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Abstract

Background: It is interesting to study the consistency of outcomes arising from two genomic platforms: Microarray
and RNAseq, which are established on fundamentally different technologies. This topic has been frequently discussed
from the prospect of comparing differentially expressed genes (DEGs). In this study, we explore the inter-platform
concordance between microarray and RNASeq in their ability to classify samples based on genomic information. We
use a set of 7 standard multi-class classifiers and an adaptive ensemble classifier developed around them to predict
Chemical Modes of Actions (MOA) of data profiled by microarray and RNASeq platforms from Rat Liver samples
exposed to a variety of chemical compounds. We study the concordance between microarray and RNASeq data in
various forms, based on classifier’s performance between two platforms.

Results: Using an ensemble classifier we observe improved prediction performance compared to a set of standard
classifiers. We discover a clear concordance between each individual classifier’s performances in two genomic
platforms. Additionally, we identify a set of important genes those specifies MOAs, by focusing on their impact on the
classification and later we find that some of these top genes have direct associations with the presence of toxic
compounds in the liver.

Conclusion: Overall there appears to be fair amount of concordance between the two platforms as far as
classification is concerned. We observe widely different classification performances among individual classifiers, which
reflect the unreliability of restricting to a single classifier in the case of high dimensional classification problems.

Reviewers: An extended abstract of this research paper was selected for the CAMDA Satellite Meeting to ISMB 2015
by the CAMDA Programme Committee. The full research paper then underwent two rounds of Open Peer Review
under a responsible CAMDA Programme Committee member, Lan Hu, PhD (Bio-Rad Laboratories, Digital Biology
Center-Cambridge). Open Peer Review was provided by Yiyi Liu and Partha Dey. The Reviewer Comments section
shows the full reviews and author responses.
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Background
For more than a decade microarray technology has pro-
vided enormous momentum to the modern genomic
research. The ability of quantify thousands of genes’
expressions at the same time has led to remarkable
achievements in wide range biological studies. Abundance
of microarray assays has been published worldwide in var-
ious databases. However, microarray technology has some
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limitations, such as the accuracy of expression measure-
ments limited by levels of hybridization and variability
hybridization properties of probes [1]. RNAseq is a ver-
sion of next generation sequencing technology which has
recently become popular due to some of its advance-
ment over the microarray technology. Evidently, RNASeq
has a potential advantage in measuring absolute expres-
sion levels compared to the microarray technique [2, 3].
Since these two methods fundamentally differ in their
underline technologies, it is interesting know if this dis-
parity results an inconstancy in experimental outcomes.
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Classifiers are known to be one of the most widely use
statistical tools in genomic oriented biomedical stud-
ies. For an example, identifying at risk individuals for
a certain disease type such as cancers, based on their
genetic profiles. In this work, we explore the concordance
between microarray and RNASeq genomic platforms in
the context of classifications based on a set of compar-
ative classification experiments carried using these two
platforms.
In recent years, a number of authors have discussed

the agreement between scientific conclusions made on
microarray and RNASeq platforms, based on compara-
tive analyses. A common choice for these studies was
the concordance of differentially expressed genes (DEGs).
A previous study that described a large scale compar-
ison of microarray and RNASeq platforms using the
Cancer Genome Atlas (TCGA) based analysis, reported
a high correlation among expressions levels resulted
from both platforms and suggested a reasonable concor-
dance between DEGs by comparing tumors with nor-
mal tissues [4]. Another study compared these two bases
using an analysis on data obtained from a colon can-
cer study and conclude that RNASeq had an advan-
tage over microarray for detecting DEGs [5]. A recent
article provided a comprehensive assessment between
microarray and RNASeq methods, comparing DEGs
using gene expressions resulted from a rat liver exper-
iment [6]. Further they described the concordance in
aspect of classification assessing the predictability of
classes defined by the chemical mode of action (MOA),
using a set of classifiers trained in two genomic plat-
forms. Their study revealed weak classification accu-
racies for a set of classifiers when applied to these
platforms.
Our work is based on the previously described rat

liver data [6], where we primarily focus on developing
a common classifier that works reasonably well in cross
platforms providing better predictability. Next, we dis-
cuss the concordance between microarray and RNASeq
platforms in various forms in prospect of classification.
Furthermore, we identify a set of important genes for
specifying classes given byMOAs by focusing their effects
on the classifier accuracy. We use seven standard clas-
sifiers and an adaptive ensemble classifier built around
them to achieve these goals. This study is part of the 2015
annual conference on Critical Assessment ofMassive Data
Analysis (CAMDA) challenges. The Rat liver experiment
was conducted by the FDA SEQC consortium to assess the
performance of modern gene transcript expression pro-
filing methods, which is a comparative analysis designed
for developing predictive models to predict the chemical
mode of action (MOA).
The remainder of the article is organized as follows. In

Section “Results”, we provide results and conclusions of

the study. Section “Methods” explains all underline pro-
cedures applied. The main body of the paper ends with a
discussion in Section “Discussion”.

