumor, the dis-
tribution of clones in the disseminated tumor can be
very different [45, 54]. In our models, we have shown
that changing parameters of the initial distribution of
the population of clones in the simulated tumor is suffi-
cient to replicate any variations in time to the escape
phase of a simulated dormant tumor.
Based on these considerations, we hypothesize that

the logistic distributed or c-distributed Allee models
could be more likely for primary tumor dormancy,
since they maintain population heterogeneity at an
equilibrium state. Due to the gradual nature of the c-
distributed Allee model, it might be more suited to ac-
count for slowly growing tumors, such as some cases
of prostate cancer [44]. In contrast, we propose that
the m-distributed Allee model would be more likely
for metastatic dormancy, since it accounts for de-
crease of population size to near-zero in the months
and years preceding escape from dormancy, and be-
cause the decrease in population heterogeneity that
occurs at the equilibrium state is consistent with more
gradual selection for clones with highest fitness, with
the tumor eventually becoming dominated by single
clones.
These considerations are summarized in Table 1.

Tumor dormancy as part of a larger process
It is possible that for a class of tumors, a series of muta-
tions would lead to the appearance of a population that
would grow according to one of the models, proposed
here. From our investigation, a parametrically heteroge-
neous logistic model appears the most likely to describe
dormant tumor behavior prior to reaching the carrying
capacity defined by spatial and nutrient limitations. This

Table 1 Summary of results and possible interpretation of the applicability of various parametrically heterogeneous models to
describing the dynamics underlying tumor dormancy

Model Distr.
param.

Escape
phase

Expected value of dist. param. Variance of distr. param.
after escape

Interpretation/applicability

Malthusian c rapid Increases rapidly during escape
phase to maximum possible value

Increases rapidly during escape,
then returns to zero

Likely not applicable

Logistic c rapid Increases rapidly during escape
phase to sub-maximum value
(inv. proportional to variance)

Increases rapidly during escape,
then remains at a non-zero value

Primary tumor dormancy

Allee xc ' = cxc
(l − N)(N −m),

c gradual Increases rapidly during escape
phase to sub-maximum value
(inv. proportional to variance)

Increases rapidly during escape,
then remains at a non-zero value

Slowly-growing tumor

xl ' = cxl(l − N)(N −m), l less gradual Increases rapidly during escape
phase to maximum possible value

Increases rapidly during escape,
then returns to zero

Likely not applicable

xm ' = cxm(l − N)
(N −m),

m rapid Increases rapidly during escape
phase to sub-maximum value
(inv. proportionate to variance)

Increases rapidly during escape,
then gradually decreases

Metastatic tumor
dormancy
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model can account for a rapid escape phase after a long
period of latency, as the population grows according to
its own “internal clock”, taking many months and years
to reach a clinically relevant size, and it allows maintain-
ing population heterogeneity even after the escape
phase, when the tumor has reached its current possible
carrying capacity. Behavior consistent with escape from
dormancy in this case can happen very rapidly, preceded
by a dramatic increase in variance and the expected
value of the proliferation parameters.
At this time, the tumor might become large enough to

start affecting its microenvironment in various ways,
thus potentially increasing its carrying capacity [36],
allowing it to reach clinically detectable size, since the
diameter of tumors at diagnosis is around 1–10 cm [55].
One of such mechanisms includes stimulating sur-

rounding stroma to produce angiogenesis regulators that
would allow vascularization [16, 22–24, 28, 56, (Kareva
et al.: Normal wound healing and tumor angiogenesis as
a game of competitive inhibition of growth factors and
inhibitors, under review)]. Another mechanism involves
exhaustion of oxygen supply and subsequent increase in
glycolytic mode of glucose metabolism, which may be
followed by local acidosis and down-regulation and star-
vation of immune system [57–60], allowing for escape
from tumor dormancy. Whatever the mechanism that
the growing tumor might use to increase its carrying

