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Abstract

Background: Evolutionary game theory (EGT) has been widely used to simulate tumour processes. In almost all
studies on EGT models analysis is limited to two or three phenotypes. Our model contains four main phenotypes.
Moreover, in a standard approach only heterogeneity of populations is studied, while cancer cells remain homogeneous.
A multilayer approach proposed in this paper enables to study heterogeneity of single cells.

Method: In the extended model presented in this paper we consider four strategies (phenotypes) that can arise by
mutations. We propose multilayer spatial evolutionary games (MSEG) played on multiple 2D lattices corresponding to
the possible phenotypes. It enables simulation and investigation of heterogeneity on the player-level in addition to the
population-level. Moreover, it allows to model interactions between arbitrary many phenotypes resulting from the
mixture of basic traits.

Results: Different equilibrium points and scenarios (monomorphic and polymorphic populations) have been achieved
depending on model parameters and the type of played game. However, there is a possibility of stable quadromorphic
population in MSEG games for the same set of parameters like for the mean-field game.

Conclusion: The model assumes an existence of four possible phenotypes (strategies) in the population of cells that
make up tumour. Various parameters and relations between cells lead to complex analysis of this model and give diverse
results. One of them is a possibility of stable coexistence of different tumour cells within the population, representing
almost arbitrary mixture of the basic phenotypes.

Reviewers: This article was reviewed by Tomasz Lipniacki, Urszula Ledzewicz and Jacek Banasiak.
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Background
Heterogeneity of malignant tumour populations has be-
come one of the most often discussed issues related to
cancer development and progression. One approach to
understand and analyse heterogeneity of cancer cell
population employs evolutionary game theory initiated
by John Maynard Smith’s works (e.g. [1, 2]). It links
mathematical tools of the game theory with Darwinian
adaptation and species evolution. In this case players are
representatives of the population, and their strategies
(phenotypes) are determined genetically. Payoffs in such
games represent measures of fitness for the given pheno-
types as a result of their interaction.

The individuals compete or cooperate with each other
to obtain better access to food supplies, life space or
spouses. The standard example and the fundamental
evolutionary model is Hawk and Dove game. This game,
studied by Maynard Smith [2], is a finite nonzero sum
game and assumes that the population contains two
phenotypes: aggressive (non-outgoing) and compliant.
Population members fight for a resource V which af-
fects the reproductive success, but they can also suffer
wounds C (the phenotype called Hawk that always
takes a fight). This model has been developed into a
number of generalizations including spatial effects, evo-
lution in time or other strategies e.g. a legalist strategy
(a phenotype can switch between strategies depending
on a situation) [3].
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Application of the evolutionary game theory to the
mathematical modelling of carcinogenesis process is based
on the following assertions:

– in an organism, cells compete for nutrients, with
different kinds of cells being players in the game

– mutations (observed in tumour cells) may occur
during cell division

– an advantage of tumour cells over healthy ones is a
signature of cancer.

One of the first works, where the evolutionary game
theory was used to model the interaction behaviour of
tumour cells, was presented by Tomlinson [4]. The au-
thor proposed the model, where one of the phenotypes
attempts to gain an advantage by producing cytotoxic
substances. Results show that actively harming neighbour-
ing cells may lead to dominance of the local population by
the tumour cells. This study has triggered a series of other
papers, where evolutionary game theory has been applied
to describe phenomena of tumour creation by mecha-
nisms of avoidance of apoptosis [5], creation of additional
capillaries as a result of angiogenesis [5, 6], and develop-
ment of capabilities of invading other tissues and metasta-
sis [7, 8], and many others. On the other hand, game
theory models show only single phenomena occurring in a
very complicated process of cancer evolution. Dynamics
of the system under consideration, which can be analysed
by replicator dynamics equations [9, 10]. In this approach
the dynamics of the strategy profile for a population is de-
fined by the Malthusian type growth described by the set
of ODE’s.
In our paper [11] we have extended the idea described

above to study a model of radiation induced bystander
effect in a cell population and to predict its dynamics
using replicator equations.
Unfortunately, in almost all studies on EGT models,

analysis is limited to two or three phenotypes. The ex-
ception is our paper [12] in which interactions between
four different phenotypes of cells are illustrated using
three-dimensional simplexes and time courses. As far as
we know, the only other work which includes four phe-
notypes is [13]. However, instead of studying different
equilibrium points between phenotypes and their dy-
namics, the authors have analysed only final results

(different subpopulations) with respect to changes of
fitness parameters.
It is important to notice that dimension of replicator

dynamics equations in the case of three phenotypes is
equal to two which means that complex dynamical be-
haviours, typical for nonlinear dynamics should be ab-
sent. In our opinion it is one of major disadvantages of
the small number of considered strategies. An important
finding is that a four-phenotype model implies third-
order dynamics of replication which enables existence of
complex dynamical behaviours including strange attrac-
tors. This may be an important hallmark of evolutionary
game theory analysis. To illustrate advantages of our ap-
proach to analysis of increasing number of strategies, let
us consider the model which combines two classical
models of Tomlinson ([4, 5]).
There are several ways to resolve evolutionary stable

games. One possibility is to solve replicator dynamics
equations for mean-field games. Alternatively one can
apply cellular automata for spatial evolutionary games.
Even though spatial games include another factor (i.e.
space) that brings the evolutionary games methods closer
to biological phenomena, still the cells are considered to
be homogeneous, i.e. in the game theory terms individual
cell can play only one strategy. Spatial games incorporat-
ing heterogeneity of the cells proposed by us in [14], are
called multilayer spatial evolutionary games (MSEG).