Results
Classification in individual platforms
We first describe outcomes of the Analysis 1, which was
performed using two basic strategies: adjusted and orig-
inally given test sets described in Section “Methods”.
We provide a detailed summary of these results in
Tables 1, 2, 3 and 4, where each table presents the classi-
fier’s overall prediction accuracy, class specific sensitivity
and the corresponding specificity. Graphical representa-
tions of the summarized result are also provided on Figs. 1
and 2.
We first discuss the classification resulted from using

a set of genes that are represented in both platforms.
For the adjusted test set, the left panel of the Fig. 1
shows that the performance of each classifier is simi-
lar in both platforms, since all the data points are fairly
close to the diagonal line (Pearson’s r =0.92). The accu-
racy of individual classifier varies from 17 to 75%, and as
to be expected, the performance of the ensemble classi-
fier is the best in both platforms. The overall accuracy
of the optimal classification method is slightly better
in microarray compared to RNA-seq (75% vs 67%). In
particular, we observe a lower prediction accuracy for
the class “PPARA" in RNASeq (56%), compared to the
microarray (89%) platform. Overall, the class given by
“CAR/PXR" which has a maximum sensitivity of only
56%, seems to be the MOA that hardest to predict.
Some individual classifiers show widely different pre-
diction sensitivity for the same class in two platforms.
For example the sensitivity for “PPARA" by RPART is
100% in microarray, whereas it reaches as low as 22% in
RNAseq.
When the original (i.e., unadjusted) test set is used, we

again observe matching performance of classifiers in both
platforms (Table 2) similar to the case with the adjusted
test set; in fact, the agreement is even higher (Pearson’s
r = 0.94) as shown in the right panel of the Fig. 1.
The overall accuracy ranges from 60 to 12% indicating a
drop in the classification performance compare to the pre-
vious scenario. For example, 75% vs 50% in microarray
and 67% vs 50% in RNASeq for the ensemble classi-
fier. Comparing Tables 1 and 2, we also notice a decline
in sensitivities of predicting three known classes namely
“PPARA", “CAR/PXR", and “Control". Since this analysis
was carried using an alternative approach as described
in the Section “Methods”, such decline could be possi-
bly resulted from classifying several samples belonging
to above known classes as “OTHER" by depressing the
“true" class probability below 0.5 if these class attributes
are somewhat close to one another. In this case, few
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Table 1 Accuracies of predicting MOA’s in the adjusted test set, based on classifiers developed on gene expression sets profiled from
microarray and RNASeq platforms

Platform Classifier Overall Acc. %
Sensitivity, Specificity

PPARA CAR/PXR Control

Microarray Ensemble 75 89,67 44,94 100,67

SVM 58 56,59 33,73 100,44

RF 67 89,54 22,94 100,56

PLS+LDA 71 67,73 56,80 100,61

PLS+RF 58 44,68 44,68 100,45

PCA+LDA 17 0,27 0,27 67,0

PCA+RF 33 33,33 0,53 83,16

RPART 62 100,39 11,93 83,55

RNASeq Ensemble 67 56,74 56,74 100,56

SVM 58 67,54 22,81 100,45

RF 58 67,54 22,81 100,45

PLS+LDA 67 56,74 56,74 100,56

PLS+RF 58 67,54 22,81 100,45

PCA+LDA 25 33,20 0,40 50,17

PCA+RF 20 22,19 11,25 33,16

RPART 46 22,60 33,54 100,28

other individual classifiers such as SVM, RF outperform
the ensemble classifier in terms of the overall accuracy.
But nevertheless, the ensemble classifier still acts as the
best overall amongst all with regard to all performance
measures.

Even with the complete set of genes, we observe simi-
lar conformity of classifiers’ performance between the two
platforms (Fig. 2) as described above. Specifically for the
ensemble classifier the overall accuracy is identical in the
two platforms, in each case. According to Tables 3 and 4,

Table 2 Accuracies of predicting MOA’s in the originally given test set, based on classifiers developed on common gene expression
sets profiled from microarray and RNASeq platforms

Platform Classifier Overall Acc. %
Sensitivity, Specificity

PPARA CAR/PXR Control OTHER

Microarray Ensemble 50 44,52 44,52 100,42 39,58

SVM 55 0,70 0,70 83,50 100,21

RF 57 0,73 0,73 100,50 100,25

PLS+LDA 40 67,33 56,36 67,36 6,67

PLS+RF 55 11,67 11,67 100,48 83,34

PCA+LDA 12 0,15 0,15 83,0 0,21

PCA+RF 40 0,51 0,51 94,31 0,70

RPART 45 100,30 0,57 83,39 28,58

RNASeq Ensemble 50 33,55 33,55 100,42 50,50

SVM 60 0,76 11,73 100,53 100,30

RF 55 0,70 0,70 100,48 94,26

PLS+LDA 38 56,33 56,33 100,28 0,66

PLS+RF 55 11,67 22,64 100,48 78,38

PCA+LDA 14 0,18 0,18 100,0 0,24

PCA+RF 43 0,55 0,55 83,36 72,21

RPART 43 33,46 33,46 33,45 56,33
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Table 3 Accuracies of predicting MOA’s in the adjusted test set, based on classifiers developed on complete gene expression sets
profiled from microarray and RNASeq platforms