capacity, it engages its environment to foster its own
growth, making cancer the systemic disease that it is [57].
The key consideration here is that after the escape phase,
the rules that govern tumor dynamics may change to in-
clude various aspects of the environment, such as nutri-
ents and predators (immune system), taking the evolution
of the system in another direction (see Fig. 11).
Up to the escape phase, it is possible that the initial

cluster of mutated cells might simply be growing accord-
ing to its own laws, and there is nothing that can be done
to either induce or prevent escape from dormancy at this
stage. However, once the tumor begins growing and en-
gaging it environment, then therapeutic interventions,
which take into account the complex nature of both cell
populations and of their interactions with their environ-
ment [61–64], are most likely to be effective.
More broadly, the proposed investigation highlights

the likely possibility that different tumors in different
tissues may be described by different growth laws,
which may be reflecting both the nature of the under-
lying tumor and constraints imposed by the environ-
ment (i.e., variability in growth rates, death rates,
sensitivities to various components of the microenvir-
onment, such as hormone availability, metabolic het-
erogeneity, etc.). This question can be investigated by
fitting different growth functions to tumor growth data
and evaluating best fit. A preliminary investigation was

Fig. 11 Tumor dormancy as part of a larger process of cancer disease. a We hypothesize that at the initial stages of microtumor growth, it may
be growing according to parametrically heterogeneous logistic growth law until it reaches an escape phase, which occurs solely due to natural
population dynamics. After the escape phase, the tumor may remain indefinitely at its carrying capacity, or it may start engaging it
microenvironment to increase its carrying capacity. b Some of the mechanisms whereby a tumor can increase its carrying capacity include but
are not limited to, increase in glycolytic glucose metabolism, which may lead to interference with immune activation [57], as well as immune
cells becoming outcompeted for nutrients [58–60]. The tumor might also engage the stroma to induce angiogenic switch and formation of new
blood vessels [22, 24, 56, (Kareva et al.: Normal wound healing and tumor angiogenesis as a game of competitive inhibition of growth factors
and inhibitors, under review)], or increase ECM signaling, which has also been implicated in escape from dormancy [15, 27, 66]
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recently conducted by Benzekry et al. [65], where the au-
thors investigated goodness of fit of different growth func-
tions to different tumor types. It would be interesting and
informative to expand their investigation to include
growth functions that account for tumor population het-
erogeneity, as well as explore what tumor types and what
environmental constraints would correspond to which
function. If this hypothesis proves to be true, it would be
important to use appropriate growth functions in theoret-
ical investigations. Different intervention approaches may
become necessary when providing theoretical underpin-
nings to guiding therapeutic strategies.

Reviewers’ comments
Reviewer’s report 1
Heiko Enderling, Moffitt Cancer Center

Reviewers’ comments
The hypothesis that different growth laws underlie pri-
mary and metastatic dormancy is interesting, and math-
ematical modeling to investigate this applicable. In its
current form, the manuscript is difficult to follow and
needs more motivation and discussion.
The manuscript discusses three different mathemat-

ical models to investigate the plausibility of heterogen-
eity driving escape from tumor dormancy; Malthusian,
Logistic, and Allee growth models. Based on different
heterogeneity profiles, tumors escape from dormancy at
different time points and with different resulting varia-
tions in heterogeneity, from which conclusions are
drawn about growth laws underlying either primary or
metastatic dormancy. Fairly detailed supplementary data
are presented; however, without mathematical training
those are difficult to understand.
Without the supplementary data, the manuscript is

difficult to follow.
Author’s response: The supplementary data was incor-

porated into the main text to facilitate understanding of
the proposed hypothesis.

Reviewers’ comments
In the main manuscript, parameter c is introduced, but
all figures have parameter mu.
Author’s response: Parameter c is the intrinsic growth

rate of the population, described by the proposed growth
laws (exponential, logistic, Allee). Parameter mu is the
parameter of the initial distribution, in this case truncated
exponential. This clarification was added to the text when
either of the parameters is first introduced.