Methods
An equilibrium in the evolutionary games is defined by
an evolutionary stable strategy (ESS [1, 15]). It defines a
phenotype, which is resistant to an inflow of other phe-
notypes (resulting from a mutation or environmental
migration) and it cannot be repressed by them. However,
a reverse situation is possible, evolutionary stable strat-
egy can stay or even dominate population as an inflow
mutant. The phenotypes play the role of pure strategies
in standard non-cooperative games, the evolutionary
strategies are frequencies of individuals in population (so
called strategy profiles) representing these phenotypes
and in this sense are analogues of mixed strategies. In
addition ESS is always Nash equilibrium (in mixed strat-
egies), but reverse implication is generally not true [3].
There are also other differences. In evolutionary games,
strategies are genetically programmed and they cannot

Table 1 Proposed pay-off matrix

Strategies A (growth factor-producing) P (cytotoxin-producing) Q (cytotoxin-resistant) R (neutral)

A 1-i + j 1 + j-e + g 1 + j-h 1 + j

P 1-i + j-f 1-f-e + g 1-h 1-f

Q 1-i + j 1-e 1-h 1

R 1-i + j 1-e + g 1-h 1
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be changed and a game structure is not clear. In the
classical game theory based on Nash equilibrium players
know the game structure and rules, and the game (in its
repeated form [16]) is played many times in the same
conditions, while ESS results rather from the iterated game
with varying players frequencies in passing generations.
Moreover, the Nash strategies are the results of ra-

tional analysis, while evolutionary strategies are rather
due to behaviour shaped through natural selection. The
good illustration of this difference is the famous Haldane
sentence: I would jump into a river to save two brothers
or eight cousins [2].
More precisely, the ESS has two properties:

1. It is a mixed Nash strategy
2. It is stable

In the standard game theory the non-zero sum two-
person game in normal form is represented by two pay-
off matrices thus it is also called a bimatrix game. In the
evolutionary games the payoffs for players are well de-
fined by a single matrix. Players may use different
strategies, but there is no differentiation between them
(like strength, age etc.).
Replicator dynamics is one way to resolve evolutionary

stable games. It represents the so called mean-field ap-
proach. Another technique which enables study of allo-
cation of players is called spatial evolutionary game. It
combines the evolutionary game theory with machinery
of cellular automata or agent based modelling. In this case
is a local players’ position with specific strategies and differ-
ent ways of performance very important. To our knowledge
the first application of spatial game solutions in cancer
modelling has been presented by Bach et al. [17] as a devel-
opment of angiogenic games [5]. Spatial version of the
motility/evasion game is presented in [18]. Many works
demonstrate that the spatial modelling discloses altruistic
and cooperative strategies, and strong discrepancies when
compared to the mean-field models (e.g. [19]).
The basic distinctions between mean-field and spatial

models is lack of perfect mixing; intercellular interac-
tions are dependent on local population arrangement.
While mean-field models are rather simplistic descriptions
of carcinogenesis, spatial models, based on cellular autom-
ata, constitute the next step to discover new behaviours
among cells and give different results than mean-field
models. Recently, spatial games have become very popular,
nevertheless it should be remembered that their origin is
the use of cellular automata by such pioneers as von
Neumann [20] in conjunction with the classical theory
of games. Mansury and co-workers [8, 21] use the term
agent-based modelling to focus on the fact that in such
models the smallest unit of observation is the individual
tumour cell rather than the entire neoplasm. In our

research we follow the line of reasoning presented by Bach
et al. [17], where spatial tool used in modelling of carcino-
genesis is most suited to our expectations. Some preliminary
results for “bystander games” have been discussed in [22].
Similarly to non-spatial games, the spatial ones are also

iterated. Game is played on a lattice forming torus, and
every competition resulting in a tie is settled randomly.
Passing transient generations we proceed according to

the following steps [17]:

– payoff updating - sum of local fitness in a
neighbourhood.

– cell mortality - removing a certain number of players.
– reproduction by competition - defining which of the

cells (with respect to their the strategies) will appear
on an empty place.

In [17] three ways of cell mortality are presented:

– synchronous updating - all the cells die simultaneously
and they are replaced according to the strategy of their
neighbours in the previous iteration (before dying).

– asynchronous updating - in each generation a single
cell, chosen at random, dies and is replaced.

– semi-synchronous updating – the probability of
individual cellular mortality is equal to 0.1. So in one
generation 10 % of players are deleted from the lattice.

In this paper we are using mainly semi-synchronous
updating; this method enables modelling situations that
are biologically more realistic. Furthermore, simulations
show that synchronous updating assumes a global con-
troller of the system, while asynchronous updating im-
plies that vanishing of small cells clusters is impossible.
The initial lattice is the same for all simulations, but it

has been generated randomly to avoid initial clusters. The
size of the lattice is 30x30 (contains 900 cells). Moreover,
since in our approach each cell is defined by multiple phe-
notypes, the lattice has another dimension, the size of
which equals to the number of basic phenotypes used in
the simulation (i.e. 30x30x4). From the point of view of the
individual cell and their neighbours the lattice has two di-
mensions, but due to its heterogeneity the game is played
on multiple layers representing separate phenotypes, but
connected with each other by the particular cell. This is
why we propose to call it a multilayer evolutionary game.
Reproduction of removed players (killed cells) is the

next step in the algorithm. It is understood as the way
in which empty place after the cell death is invaded by
its neighbours. In [17] two kinds of reproduction were
proposed:

– a deterministic one – in the competition for an empty
place the winner is the strongest player (with highest
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local adaptation – sum of eight scores from cell-cell
interaction)

– a probabilistic one – values of fitness (sum of the
values from pay-off matrix) for each player are
divided by the total score in their neighbourhood.
This local competition, with an appropriate fitness
and location, allows cells strategies with lower
fitness, but in better location and locally superior in
numbers, to predominate in population.