Platform Classifier Overall Acc. %
Sensitivity, Specificity

PPARA CAR/PXR Control

Microarray Ensemble 62 56,66 44,73 100,49

SVM 50 33,60 44,54 83,39

RF 67 89,54 22,94 100,56

PLS+LDA 67 67,67 44,81 100,56

PLS+RF 54 44,60 33,67 100,39

PCA+LDA 12 33,0 0,20 0,17

PCA+RF 8 22,0 0,13 0,11

RPART 62 100,39 11,93 83,55

RNASeq Ensemble 62 56,66 44,73 100,49

SVM 54 44,60 33,67 100,39

RF 62 78,52 22,86 100,49

PLS+LDA 58 44,66 44,66 100,44

PLS+RF 50 44,54 22,67 100,33

PCA+LDA 33 33,33 0,53 83,16

PCA+RF 25 22,27 0,40 67,11

RPART 42 44,41 22,54 67,34

the overall accuracy ranges between 8 to 67% and 10 to
55%, for adjusted test set and the original test set, respec-
tively. Even though we used bigger gene sets, there is
no additional improvement for predicting MOAs; indeed
the performance gets worse, which is quite evident for

the adjusted test set. However, some classifiers surpris-
ingly hold equal performances for both sets of genes. As
for example, the RPART shows identical performances in
the microarray platform under bigger and smaller sets of
genes.

Table 4 Accuracies of predicting MOA’s in the originally given test set, based on classifiers developed on complete gene expression
sets profiled from microarray and RNASeq platforms

Platform Classifier Overall Acc. %
Sensitivity, Specificity

PPARA CAR/PXR Control OTHER

Microarray Ensemble 55 33,61 44,58 100,48 56,54

SVM 55 0,70 0,70 83,50 100,21

RF 55 0,70 0,70 83,50 100,21

PLS+LDA 38 67,30 44,36 100,28 0,66

PLS+RF 60 11,73 0,76 100,53 100,30

PCA+LDA 17 0,22 11,19 83,6 6,25

PCA+RF 38 0,48 0,48 0,44 89,0

RPART 48 100,34 0,61 83,42 33,59

RNASeq Ensemble 55 44,58 33,61 100,48 56,54

SVM 55 0,70 0,70 83,50 100,21

RF 52 0,66 0,66 83,47 94,20

PLS+LDA 33 44,30 44,30 100,22 0,58

PLS+RF 60 0,76 22,70 100,53 94,34

PCA+LDA 10 0,13 22,7 33,6 0,18

PCA+RF 43 0,55 0,55 17,47 94,5

RPART 24 44,19 22,25 67,17 0,42
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Fig. 1 Plots between prediction accuracies of RNASeq vs Microarray for two different test sets using the common gene set, by eight different
classification techniques, for classifiers trained and predicted on individual platform

Classification in cross platforms
Results of the 2nd analysis, namely, classification in cross
platform are summarized in Table 5 and Fig. 3. We per-
formed this study using only the common set of genes
since both platforms are involved together throughout the
analysis. Compared to all previous classifications we dis-
cussed in Analysis 1, this result shows even greater agree-
ment between the prediction accuracies of the classifiers

trained on a bigger training set in one platform and used
to predict using the bigger test data on the other platform
(Pearson’s r =0.99). Remarkably, the ensemble classi-
fier was able to provide 100% accurate predictions for
both cases, regardless of the additional complexity caused
by 8 varieties of classes. In this analysis, the compo-
nent classifier PLS+LDA also performed similarly to the
ensemble classifier in both cases yielding 100% accurate

Fig. 2 Plots between prediction accuracies of RNASeq vs Microarray for two different test sets using the complete gene set, by eight different
classification techniques, for classifiers trained and predicted on individual platform
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class predictions. Apart from above two classifiers, SVM,
RF, and PLS+RF also hold substantially high prediction
accuracies.
Exploring outcomes resulted from Analysis 1 and 2

(Tables 1, 2, 3, 4 and 5), we clearly notice, between the two
types of dimension reduction methods, PLS performs far
better than PCA throughout this study. The performances
of classifiers integrated with PCA are clearly the weakest
among all individual classifiers in each scenario.

Importance of genes
We summarize results of the 3rd analysis in Tables 6, 7, 8
and 9, where each table lists the top 20 important gene
name and the overall accuracy obtained by the cross
validation. As we describe in the methods section this
analysis was performed using two experiments: (i) using
the adjusted test set and (ii) the full dataset. Further-
more, we consider using the common and complete sets
of genes as additional sub-analyses within above primary
experiments.
Referring to the Table 6, we observe that five of ten most

important genes for classification (Cyp1a1, Fam111a,
Ugt2b, Akr1b8, and Hbb) are in common between the
two platforms, when the adjusted test set is used with
the common set of gene. From literature search we found
that Cyp1a1 encodes a member of the cytochrome P450
super-family of enzymes which catalyze many reactions
involved in drug metabolism [7]. Likewise, Ugt2b belongs
to a large family of proteins capable of detoxifying a wide
variety of both endogenous and exogenous substrates
such as biogenic amines, steroids, bile acids, phenolic
compounds, and various other pharmacologically rele-
vant compounds including numerous carcinogens, toxic
environmental pollutants, and prescription drugs [8]. The
function of Akr1b8 implicated in the pathogenesis of
diabetic complications [9]. Mutations in Hbb have been
implicated in a number of blood disorders [10], while
mutations of Fam111a are strongly associated with type 2
Kenny-Caffey syndrome [11].
Table 7 presents the top 20 genes detected from com-