Reviewers’ comments
The authors argue that it is likely that different intrinsic
mechanisms regulate dormancy. Why is this more likely
than seed-and-soil?

Author’s response: Here, I was not suggesting that the
proposed framework is more or less likely than the seed-
and-soil hypothesis. Rather, I propose an additional, per-
haps complementary mechanism that may provide further
insights into tumor dynamics during the dormancy phase.
One may argue, however, that the proposed model is sim-
pler because it relies solely on intrinsic growth properties of
the population and not on specifics of the environment,
which may not yet be at play at this stage of avascular
tumor growth, and thus requires fewer assumptions to ex-
plain the phenomenon of tumor dormancy.

Reviewers’ comments
While different mechanisms may very well be at play in
primary and metastatic dormant tumors, it is unclear
how one can conclude on the likelihood of one growth
law over the other from the presented study. It is un-
clear why different models are applicable.
Author’s response: A discussion on which of the pro-

posed growth laws may be more or less applicable has
been added to the discussion section, and summarized in
Table 1. For these models, the rationale relies on looking
not only at the dynamics of tumor population size but
also its composition, in this case accounted for by track-
ing changes over time of the mean value of the distrib-
uted parameter and of its variance.
A more thorough investigation, which we are currently

developing, would involve fitting data curves found in the
literature to various growth functions of heterogeneous
population growth and evaluating goodness of fit. A brief
discussion of this approach has been added to the end of
the manuscript.

Reviewers’ comments
The presented hypothesis is that intrinsic growth laws
constitute possible mechanisms for escape from dor-
mancy. This hypothesis is insufficiently motivated, and
not sure if satisfactorily answered. What is the reason
for different proliferation rates in a cancer cell popula-
tion? Are those rates intrinsic properties or environmen-
tal modulation?
Author’s response: We know from numerous investiga-

tions and published accounts that tumors are heteroge-
neous with respect to various characteristics, presumably
resulting from genomic instability. Within the context of
the methods investigated here, the characteristics that
are being investigated (such as growth rates) are intrin-
sic and have to be present in the population from the
beginning of the simulation. This is a drawback of this
method, which has not yet been addressed. That being
said, one can argue that certain values of the parame-
ters are present in the initial distribution at such low
frequency that their appearance may qualitatively imi-
tate new mutations.
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The clarification that the values of parameters are in-
trinsic has been added to introduction of the models.

Reviewers’ comments
What range do the proliferation rates span?
Author’s response: Proliferation rates (or values of any

of the other parameters) are given when the initial dis-
tribution is defined. According to the principle of max-
imum entropy (MaxEnt), if the mean value of the
random variable is the only quantity that can be esti-
mated from observations or other data, then the most
likely distribution of the variable is exponential with the
estimated mean. Since no value of a biological charac-
teristic, such as a growth rate, can be infinite, then we
should choose the truncated exponential distribution in
this interval as the initial distribution. Any other distri-
bution can of course be used, if there exist data or theoret-
ical considerations underlying its choice. This paragraph is
highlighted to the main text.

Reviewers’ comments
If proliferation rate equals cell fitness, what do cells
compete for?
Author’s response: The answer to this question depends

on the model. In the case of exponential growth, cells are
unrestrained by resource limitations. In logistic and Allee
models, there is a carrying capacity, which represents en-
vironmental limitations that would limit population size
(whatever they may be, in these particular cases there is
no specifications). Since total population size is limited,
cells compete for presence in the final population.

Reviewers’ comments
Is a spatially averaged model applicable to simulate fit-
ness during avascular dormancy?
Author’s response: The model considers tumor dynam-

ics at the time when the size of the avascular tumor is
still extremely small, in the beginning of its development,
so spatial heterogeneity is unlikely to be influencing the
dynamics at this stage.