In our opinion, deterministic reproduction is justified
when we consider direct interaction of cells, while prob-
abilistic one is more appropriate if the interaction results
from signal transduction between cells directly exposed
to some external stresses and their neighbours not exposed
directly. In other words the probabilistic reproduction is ap-
propriate to model the bystander effect. It seems that in the
latter case results of interaction are more “social” than in
the former case.
In [17] neighbourhood size is defined in the von

Neumann sense (4 neighbours of the cell are taken
into account). Other possibilities include the so called
Moore neighbourhood (8 neighbours), which is used
in our simulations, or extended Moore neighbourhood
(24 neighbours).
Results from spatial modelling show that they may be

different than mean-field results based on replicator dy-
namics. Developing spatial model involves enormous
range of parameterization possibilities of how to play the
game (way of reproduction, deleting players, type of
neighbourhood, restriction of lattice, players’ location, size
of lattice, initial conditions). Therefore, results of replica-
tor equations are less dependent on initial frequency and
are independent of a chosen way of the allocation.
Spatial games show that cooperation and forming

common cells clusters are possible. Moreover, this class
of models may better describe some phenomena, how-
ever they are not completely deterministic models. In
reproduction stage and during ties some random effects
are shown. The case of a single player surrounded by
other players with different strategies is a very good ex-
ample. According to the payoff matrix evolutionary
stable strategy is a strategy of single player. If so, with
some amount of luck and mortality of surrounding players,
it has a chance to dominate the population.
In the spatial evolutionary games it is also much easier

than in the mean-field games to introduce new phenotypes
and increase the dimension of the space of strategies.

Multilayer spatial evolutionary games
The main assumption of the spatial games presented in
[17] is that each cell on the lattice is represented by a
player following only one strategy. The local payoff for
each player is the sum of payoffs due to interactions

(according to the payoff matrix) with cells in the neigh-
bourhood. We will refer to this approach as the classical
one, or SEGT. Cells on the spatial lattice can also be
considered as heterogeneous (instead of homogeneous),
so that each particular player may contain mixed pheno-
types. Spatial games of the type proposed by us in [14],
are called mixed (multilayer) spatial evolutionary games
(MSEG). It is important to mention the definition of the
phenotype, which is the set of traits or characteristics of
an organism [23]. This possibility seems to be especially
attractive if stem cells are considered. In this case the
strategy played by the cell is almost arbitrary depending
on a number of unknown environmental conditions.
The choice of a particular strategy may result in cell dif-
ferentiation and escape to the population of differenti-
ated cells. Alternatively, the cell may retain its stemness.
Hence, in MSEG different degrees of playing a particular
strategy are treated as different characteristics that de-
fine different phenotypes. It may happen that within the
population all of the players have diverse phenotypes
(which probably better describes biological phenomena).
For the sake of simplicity and following the way of reason-
ing from SEGT, those strategies and traits still correspond
to the phenotypes and a general, collective point of view is
defined as a player’s phenotypic composition. In fact,
the game is performed on a multidimensional lattice
(dependent on the number of defined phenotypes in
the model, see section: Methods), where each layer repre-
sents a particular phenotype (as the frequency of occur-
rence) of the player. Because of that we propose to call
this type of processes multilayer spatial evolutionary
games. For the computation of the local adaptation, the
sum of the payoffs between each phenotype (within two
players) multiplied by their rate of occurrence is calculated
first. The second step is the summing of these values for
each player in the neighbourhood.
As in SEGT, in every single iteration one global algorithm

is used on the lattice, forming a torus. The payoff updating
step has been already discussed in general while introdu-
cing SEGT and MSEG. More detailed description\is pro-
vided further in the text, together with the particular model
analysis. The next stage is accounting the cell mortality and
in this paper semi-synchronous type is used (10 % of the
cells from the lattice are chosen to play this role).
Two kinds of reproduction (deterministic, probabilistic)

can also be easily applied for games of this type. A differ-
ent approach for the player interpretation (polyphenotypic
description) allows, however, to create and use other
reproductions:

– weighted mean of the strongest players – in
accordance with the players’ payoffs, the weighted
mean from phenotypes is computed for the players
with the highest scores.
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– weighted mean of the best interval – players are
divided into intervals in accordance with their
payoffs. The weighted mean is computed only for
the players from the best interval.

Yet another difference between SEGT and MSEG is that
the tie (when payoffs are equal) for the former is settled ran-
domly, while for the latter the average between phenotypic
compositions is computed. Spatial games are complex due
to the vast amount of different methods and parameters.

Four phenotype model of interaction between tumour cells
The model (Table 1) under consideration contains four
different strategies/phenotypes of cells (in order to reduce
a number of symbols, phenotypes and their frequencies are
denoted by the same symbols):

1. The cell produces the growth factor for its own and
all neighbours benefit, for example transforming
growth factor-beta TGF-β (we denote frequency of
these cells by A);

2. The cell produces a cytotoxic substance against nearby
cells, for example cytotoxic lymphocytes (frequency = P);

3. The cell is resistant to the cytotoxic substance, for
example cells resistant to cytotoxic lymphocytes
(frequency = Q);

4. The strategy which shall be considered as a baseline:
the cell does not produce the cytotoxic substance, nor
is resistance to it, or growth factor (frequency = R);

This model may be used to study interactions between
different cells’ strategies existing in two different models.
In terms of tumour cells the sum of A-type (growth fac-
tor-producing) and P-type (cytotoxic) may be considered,
since Q-type (cytotoxin-resistant) does not make any dam-
age to other cells and R-type is neutral. On the other hand
A-type could be considered as cells responsible for im-
mune system, so then P and Q-type shall be tumour cells.
In general, the model represents the consequence of inter-
actions between diverse cells’ phenotypes and feasible
stable coexistence.

To achieve quadruple equilibrium (all phenotypes exist
in the final population) the parameters should satisfy
some relations resulting from the fact that each expected
frequency has to be constrained to the values between 0
and 1. If they are violated, the results may lead to points
that indicate other than quadromorphic populations.
The equilibrium point could be either an attractor or a
repeller and the population itself may be unstable.