plete gene sets for two platforms. We notice that 6 genes
(Fam111a, Cyp1a1, Hbb, Aldh1a7, Psat1, and Obp3) for
the microarray and 5 genes (Fam111a, Hbb, Cyp1a1,
Ugt2b, and Dhrs7) for the RNASeq are in common with
the top 20 of the previous analysis (Table 6).
Although the main goal of detecting impotent genes

with the full data (Analysis 3.2) was to identify sets of
genes making considerable impact on classifying all eight
MOAs, interestingly, the outcome of this study (Tables 8
and 9) reveal high average (unpermuted) prediction accu-
racies (close to 100%) for both platforms using the 5 fold
cross-validation technique. Tables 8 and 9 show lists of
top genes ranked by the relative reduction of accuracy
(R), for microarray and RNASeq, respectively. Clearly,

there is no single gene that makes a substantial con-
tribution to the accuracy. However, we identified two
genes (Cyp1a1, Abcc3) that are commonly present in both
lists when the complete set of genes was used. Based on
the same analysis but performed using complete sets of
genes we observe only one gene named Id1 is common
important gene for the two platforms. We observed that
Abcc3 is a member of the superfamily of ATP-binding
cassette (ABC) transporters, which is involved in multi-
drug resistance [12]. The Id1 gene plays a crucial role in
activating hepatic stellate cells (HSCs) responding to liver
damages [13].

Methods
Ensemble classifier
Support Vector Machines (SVM), Random Forests (RF),
Neural Network (NN), Linear and Quadric Discriminant
Analysis (LDA, QDA) are examples of standard tech-
niques that are widely applied in classification problems.
Performances of these classifiers are highly variable across
problems. Thus, none of standard classifier can be consid-
ered to be the best for all classification settings. In com-
plex situations, such as classifications in high dimensional
genomic data, a more meaningful approach would be use
an ensemble classifier which combines many standard
classification algorithms together to develop an improved
classifier. The ensemble classifier we use builds a number
of individual models on randomly selected subsets of data
which can then be combined or averaged in some mean-
ingful fashion. Majority voting is a popular choice is for a
typical solution. Such a classifier by allowing data based
utilization of a multitude of classification algorithms for a
upholds consistent performance in various types of data
and classification problems. In this work, we use the adap-
tive optimal ensemble classer developed, via bagging and
rank aggregation [14]. In this approach, several user spec-
ified classifiers are trained on bootstrap samples drawn
from the original data using simple random sampling.
Since the sampling is done with replacement, some sam-
ples will be repeated multiple times while others will be
out of the bootstrap sample (known as out-of-bag (OOB)
samples). Focusing on the prediction performances on
the OOB samples, a best classifier is select based on
various performance measures. For example, in a binary
classification problem, sensitivity, specificity, and the area
under the curve of the Receiver Operating Characteristic
(ROC) curve are some legitimate performance measures.
This method is equipped with rank aggregation [15, 16],
which provides a great flexibility in selecting the optimal
classifier with respect to various multiple performance
measures. Predicted classes for a given test set is selected
as the highest voted class, as predicted by the above set
of “best" classifiers over all bootstrap resamples. Datta
et al. [14], demonstrated the performance of the ensemble
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Table 5 Accuracies of predicting MOA’s in the whole datasets (inducing testing and training sets) of RNAseq and microarray platforms,
using the classifiers trained on corresponding opposite platform

Procedure Classifier Overall Acc. %
Sensitivity, Specificity

PPARA CAR/PXR AhR Cytotoxic DNADamage ER HMGCOA Control

Trained on microarray and
predicted on RNASeq

Ensemble 100 100,100 100,100 100,100 100,100 100,100 100,100 100,100 100,100

svm 86 100,83 100,83 33,91 44,99 67,88 89,86 100,85 100,82

RF 92 100,90 100,90 56,95 89,93 67,94 100,91 100,91 100,90

PLS+LDA 100 100,100 100,100 100,100 100,100 100,100 100,100 100,100 100,100

PLS+RF 98 100,98 100,98 78,100 100,97 100,98 100,98 100,98 100,97

PCA+LDA 11 0,13 6,12 44,8 0,14 0,12 0,12 0,12 29,6

PCA+RF 12 0,15 6,13 0,13 0,16 0,13 0,13 0,13 50,1

RPART 68 83,65 61,69 33,71 67,68 67,68 67,68 100,65 62,70

Trained on RNASeq and
predicted on microarray

Ensemble 100 100,100 100,100 100,100 100,100 100,100 100,100 100,100 100,100

svm 87 100,84 94,86 22,93 75,88 80,88 89,87 100,86 100,83

RF 94 100,93 100,93 78,96 88,95 87,95 78,96 100,93 100,92

PLS+LDA 100 100,100 100,100 100,100 100,100 100,100 100,100 100,100 100,100

PLS+RF 93 94,93 100,92 78,94 100,92 87,94 78,94 100,92 97,92

PCA+LDA 13 0,16 0,16 0,14 0,14 0,14 0,14 0,14 47,3

PCA+RF 9 0,11 0,11 22,8 0,10 0,10 0,10 0,10 30,3

RPART 76 100,71 94,72 0,83 100,74 68,77 100,74 0,83 87,73

classifier using various numerical studies and real applica-
tions of gene expressions data. In the context of regression
similar concepts have been developed [17].
The algorithm described below demonstrates the step

by step procedure of developing an ensemble classifier

[14]. Suppose the dataset of n samples with p dimen-
sional covariates in the form of {Xn×p,Y n×1}, where X
corresponds to independent variables and Y represents
the dependent categorical variable that specifies a class
label. Assume the ensemble classier is intend to built with