Reviewers’ comments
How does heterogeneity impact escape from dormancy?
Author’s response: As can be seen in the simulations

(see, for instance, Figs. 2, 3 or 8), the initial composition
of the population, as determined by parameter mu, cor-
relates to time to escape: larger value of mu (and thus
initial distribution skewed more towards smaller values
of c) corresponds to longer time to the escape phase.
Parameter mu has no physical meaning and is phenom-
enological. If the data are available, the initial distribu-
tion should be estimated from it, with the corresponding
distribution parameter.

Reviewers’ comments
Is the escape a consequence of heterogeneity, or the rea-
son for heterogeneity?
Author’s response: In these models, escape is the conse-

quence of heterogeneity. As the population composition
changes, clones with higher growth rates become predomin-
ant, eventually reaching a critical mass, where all the cells
are dividing very rapidly, leading to rapid population
growth. This effect is shown particularly in Fig. 1.

Reviewers’ comments
The presented study is without a doubt timely and
interesting. I feel, however, that a stronger biological
motivation, and more detailed background, materials
and methods, explanation and discussion of the results
are needed for the study to find the large audience and
impact it deserves.
Author’s response: The text has been significantly ex-

panded compared to its original version, to include more
thorough explanation of the methods, a more thorough
background, and an expanded explanation of the results
and ideas. It is my hope that in its new form, it will achieve
these goals.

Reviewer’s report 2
Marek Kimmel, Rice University

Reviewer comments
The paper is based on the interesting idea that delay in
metastatic progression may be caused by structured
population growth. The paper requires major rewriting
before it is suitable for publication. In particular, the
supplement should be partly incorporated into the main
body (see further on), to make the paper understandable.
More detailed medical examples will help.
Major issues - The paper has an unusual construction.

Most of the expository material, which clarifies what the
author is trying to say, is relegated to a Supplement. This
concerns the definition of the parametrically heteroge-
neous growth laws as well references to the Reduction
and Maximum Entropy principles. The relevant part of
the Supplement needs to be incorporated in the “Model-
ing background” or similar section in the main body.
Author’s response: The paper has been substantially

rewritten to facilitate its understanding. It was initially
written to fit into the Hypothesis format at Biology Dir-
ect, which seemed appropriate due to the theoretical na-
ture of the proposed concept. However, in its expanded
form I believe it should be much clearer for the readers.

Reviewers’ comments
I am not sure how the paper is related to other papers of
Dr. Kareva and her co-author with the same last name. If
there is an overlap, it should be carefully discussed.
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Author’s response: Dr. Karev has developed the Re-
duction Theorem and the theoretical framework for its
applications. Over the years we have collaborated on
proposing applications. In this work, only the basic as-
pects of this powerful and elegant theory are used, and
only several simple examples are investigated. No claim
is made on my part to having come up with novel math-
ematics. Instead, here I propose a new application for
these models. Exponential and logistic models have been
previously published in Dr. Karev’s work on demography.
To my knowledge, application of the Reduction theorem to
Allee models has not yet been published but as one can
see, the transformations in all of these cases are not
complicated. The novelty of this work is in the proposed
applications. This clarification has been added briefly
in the text.

Reviewers’ comments
The author assembled an interesting, if a little dated
(only few entries after 2011) literature concerning bio-
logical aspect of metastasis and tumor growth dynamics.
It will make sense to provide some relevant biological

context (tumor classifiction, type of study and conclu-
sions; maybe just 1–2 sentences), each time such a
source is cited.
Author’s response: In this work, I do not have access to

relevant experimental data. The goal of this work is to
propose a mechanism that can provide an additional,
possibly complementary, explanation to the phenomenon
of tumor dormancy and escape from it. Some experi-
ments were conducted by Almog et al. [23], Naumov et
al. [28], Rogers et al. [29], but they were done in mouse
xenograph models in the time scales that are not compar-
able to those investigated in this manuscript. In our follow-
ing work, we will conduct a more thorough investigation of
comparing various growth rate functions to tumors of dif-
ferent tissue origin. A brief discussion of this prospect has
been added to the end of the manuscript.