Results
Vast number of parameters and four phenotypes cause
that analysis of the model is not as trivial as in the case
of two separate models. To check the feasibilities of the
model’s final states we present them as functions of two
parameters.
Figures 1 and 2 show that different monomorphic and

polymorphic populations may be achieved for various
values of parameters. The disadvantage of this approach
is that the dynamics and the exact ratios of phenotypes
are not shown. Moreover the simulations were per-
formed only for one set of initial frequencies (in this
case uniformly distributed). Some basic dependencies
may be seen at first glance. For example, if g is smaller
than e, then only A and R-cells survive in the popula-
tion. So, when the profit gained after having subjected
another cell to the cytotoxin (g) is not sufficient compar-
ing with cost of cytotoxin productions (e), then P-cells
(cytotoxin-producing) are worst adjusted than the rest of
the types. At the same time, Q-cells (cytotoxin-resistant),
as an evolutionary response to the cytotoxins producers,
also lose their advantage in the population. When e
equals g then P-cells appear in the population, since
their adjustment is the same as the R-cells (neutral). In-
creasing g leads to different populations, even the quad-
romorphic one. Then when g is greater than e + 0.35 the
population is monomorphic and dominated by P-cells.
So when profits are big enough then cytotoxin-producing
cells repress other cells from the population. However, it is
not clear why the threshold value equals e + 0.35, not any
other value.
The second simulation has been performed for changes

of h and f. Similarly, as for the previous simulation some
threshold values form regions where different poly-
morphic populations appear: A and P, then when f rises
Q-cells stay in population and then R-cells. As can be
seen, for this set of parameters usually phenotypes A and
P stay in population. The exception is when h = 0, in
which case P is repressed from the population due to evo-
lutionary correlation with Q type adaptation.
The results are sensitive to the small changes of the

parameter values. It is a matter of changing a value just
by 0.1 to achieve different populations in terms of exist-
ence of different phenotypes, different evolutionary stable
states or even unstable states (i.e. oscillations).

parameter description value range

j represents the profit of cell contact with
growth factors

0–1

i represents the cost of producing the
growth factors

0–1

f represents the disadvantage of being
affected by cytotoxin

0–1

e represents the cost of producing cytotoxins 0–1

g represents the profit gained after having
subjected another cell to the cytotoxin

0–1

h represents the cost of resistance to cytotoxin 0–1
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Due to immense amount of different results and combi-
nations of the parameters, we discuss only the case when
the population is quadromorphic. The EGT analysis (the
mean field model – replicator dynamics) (Figs. 3 and 4)
shows that steady state is achieved after some decreasing
oscillations and the phenotypes coexist in the population.

There is a possibility of stable quadromorphic popula-
tion in MSEG games for the same set of parameters as
in the mean-field game (Figs. 5 and 6). In the case of the
probabilistic reproduction, the stable state is achieved
after some initial oscillations, where the domination of P
and R phenotypes appear. Deterministic reproduction gives

Fig. 1 Different subpopulations in accordance to changing parameters. Different subpopulations (represented by shades of grey) in accordance
to changing parameters: changing e and g with constant i = 0.3, j = 0.4, h = 0.1, f = 0.4. Some sample points with concrete e and g values and
resulting subpopulation are shown

Fig. 2 Different subpopulations in accordance to changing parameters. Different subpopulations (represented by shades of grey) in accordance
to changing parameters: changing h and f with constant i = 0.3, j = 0.4, e = 0.3, g = 0.4. Some sample points with concrete h and f values and
resulting subpopulation are shown
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the domination of A and R phenotypes. Interesting struc-
tures of the cells can be found on the lattice, where cells
having their phenotype composition dominated by A (navy
blue colour) and R (light blue colour) are surrounded by
thin “lines” of P phenotype (green colour). For the repro-
ductions based on the weighted mean the same phenotypes

prevail in the population, however the phenotype
consistency on the lattice is equally spread (averaged),
that is the major trend in this kind of reproduction.
Increasing h to 0.2 (Figs. 7 and 8) causes that in case

of probabilistic reproduction the adaptation and the
amount of P cells is increased. A similar effect is visible

Fig. 3 Mean-field results (simplex) for i = 0.3, j = 0.4, f = 0.4, g = 0.4, e = 0.3, h = 0.1. Red asterisks refer to different starting points (initial frequencies
of occurrences). Green point refer to the evolutionary stable state

Fig. 4 Mean-field results (time chart) for i = 0.3, j = 0.4, f = 0.4, g = 0.4, e = 0.3, h = 0.1
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for deterministic reproduction, though the increase of P
cells is performed mainly at the cost of Q cells.
Weighted-mean reproductions give the same result as
for the previous set of parameters. When the parameter
e = 0.4, phenotype R is promoted for all kind of reproduc-
tions, but for the weighted mean from the best players
(here A cells dominate). In the situation, when i = j in case
of the mean-field game, oscillations appear between P, Q
and R cells. A similar result can be achieved in MSEG
games. The probabilistic reproduction after some initial
oscillations reaches stability (coexistence between the
same phenotypes as in the mean-field game with domin-
ation of P and R type). In the case of the deterministic
reproduction the changes between the phenotypes are
more dynamic even in the later phases of the population
evolution.
If the value of parameter g is increased, similarly as for

the mean-field game, P cells are in majority. However,
for the weighed mean from best players reproduction it
is feasible that other phenotypes appear in the final
population. In the case when i is greater than j (Figs. 9
and 10), A cells are repressed from the population (the

same as for the mean-field games), while the frequencies
of the occurrences for the rest phenotypes oscillate.