Fig. 3 Plots between prediction accuracies of RNASeq vs Microarray test sets, by eight different classification techniques, for classifiers trained and
predicted on cross platforms
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Table 6 Genes ranked by the importance based on accuracy reduction, for Microarray and RNA-Seq, using the adjusted test set with
the common set of genes

Rank
Microarray RNA-Seq

Gene name Resulted accuracy Gene name Resulted accuracy

1 Cyp1a1 0.561 Fam111a 0.540

2 RT1-Bb 0.575 Evc 0.610

3 Fam111a 0.585 Cyp1a1 0.621

4 Ugt2b 0.599 Cyp1a2 0.625

5 Aldh1a7 0.628 Akr1b8 0.625

6 Akr1b8 0.632 Hbb 0.625

7 Gpnmb 0.647 Ugt2b 0.625

8 Obp3 0.647 Dhrs7 0.626

9 Hbb 0.649 Mme 0.628

10 Vnn1 0.658 Nr1d1 0.628

11 Tsku 0.660 Cish 0.631

12 Aldh1a1 0.668 Abcc3 0.631

13 RGD1309362 0.668 Adora1 0.632

14 Socs2 0.669 Fos 0.636

15 LOC685020 0.671 Abcd2 0.640

16 Aldh1b1 0.672 Irs3 0.642

17 RGD1564865 0.674 Asrgl1 0.644

18 Cyp1a2 0.675 Pilra 0.646

19 Psat1 0.676 Ddhd1 0.646

20 Gadd45g 0.678 Ugt2b17 0.647

M classification algorithms based on K different perfor-
mancemethods such as overall accuracy, class sensitivities
etc. to optimize the predictive performance. Thus, we
proceed as follows:

1. Resampling: Draw a bootstrap sample of size n{
X∗
n×p,Y ∗

n×1

}
from the original data

{
Xn×p,Y n×1

}
by resampling rows with simple random sampling.
Sampling is repeated until samples from all classes are
present in the bootstrap sample and then determine
the corresponding OOB sample that contains all
samples which are left out from the bootstrap sample.

2. Classifier Training: Train M classification
algorithms, C1, . . . ,CM , on the bootstrap sample.

3. Performance Assessment: Obtain M predicted
class labels for each OOB case. Since true classes of
the OOB samples are known, calculate K different
performance measures for each of M algorithms
using their corresponding predictions.

4. Rank Aggregation: Rank M algorithms according to
K performance measures. So, we have K ordered lists
(L1, . . . , LK ) of size M. These lists are then
rank-aggregated using the weighted rank aggregation
to determines the best algorithm C(1) overall.

Repeat the above procedure (steps 1–4) for B times,
where B considered to be a large integer which is
usually selected according to the computational
capacity.

5. Prediction for a New Sample: Predict the class
variable Y for a new sample X using the B prediction
models C1

(1), . . . ,C
B
(1) and determined the highest

voted class to obtain the final class prediction Ŷ .

Rank aggregation
Suppose the performances of M classifiers are evaluated
on the basis of K performance measures. Assume we
have ordered lists L1, . . . , LK , where ith ordered list Li,
i = 1, . . .K , provides ranks of M algorithms on their
performances evaluated on the ith measure. The rank
aggregation [15, 16] procedure provides a single ranked
list of M classifiers that minimizes the weighted sum of
distances from all individual lists, given by the following
objective function,

�(L) =
∑
i
wid(L, Li), (1)

where L is any possible ordered list of theM classifiers,wi’s
are weights which represent the user specific importance
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Table 7 Analysis 3: Genes ranked by the importance, for microarray and RNASeq, using the adjusted test set with complete sets of
genes