Reviewers’ comments
Detailed remarks
p. 2. Please state and explain the Reduction theorem.

How is the Reduction theorem different from clonal
competition in the context of cancer (if it is similar, then
perhaps the connection with driver and passenger muta-
tions should be clarified). p. 3. Sentence “Applying the
Reduction theorem (35–37) to …” is not sufficiently in-
formative. Please provide details. Similarly, the para-
graph concerning the Allee model is not standing on its
own, as of now.
Author’s response: An explanation of the Reduction the-

orem has been added to the main text, as well as detailed
applications to allow readers to easily follow and repro-
duce the results for all of the examples, including the Allee

model. There is no direct connection that I can currently
see between the proposed framework and driver-passenger
mutations.

Reviewers’ comments
p. 3. I am puzzled as to what the “systemic nature of dis-
seminated disease” (bottom line) might really mean.
Please provide details.
Author’s response: The way that the sentence was

phrased was unclear, and it is now altered for clarity.
Overall, the comment referred to the fact that cancer in
its advanced stages becomes a systemic disease. That is,
it engages its environment, changing it, causing a cascade
of changes throughout the body, including dysregulation
of many organ systems (Redig and McAllister, 2013;
Kareva, Waxman and Klement 2015; Sohal, Walsh et
al., 2014, among other references on this topic).

Reviewers’ comments
Supplement:
p. 1. “…parameter distribution technique, also known

as the Reduction Theorem. It was well described in (1,
2), and main results have been summarized in (3).” Un-
fortunately, this seems not a sufficient explanation.
p. 1. “According to the principle of maximum entropy

(MaxEnt)…”. Likewise.
Author’s response: Explanation for both of these points

has been added to the text. An explanation for MaxEnt
principle has been put into a separate subsection in order
to highlight its importance in estimating the initial distri-
bution in the absence of initial data:
“According to the principle of maximum entropy

(MaxEnt), if the mean value of the random variable is
the only quantity that can be estimated from observa-
tions or other data, then the most likely distribution of
the variable is exponential with the estimated mean.
Since no value of a biological characteristic, such as a
growth rate, can be infinite, then we should choose the
truncated exponential distribution in this interval as
the initial distribution. Any other distribution can of
course be used, if there exist data or theoretical consid-
erations underlying its choice.”

Reviewers’ comments
p. 2. Calling the expression (3) and (4) the expectation
and variance of r.v. c, is misleading if it is not explicitly
stated that the distribution of c varies with time (super-
script t in the LHS only muddles the issue). Also, is it
really needed to call M_0[t], the moment-generating
function (mgf)? Are any standard properties of mgf used
here?
Author’s response: Using moment generating function

is important in order to easily include the corresponding
initial distributions into the investigation. The mgf of the
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initial distribution is used in the main calculations, as
well as its first and second derivatives in order to calcu-
late change over time of expected value of the parameter
tracked, and change over time of its variance. In these
particular examples, only truncated exponential distri-
bution was used but many other ones can be used as long
as their mgf is known.
Explicit expressions for calculating expected value and

variance as they change over time are given in Eqs. (3)
and (4) to hopefully clarify the origin of the expressions,
and to highlight that that do change over time.

Reviewers’ comments
p. 3. “… we can observe hyperbolic growth” What does
“hyperbolic” mean in this context?
Author’s response: The term “hyperbolic” here indi-

cates that growth curve in the initial phase is a hyper-
bola. As one can see from Eq. (5), total population size
grows in such a way that the Malthusian growth param-
eter is the expected value of c, which keeps increasing
over time, eventually reaching its highest possible value.
In this case, it is the value predefined by the interval of
the initial truncated exponential distribution. In this
growth phase, the population growth is faster than expo-
nential, because the value of Et[c] is increasing. When it
reaches it maximal value, the growth becomes exponen-
tial. However, to avoid confusion, I removed the word
hyperbolic.
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