Discussion
Recent works have focused on the evolutionary dynam-
ics of tumours [24] and point out that factors important
at the evolutionary level, like survival and proliferation,
are the pivotal points in development of cancer as a het-
erogeneous population with different cells. Moreover, an
additional key-factor (for game theory applications) has
been studied mainly by Basanta and Anderson [13],
which is the impact of the ecosystem or the interactions
between tumour cells and their environment. They have
already modelled changes in the cancer ecosystem in the
context of different anti-cancer therapeutic strategies.
Further development of spatial games may provide add-
itional possibilities of simulating therapies by affecting
different players (as elements on the spatial lattice) at a
different level or even in a different way. The extension
could be reached by additional simulation of the environ-
ment (or another factors affecting the cancer cells popula-
tion) performed on the parallel lattice. The simulation

Fig. 5 MSEG results (spatial lattice) for i = 0.3, j = 0.4, f = 0.4, g = 0.4, e = 0.3, h = 0.1. a probabilistic: A = 0.15, P = 0.40, Q = 0.13, R = 0.32;
b deterministic: A = 0.36, P = 0.13, Q = 0.10, R = 0.41; c weighted mean, best cells 3: A = 0.41, P = 0.12, Q = 0.05, R = 0.42; d weighted mean,
intervals 5: A = 0.42, P = 0.02, Q = 0.02, R = 0.54. Each phenotype is represented by a different colour (the same as for EGT, see Fig. 4), due to
mixed phenotypes for one cells colours are also mixed accordingly
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could base on evolutionary game theory principles (for in-
stance another MSEG game) or any different cellular au-
tomata rules or algorithms. Another spatial layer may be
introduced due to changes in the phenotypic composition
of the population that means changes in the basic game.
Furthermore, a simulated phenomenon should be in-
cluded in the payoff matrix. Thus, the approach provides
the possibility to have different payoff matrices for each
cell on the spatial lattice providing the asymmetry in the
game. Basanta and Anderson [13] indicate that elimin-
ation of as many cancer cells as possible may not be essen-
tially the best strategy. They found that destroying only
some fraction of the cancer cells (with a particular pheno-
type) may be far more efficient. Additionally, influencing
the way how cells interact with each other shall be also
considered. Thus, using spatial games with additional sim-
ulations provides a possibility to study that conclusion
using a vast amount of different configurations (especially
for various initial lattices and simulated environments).
Combinatory anticancer treatment that changes men-
tioned intercellular interactions (for instance by affecting
environment) and eliminates only selected types and frac-
tions of the cancer cells could be efficiently simulated
using MSEG with additional simulation. The described
therapy fits well to the so called evolutionary double bind
model [25]. Presented model suggests using sequentially
two different anticancer therapies that affect the payoff
matrix in different ways for different phenotypes that are

resistant to the treatments. In case of EGT and SEGT ap-
proaches, one phenotype is resistant to only one treatment
at the time (or not resistant at all). By MSEG, one cell
could be resistant partly to each treatment, which we find
more akin to the biological reality. What is more, an add-
itional lattice may be easily introduced to simulate the
treatment concentration doses impacting the phenotypes
by changing payoff matrix parameters.
The final lattice and abundance of particular phenotypes

depend on the reproduction scheme (e.g. Fig. 8 phenotype
P is dominant for the probabilistic reproduction, while
phenotype R for the deterministic one). This confirms
our expectations related to the role of the reproduction
schemes (see, section Methods): the deterministic
reproduction favors strongest players and the probabilistic
one advantages social behaviors related to indirect interac-
tions. Due to different payoff computing algorithms, the
deterministic reproduction may describe and depend
on the direct communication of the cells; on the other
hand the probabilistic is related to bystander effect and
its impact on the neighboring cells. Probabilistic and
deterministic schemes allow for cell clustering and
some stable results (Figs. 5 and 7), however, for a differ-
ent set of payoff matrix values, some oscillations and
changing cells structures may occur (Fig. 9). On the
other hand, reproduction types based on weighted mean in
all cases ‘smooth’ the lattice to the one type of phenotypes
composition.

Fig. 6 MSEG results (time chart) for i = 0.3, j = 0.4, f = 0.4, g = 0.4, e = 0.3, h = 0.1. a probabilistic: A = 0.15, P = 0.40, Q = 0.13, R = 0.32; b deterministic:
A = 0.36, P = 0.13, Q = 0.10, R = 0.41; c weighted mean, best cells 3: A = 0.41, P = 0.12, Q = 0.05, R = 0.42; d weighted mean, intervals 5: A = 0.42, P = 0.02,
Q = 0.02, R = 0.54
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Conclusion
In this paper spatial evolutionary games, proposed by
Bach et al. [17] have been developed further following
our proposal [14]. This new approach considers that
each simple player shall be treated as a more complex
individual expressing different traits, which seems to be
more realistic for the simulation of many biological pro-
cesses considering the heterogeneity of individuals. The
proposed model is an extension of two of the first game
theoretic models of carcinogenesis. The model assumes
an existence of four possible phenotypes (strategies) in
the population of cells that make up a tumour. One of
the results is possibility of stable coexistence of different
tumour cells within the population. Commonly known
models describe single phenomenon (or single traits of
the tumour), for instance, avoiding apoptosis [4], indu-
cing angiogenesis [5] or activation of invasion or metas-
tasis [18]. Some of them already cover hallmarks of the
cancer presented by Hanahan and Weinberg [26, 27].
We believe that combing models (introducing more differ-
ent phenotypes within one game) and introducing cells
heterogeneity (by MSEG) provide possibility to study

tumour cells evolutionary process [24]. Yet another possi-
bility given by this approach is related to the potential of
stem cells and their ability to behave differently depending
on unknown environmental factors. In some sense they
may play arbitrary strategy which in turn may lead to their
differentiation. In [28] and [29] the authors see the bene-
fits of applying the evolutionary game theory to modelling
stem cells interaction with their environment and the sur-
rounding cells. Studying a solution using EGT their
models do not only describe the differentiation process of
the stem cells, but also the heterogeneity of the cell popu-
lation containing them. However, they do not consider the
heterogeneity on the cells level, which could be introduced
by MSEG.
The effects and potential interactions, both in macro

and micro environments, may be better analysed and
understood by spatial factors. To our knowledge, so far
all comparisons with biological phenomena (in terms of
game theoretic carcinogenesis modelling) have been per-
formed only in a qualitative way which, still, may be very
complicated in the case of more complex models. More-
over, we also emphasize strongly that evolutionary games