Rank
Microarray RNA-Seq

Gene name Resulted accuracy Gene name Resulted accuracy

1 Fam111a 0.572 Abcb1b 0.551

2 Abcc3 0.606 GTP_EFTU_D3.1 0.563

3 Adam8 0.624 Hba-a2 0.564

4 LOC100911107 0.628 Hbb 0.569

5 Atf3 0.632 Cyp1a1 0.569

6 Krt10 0.635 LOC360504 0.572

7 Aldh1a7 0.638 Casp12 0.572

8 MGC108823 0.638 Ugt2b 0.572

9 Ckap2 0.638 Apof 0.575

10 Cyp1a1 0.638 MGC72973 0.578

11 Asrgl1 0.639 blarkly 0.578

12 Hamp 0.640 Dhrs7 0.578

13 Hbb 0.640 Laminin_G_2.1 0.579

14 Angptl4 0.640 LOC313220 0.579

15 Oas1a 0.640 Car3 0.579

16 Psat1 0.640 Dbp 0.579

17 Igfbp2 0.642 Mcm5 0.581

18 Gsta3 0.643 TCTP.0 0.581

19 Obp3 0.649 Egln3 0.581

20 Pik3r1 0.649 Fam111a 0.581

of each of the K performance measures. The classifier in
the first position of this aggregated list that is the opti-
mal classifier overall with respect to all the validation
measures. Of course, the default choice would be to use
wi = 1 for all i which means all the validation measures
are taken as equally important in determining the optimal
algorithm. Throughout out analyses, we have usedwi = 1.
d is a distance function such as Spearman’s footrule or
Kendall’s tau, which measures the closeness between two
ordered lists. In this work, we use Spearman’s footrule
distance function as the distance measure.
Often for high dimensional data, standard classifiers are

combined with dimension reduction, variable selection,
or penalization techniques such as Partial Least Squares
(PLS), Principle Component Analysis (PCA), Random
Forest (RF) based importancemeasures, L1 regularization,
etc., for greater applicability and improved prediction
accuracy [18, 19]. For a genomic data characterized by
high dimension, use of an ensemble classifier developed
on such set of improved component classifiers represents
an ideal choice.

Rat liver data
Our data for this study was released by 2015 CAMDA
competition. Microarray and RNASeq platforms contain

gene expression measurements of nearly 31,000 and
46,000 genes, respectively. The dataset consists of gene
expression responses profiled by Affymetrix microarrays
and Illumina RNASeq sequencer in rat liver tissues from
105 male Sprague-Dawley Rats, which are exposed to 27
different chemicals represented by 9 different MOAs. In
the original experiment, a training set is formed with 45
rats, which are treated with 15 chemicals corresponding
to MOAs of “PPARA", “CAR/PXR", “AhR", “Cytotoxic",
“DNA damage", and 18 controls. Test set contains data on
36 rats which are treated with 12 chemicals corresponding
to “PPARA", “CAR/PXR", “ER", “HMGCOA" and 6 con-
trols. We found that two MOAs, “ER" and “HMGCOA"
are present only in the test set. We further noticed that
approximately 22,253 average expressions per sample in
RNA-seq data were recorded as “NA", which indicates that
insufficient number of reads mapped onto the gene to
provide a reliable gene expression estimate. We retained
gene sets of sizes 13,686 and 16,133 for microarray and
RNASeq platforms, after (i) removing unnamed genes,
(ii) removing genes with unobserved expressions, and (iii)
averaging multiple expressions reported from the genes
with unique names.
In this work, we used normalized expression levels that

came from microarray data using Robust Multi-Array
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Table 8 Genes ranked by the importance (based on the measure given by R), for Microarray and RNA-Seq, using the whole data
including 8 verities of MOAs with the common gene set

Rank
Microarray RNASeq

Gene name Resulted accuracy R Gene name Resulted accuracy R

1 Cyp1a1 0.9538 0.0064 Cyp1a1 0.9658 0.0063

2 RT1-Bb 0.9707 0.0018 Abcc3 0.9786 0.0019

3 Gstp1 0.9740 0.0017 Cyp7a1 0.9689 0.0016

4 Usp2 0.9600 0.0015 Cyp1a2 0.9751 0.0016

5 Nr1d1 0.9693 0.0012 Fabp2 0.9705 0.0015

6 Obp3 0.9694 0.0011 Sgcb 0.9677 0.0014

7 Fam111a 0.9733 0.0011 Atf3 0.9672 0.0014

8 Prss23 0.963 0.0009 Gdf15 0.9692 0.0013

9 Igtp 0.9668 0.0009 Apoa4 0.9699 0.0011

10 Taf8 0.9725 0.0008 Slc13a3 0.9751 0.0011

11 Dmbt1 0.9768 0.0008 Ugt2b17 0.9751 0.0011

12 Ccng1 0.9611 0.0008 Acy3 0.9670 0.0011

13 Cav1 0.9654 0.0008 Porcn 0.9732 0.0011

14 Rnf152 0.9697 0.0008 Slc7a5 0.9652 0.0011

15 Cxcl10 0.9711 0.0008 Hdc 0.9676 0.0010

16 Rhbdf2 0.9764 0.0008 Ddhd1 0.9686 0.0010

17 Casp4 0.9683 0.0008 Rprm 0.9743 0.0010

18 Cyp2c12 0.9688 0.0008 Btg3 0.9700 0.0010

19 Aldh1a7 0.9697 0.0008 Maff 0.9757 0.0010

20 Abcc3 0.9721 0.0008 Fabp4 0.9734 0.0009

Average (RMA) expression measurements [20], whereas
data obtained for RNASeq was already normalized via the
Magic normalization [6, 21]. We decided that it would be
reasonable to perform separate analysis with a common
set of genes (8336) represented in both platforms and also
with complete sets of genes, for a comparative study.

Concordance experiments
We conducted three types of investigations for studying
the performance of the proposed classifiers.