Fig. 7 MSEG results (spatial lattice) for i = 0.3, j = 0.4, f = 0.4, g = 0.4, e = 0.3, h = 0.2. a probabilistic: A = 0.10, P = 0.55, Q = 0.12, R = 0.23;
b deterministic: A = 0.34, P = 0.17, Q = 0.03, R = 0.46; c weighted mean, best cells 3: A = 0.45, P = 0.08, Q = 0.05, R = 0.42; d weighted mean,
intervals 5: A = 0.40, P = 0.02, Q = 0.02, R = 0.56
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are mainly used to study changes in a tumour’s pheno-
typic heterogeneity and its impact on the evolutionary
dynamics of cancer (possibility of different interactions,
e.g. cooperation). However, the importance of hetero-
geneity is at the population level, meaning that the
population contains different homogenous cells, which is
obviously an important limitation arising from the usage
of replicator dynamics. The application of multilayer spatial
evolutionary games additionally allows for modelling het-
erogeneity on the cell level within the population, which
may be more appropriate for the biological reality.
Although the results of modelling and simulation have

only quantitative meaning, they are biologically valid.
Comparing them to results of different experiments on
cell lines performed by biologists cooperating with us
enables discussion of the impact of different parameters
on the development of phenomena related to interactions
of the cell populations. Our first attempt to mimic behav-
iour of real cell populations observed in such experiments
using MSEG approach was successful and results of the
modelling were presented in [30]. Moreover these results
could be used to plan new experiments which may explain
processes still far from being recognized. It also enables
study of cancer as a network society of communicating
smart cells [31].
A recent study [32] shows the possibility of training

and validating the replicator dynamics equations using
population sizes measured in co-culture over time, and

the potential clinical implications discussed may enable
future development and quantitative application of re-
sults from theoretical game models in cancer treatment.
However, to apply fully the game theoretical models, it is
necessary to find a way to train and validate the payoff
matrices. That step would allow not only to simulate
and validate scenarios where the numbers or frequencies
of particular cells have been changed, but it would provide
a way to study the changes within the interactions be-
tween cells (for instance by affecting the environment).

Reviewers’ comments
First of all we would like to thank the reviewers for their
valuable comments. We hope that the revision of the
paper in which we have followed their remarks is now
acceptable. In what follows, we detail the responses to
more specific comments of the reviewers and changes
introduced by us to the manuscript.

Reviewer’s report 1: Tomasz Lipniacki
Reviewer comments:
The Authors propose approach to spatial cancer mod-

eling based on evolutionary games on the lattice. They
analyze competition between four cell phenotypes that
can mimic various types of cells in the cancer subpopu-
lations. The competition between these phenotypes is
characterized by 6 parameters representing costs and
gains in the game. The Authors show that depending to

Fig. 8 MSEG results (time chart) for i = 0.3, j = 0.4, f = 0.4, g = 0.4, e = 0.3, h = 0.2. a probabilistic: A = 0.10, P = 0.55, Q = 0.12, R = 0.23;
b deterministic: A = 0.34, P = 0.17, Q = 0.03, R = 0.46; c weighted mean, best cells 3: A = 0.45, P = 0.08, Q = 0.05, R = 0.42; d weighted mean,
intervals 5: A = 0.40, P = 0.02, Q = 0.02, R = 0.56
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values of these parameters the systems may reach a
different equilibrium in which one, two, three or four
phenotypes coexists in the final population. Overall it
is a nice study showing possible directions in heteroge-
neous cancer population modelling. I have some specific
comments, addressing which may improve exposition of
results and readability of the manuscript.
1. There is a long Methods section, but in addition a

brief summary of simulations details would be helpful.
For example the information about size of the lattice is
missing.
Authors’ response: We have added more detailed de-

scription of our simulation methodology in section
Methods.
2. The information that the problem is considered on

2D lattice should be given earlier, maybe in abstract.
Authors’ response: This additional information has

been included in the abstract.
3. I am not sure whether the “multilayer spatial evolu-

tionary game” is the right terminology, as the simulations
are performed on single lattice (I think!) not on four
lattices, and phenotypes densities sum to 1.

Authors’ response: Additional explanation regarding
the multiple layers has been added in section Methods.
The lattice is 2D considering the cells neighbourhood,
however from the computation point of view the game
is played on as many lattices, or more precisely, as
many layers of the lattice as is the number of pure
strategies (basic phenotypes) in the pay-off table for a
given game.
4. Authors should discuss why the winning (or most

abundant phenotype) depends on the model version, e.g.
in Fig. 6 phenotype P is the most abundant for prob-
abilistic model, while phenotype A is most abundant
for remaining three models. The differences are also for
parameters chosen to produce Figs. 8 and 10.
Authors’ response: The variety of behaviours of cell

populations depending on the choice of reproduction
schemes and parameters results both from mathematical
and biological reasons. In the conclusion and discussion
sections we have added some comments on probable rea-
sons of those differences, some of them could be expected
from theoretical analysis, the others seem to be case specific
or even paradoxical.