1. Train classifiers and make predictions on individual
platforms.

2. Train classifiers in one platform to make predictions
on the other platform.

3. Identify important variables (genes) for accurate
classification.

In the 1st analysis, we explore the predictability of
MOAs using various classifiers developed in the given
training data. To our knowledge, there is no established
criteria to define prediction for an unknown class that was
not represented in the training data. Thus, we select an

adjusted test set after eliminating all test samples belong-
ing to two classes of “ER" and “HMGCOA", where the new
test was used in parts of 1st and 3rd analysis. However
we also considered the originally given test set as a part
of 1st analysis by adopting following alternative classifica-
tion approach. Accordingly, first we designated both “ER"
and “HMGCOA" samples belonging to the original test
set as “OTHER". For each classifier, then we determined
the maximum class probability for a given test sample
and if the above probability was less than 0.5 we selected
the predicted class as “OTHER", else kept the originally
predicted class. For this purpose, class probabilities for
the ensemble classifier was calculated using the predicted
class proportions observed in the B bootstrap samples.
Our objective with the 2nd analysis was to exam-

ine the inter-platform concordance between microarray
and RNAseq platforms. Thus, we trained classifiers on a
selected platform using the full dataset that included the
both given training and test sets for making predictions on
the other platform. However, since the classifier needed to
run on both platforms for this analysis, each gene expres-
sion measurement was standardized, separately for both
platforms, prior to the analysis.
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Table 9 Genes ranked by the importance (based on the measure given by R), for Microarray and RNA-Seq, using the whole data
including 8 verities of MOAs with the complete gene set

Rank
Microarray RNASeq

Gene name Resulted accuracy R Gene name Resulted accuracy R

1 LOC100912602 0.9616 0.0096 LOC690286 0.9407 0.0098

2 Il1rap 0.9821 0.008 Plcd3 0.9913 0.0087

3 Htatip2 0.9736 0.0074 Sgcb 0.9732 0.0078

4 Cd276 0.9557 0.0073 Retsat 0.9733 0.0077

5 Ankrd33b 0.9637 0.0065 Zfp39 0.9924 0.0076

6 Id1 0.9836 0.0064 Abcg5 0.9745 0.0074

7 Hgd 0.9649 0.0062 perja 0.9927 0.0073

8 RGD1305928 0.9562 0.0059 Sgk2 0.9530 0.0073

9 Acot2 0.9848 0.0052 Naaladl1 0.9657 0.0072

10 Dusp1 0.9860 0.0040 Mrps18b 0.9830 0.0071

11 Sat2 0.9870 0.0040 flergar 0.9842 0.0067

12 Adcy4 0.9663 0.0038 Nol3 0.9933 0.0067

13 Rexo4 0.9863 0.0037 stukaw 0.9755 0.0065

14 Dtnb 0.9863 0.0037 Igf2bp2 0.9837 0.0064

15 Hbb 0.9873 0.0037 slakoy 0.9937 0.0063

16 Fam111a 0.9676 0.0034 Serpinb1a 0.9852 0.0058

17 LOC690020 0.9770 0.0031 Ccnd1 0.9856 0.0054

18 Ddias 0.9870 0.0031 Id1 0.9947 0.0053

19 Resp18 0.9779 0.0031 Nrxn2 0.9947 0.0053

20 Mlc1 0.9879 0.0030 LOC494499 0.9658 0.0053

For analyses 1 and 2, we selected an ensemble classi-
fier developed with a set of M = 7 standard classifiers,
SVM, RF, LDA, PLS+RF, PLS+LDA, PCA+RF, PCA+LDA,
and Recursive Partitioning (RPART). Primarily, classifiers
are selected based on the prior information of their suit-
abilities in high dimensional data classification. Based on
accuracies of predicted classes, each classifier was ranked
for K number of performance measures (for example,
overall accuracy, class specific accuracies ect.). Since the
selection of performance measures for a multi-class clas-
sification problem is highly depend upon the aim of study;
we optimized the overall prediction accuracy, and the
class specific accuracy of each group for the 1st analysis.
Furthermore we considered these performance measures
to be equally important for classification (i.e., we used
equal weights of wi = 1, in Eq. (1)), whereas in the
2nd analysis in cross platforms, we focused only on the
overall accuracy without optimizing multiple group spe-
cific performances. For these analyses, we chose B to be
B = 300. We performed a 10 fold cross-validation for
each individual classifier to select the number of com-
ponents for PLS and PCA methods, separately for two
platforms. Assuming consistent performance in bootstrap
samples similar to the original training data, we employed

the same number of components to develop the ensemble
classifier.
The 3rd analysis on identifying important variables is

subdivided into following two parts.

1. Detecting important genes with the adjusted test set.
2. Detecting important genes with full data using the

cross-validation method.