Fig. 9 MSEG results (spatial lattice) for i = 0.6, j = 0.4, f = 0.5, g = 0.5, e = 0.3, h = 0.1. a probabilistic: A = 0.01, P = 0.36, Q = 0.43, R = 0.20;
b deterministic: A = 0.02, P = 0.36, Q = 0.26, R = 0.36; c weighted mean, best cells 3: A = 0.14, P = 0.09, Q = 0.18, R = 0.59; d weighted mean,
intervals 5: A = 0.01, P = 0.05, Q = 0.13, R = 0.81
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5. Oscillations shown in Fig. 10 can be results of finite
lattice size – please comment.
Authors’ response: The lattice used in the simulations

is a torus, thus it does not have the finite borders. However
analysis of the results for different lattice sizes (bigger than
used in the paper – 30×30) suggests that the appearance of
the oscillations is not related to the size. It is rather
dependent on the values of the payoff parameters.
6. In Discussion and Conclusion Authors should refer

more to their specific results shown in Figs. 1, 2, 3, 4, 5,
6, 7, 8, 9 and 10.
Authors’ response: References to the specific results

and figures have been added.
7. Authors may consider adding some discussion about

stemness and differentiation. Simulations in which cells
can change their phenotype would be cool.
Authors’ response: We are really grateful for this com-

ment – we have found some interesting papers related to
this problem which we refer to and comment in the re-
vised version of the paper. We think that our approach
may be especially valuable in tracking the fate of stem
cells. The reviewer’s remark has inspired us to study this
problem in our further research.

Reviewer’s report 2: Urszula Ledzewicz
Reviewer comments:
Originality: The authors propose a new type of spatial

evolutionary games called multilayer spatial evolutionary

games. The idea is that cells on a lattice are able to play
a mixture of strategies instead of choosing one special
strategy. In terms of phenotypes, which in evolutionary
games are the strategies that the cells represent, different
phenotypes with some degree of belongingness are used.
Alternatively, there exists an almost continuous spectrum
of phenotypes within the considered population of cells
which combine basic traits observed in the population.
Both these interpretations make biological sense and they
may be a good description of cancer heterogeneity which
is manifested not only on the population level but also at
the cellular level. Such an approach has not been used be-
fore except for the previous paper of the authors [14]
(numbers of references are as in the paper under review)
in which, however, only the idea of mixing different phe-
notypes in the context of modeling a bystander effect is
discussed without general rules and algorithms for its im-
plementation. In this paper, the spatial game resulting
from the interaction of cells representing phenotypes be-
ing mixtures of the basic traits is played on the lattice
which contains as many layers as is the number of basic
traits. This is another original contribution of this paper.
An important advantage of this approach is that the num-
ber of phenotypes or traits represented by the cells is not
critical for efficient computations. This is demonstrated in
the paper where four different basic traits are discussed
while in almost all papers in which evolutionary game the-
ory has been used for modeling of tumor cells interactions

Fig. 10 MSEG results (time chart) for i = 0.6, j = 0.4, f = 0.5, g = 0.5, e = 0.3, h = 0.1. a probabilistic: A = 0.01, P = 0.36, Q = 0.43, R = 0.20;
b deterministic: A = 0.02, P = 0.36, Q = 0.26, R = 0.36; c weighted mean, best cells 3: A = 0.14, P = 0.09, Q = 0.18, R = 0.59; d weighted mean,
intervals 5: A = 0.01, P = 0.05, Q = 0.13, R = 0.81
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only two or three phenotypes have been discussed. More-
over, thist leads to a new insight on the structure of the
modeled cancer cell population. The model discussed in
the paper combines two classical models of Tomlinson
(presented in [4] and [5]) and such combination analyzed
together seems to be important from the point of view of
tumor growth and development. As mentioned before,
multilayer evolutionary games enable modeling of almost
a continuous spectrum of phenotypes. This “almost” re-
sults from a finite number of intervals representing contri-
butions of different traits in the specific phenotype of the
cell. This leads to yet another original idea proposed by
the authors related to reproduction schemes used in the
spatial evolutionary game algorithm. Two new such
schemes are added to standard probabilistic and determin-
istic ones: mean value of best cells and mean value of best
intervals. Although their biological interpretation is not
evident, the results in the case when they are used seem to
be compatible with mean field results. This procedure
which is a kind of discretization is necessary because of
the graphical interpretation of results. Since mixing phe-
notypes means mixing colors, feasibility of the analysis of
the results depends on distinguishability of these colors.
Significance: Heterogeneity of cells has become one of the
most often discussed cancer hallmarks. Populations of liv-
ing cells contain subpopulations which differ in pheno-
types, and even cells that develop as clones from single
cells show differences in cell cycle progression, production
of specific proteins, or induction of processes leading to
cell death after some time. The development of cell popu-
lations such as in a tumor depends on the phenotypic
structure of the initial cell population and on the exchange
of signals between cells via molecules released into the en-
vironment or placed on the cell surface. It has become
clear that not only are distinct tumor subclones found to
coexist within the same tumor regions, but that metastatic
subclones originate from a non-metastatic parental clone
in the primary tumor. Additional post-transcriptional and
epigenetic changes can potentially further diversify a
tumor population, which is also dynamic, as shown in the
responses to standard regimens, with preexisting minor
subclones expanding to dominate at relapse. Therefore,
current regimens can have unpredictable and/or unin-
tended consequences on the resulting tumor diversity.
Current experimental approaches do not allow observa-
tions of single cells in a population for very long periods
because of limitations such as nutrient depletion or over-
growth of cells, and studies of the molecular aspects of
development in a cell population are more complex. Evo-
lutionary game theory provides tools which help to under-
stand the main processes that govern the development of
structured cell populations. This type of analysis may
help to understand differences of response to environmen-
tal or therapeutic factors between different cell types. The

multilayer spatial evolutionary games proposed by the au-
thors may explain results of many experiments in which,
on the first view the same cancer cells in almost the same
conditions behave differently. Moreover, the same ap-
proach may be used to study different effects of therapies
treated as yet another player in the game. In light of recent
studies showing the extent of intratumor heterogeneity
and its clinical implications, it is important to incorporate
tumor diversity and the expected evolutionary trajectories
into rational drug design to achieve predictable tumor re-
sponse, and reduce chances of relapse. Thus it might be
preferable to employ a less radical treatment protocol that
preserves heterogeneous therapeutically “naïve” popula-
tion than to select for a very fast growing and resistant
clone by using a “sledgehammer” therapy The multilayer
approach could easily incorporate the effect of interven-
tion and its mutual relationship with cancer heterogeneity.
Nevertheless, the success of this technique is highly
dependent on the possibility of estimation of parameters
used in pay-off tables. Especially, as it is demonstrated in
the paper, the results are very sensitive to these parame-
ters. From one side the results obtained in the paper deal-
ing with this sensitivity are important because they justify
experimental results indication such sensitivity. On the
other hand, taking into account difficulty in precise es-
timation of pay-off coefficients leads to the conclusion
that the results of the proposed technique of modeling
have only qualitative value. Moreover, new types of
reproduction proposed in the paper open new possibilities
of understanding some ‘altruistic’ behavior observed in
some experimental studies on tumor cells. Unfortunately,
all these prospective applications are not discussed in
the paper. Such discussion may significantly improve
its quality.
Authors’ response: We wish to thank the reviewer for

bringing to our attention some advantages of our approach.
Frankly speaking, some of them has been “discovered” by us
due to the reviewer’s comment. We have extended the dis-
cussion session to include some of them. On the other hand,
just recently, our publication [30] prepared in collabor-
ation with biologists from our institution, has appeared
in which we reported our successful attempt to mimic
results of biological experiment using MSEG.

Reviewer’s report 3: Jacek Banasiak
Reviewer comments:
Having read the paper carefully, I realized that I should

not have accepted invitation to review it as evolutionary
games is not my field of interest and also I am a mathem-
atician and the appear does not contain much mathemat-
ics in the conventional style. Nevertheless, let me try to
provide some comments. Evolutionary game theory has
been used with some success to simulate tumour develop-
ment. Spatial evolutionary games allows to model some
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spatial heterogeneity of cells. The main contribution of the
paper is to extend the existing results of simulating
tumour processes that have been limited to two or three
phenotypes, to four phenotypes. Moreover, what the au-
thors call mixed (or multilayer) spatial evolutionary games,
allow each cell to play different strategy (out of these four).
Different mixes of strategies are treated as different phe-
notypes. An important feature of the paper is bringing
some parallel between the spatial evolutionary games and
the replicator dynamics approach that looks at the ‘mean-
field’ description of the game. According to the authors,
extending the number of strategies to four, bringing the
dimension of the mean-field model to three, allows the
replicator dynamics (described by an ODE system) to ex-
hibit more complex dynamics, including chaos (strange
attractors). However, the authors have not pursued this
comment. In general, the paper offers a description of the
mixed spatial evolutionary game theory approach to can-
cer modelling in which not only heterogeneity in space
but also at a given point, in the sense of possibility of hav-
ing different phenotypes at any give site, can be modelled.
This is illustrated by performing in two sets of simulations
varying two out of four parameters in each one. Some
comparison with results obtained by the mean-field ap-
proach for the same values of parameters as before.
There are some statements in the paper that should be

re-considered.

– For instance, on p. 2, in Conclusions, the authors
write: Despite complex analysis....., the model gives
finite number of diverse results (meaning, I believe,
few different results). On the other hand, on p. 16,
line 35, they state: Due to immense amount of
different results...., we discuss only the case when the
population is quadromorphic. So, do we have just few
different results, or an immense amount of them?

– The first sentence of the last paragraph on p. 7 would
be more clear if a colon was used. The second sentence
in that paragraph should be re-written { it is too
convoluted to carry any meaning.

– Page 8, l. 29: if \every”, then the sentence should be
in singular.

– Page 9, l. l. 8{10, at least semi-colon instead of comma,
then I would write: this method allows for modelling
situations that are biologically more realistic.

– Page 9, l. 21, invaded, I presume.
– Page 10, l. 16–17, the sentence should be somehow

substantiated by e.g. referring to the simulation
results. It is an important point as when one
presents a new method that gives different results
from a well-established one, some argument should
be provided to convince the reader that the new
method is better and why. Also, in the second
sentence of this paragraph I would not use the

verb ‘arise’. The construction of the sentence
should be changed.

– Page 13, l. 15{, It is not clear what the paragraph is
about, especially how the second sentence is related
to the first.

– Page 13, l. 32, resulting model.
– Page 15, l. 26, ‘cons’ is a colloquial expression; after

the comma, what is the meaning of ‘the exact ratio
of phenotypes’ - something is missing.

– Page 16, l. 8, again, the authors state some fact
without any attempt to reflect on it.

– Page 16, l. 28, if the parameter varies between 0 and 1,
I would not say that the change by 0.1 (10 %) is small

Authors’ response: We have done our best to make the
revised version easier to understand. We hope that the
English is much improved (a native English speaker has
been involved in revision of the manuscript) and all typos
and ambiguous sentences have been corrected.
As I said earlier, this paper does not belong to the field

I am comfortable doing reviews in. It is not a conven-
tional mathematics. It offers a description of an interest-
ing method of approaching the problem of modelling
the evolution of spatial and local heterogeneity of cancer
cells, together with some numerical simulations. Possibly
the value of the paper would be improved if the simula-
tions were tested against some real data.
Authors’ response: The first attempt was already made

by us and the results are reported in the paper [30]
which we have added to the list of references.

Abbreviations
EGT: Evolutionary game theory; ESS: Evolutionary stable strategy;
MSEG: Multilayer spatial evolutionary game; SEGT: Spatial evolutionary game
theory
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