We applied a classifier on the perturbed training data
resulted from randomly permuting gene expressions of a
given gene to quantify its impact on the predictability of
MOAs in a test set. Accordingly, each gene was ranked
by a measure given by magnitude of accuracy reduction
compared to the true accuracy (in unpermuted data), such
that the rank 1 corresponds to the gene that has the high-
est negative impact on the overall prediction accuracy. In
order to reduce the computational burden, we did not use
the ensemble classifier for this purpose. Instead the com-
ponent classifier PLS+LDA which had an overall accuracy
close to that of the ensemble classifier was used. We per-
formed theses analysis separately for both platforms to
determine a common set of genes presented among the
top 20 genes in both platforms.
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For Analysis 3.1, we randomly permuted a gene’s expres-
sions in the training set and then made predictions for the
test set (adjusted test set) using the classifier trained on
the permuted training data. The permutation procedure
was repeated l times for each gene to calculate an aver-
age overall prediction accuracy (A). Finally, genes were
ordered by A, ascending order. Here we chose l to be
l = 30 in order to achieve reasonably stable approxima-
tion, while keeping the computational costs in check.
Analysis 3.2 was performed using the full data which

contained both originally given training and test sets. Here
we applied the 5 fold cross-validation technique in order
to evaluate the effect of each gene on classifying MOAs.
Our approach consisted of two layers of randomization.
For the jth, j = 1, ..., J , outer randomization, we randomly
partitioned the dataset into 5 folds and selected a training
set of 4 folds, while remaining fold was chosen as a test
set. After randomly permuting the expressions of a given
gene i across the above specified training set, a classi-
fier was trained to predict on the selected test set. Now
using the same approach we described in the previous
part (Analysis 3.1) we obtained an average overall predic-
tion accuracy (Acv

ij ) by repeating the permutation l times.
After that, the whole procedure was repeated J times for
various random partition sets to obtain an average over-
all prediction accuracy (Acv

i ) for ith gene, based on all J
scenarios.

Acv
i = 1

J

J∑
j=1

Acv
ij .

Suppose Acv is the average true accuracy (unpermuted
data) based on J random partition sets. Note that the mag-
nitude of Acv can be varied. Thus a better measure will be
a relative accuracy reduction (Ri) given by,

Ri = Acv − Acv
i

Acv ,

where large values of Ri indicate high impacts on the clas-
sification. For Analysis 3.2, we used values l = 30 and
J = 100, which stabilize the calculations without being
computationally burdensome.

Discussion
In this study, we used an ensemble classifier built on
a set of standard classifiers to predict the MOA in Rat
liver experiment data profiled by both microarrays and
RNASeq. The newly constructed ensemble classifier per-
formed reasonably well in both platforms individually.
Using a selected test set and a set of genes (those present
in both platforms) we observe comparable overall pre-
dictability of MOAs in the two platforms with 75% and
67% accuracies for microarray and RNAseq, respectively.
Similarly, we observe well matched accuracies of 50%
for both platforms for the full test sets based on an

alternative approach. In an earlier classification approach
[6] applied on the same data, reported average overall
accuracies of 58% and 61% for microarray and RNAseq,
suggesting a slightly better predictability in RNA-seq.
However outcomes of these two studies are somewhat
incomparable due to the differences in the training and
test data sets used. For example, we considered con-
trols as another class, whereas in their analysis, controls
were not considered as a separate class. Interestingly,
once we trained classifiers to make predictions on cross
platforms, the ensemble classifier provided 100% accu-
rate predictions for all 8 classes presented in the whole
experiment. This result exhibits a perfect cross platform
concordance for the purpose of classification. Also, our
study clearly demonstrates a high agreement between the
individual classifiers’ performances in two genomic plat-
forms. Except for few scenarios, the ensemble classifier
performed the best with respect to the overall accuracy
and other class specific measures, in all experiments.
We observe widely different classification performances
among standard classifiers, which reflects the unreliability
of restricting to a single classifier in case of high dimen-
sional classification problems. On the other hand, this also
demonstrates the utility of the adaptive ensemble classifier
which is expected to perform as good or better than the
individual classifiers with respect to multiple performance
measures.

Conclusion
In this study, we explored the inter-platform concordance
between microarray and RNASeq in their ability to clas-
sify samples based on genomic information, using data
profiled by a Rat Liver experiment. We used an ensem-
ble classifier built on a set of seven standard classifiers
to predict the MOA in Rat livers. The ensemble classi-
fier performed reasonably well in both platforms indi-
vidually, resulting respective 75% and 67% accuracies for
microarray and RNAseq on a selected test set. When we
trained classifiers to make predictions on cross platforms,
the ensemble classifier provided remarkable 100% accu-
rate predictions. This study demonstrates a high agree-
ment between individual classifiers’ performances in two
genomic platforms. Additionally, we identified a set of
important genes those specifies MOAs, by focusing on
their impact on the classification.

Reviewers’ comments
Reviewer’s report 1: Yiyi Liu (yiyi.liu@yale.edu), Yale
University
In this manuscript, the authors investigated concordance
between microarray and RNA-seq in classifying samples
based on gene expression profiles. They tested the per-
formances of eight classifiers, including one ensemble
method, and obtained very interesting results. Overall the
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reviewer is positive about the work. There are several
minor concerns that the authors need to address.

1. I suggest the authors add descriptions on the weights
(wi’s) they used in rank aggregation of the ensemble
classifier. The authors explained the main idea of the
aggregation method, but explicitly stating all the
parameters could improve the readability of the
paper.

2. The authors mentioned RNA-seq data are
“normalized via the Magic normalization”. I suggest
citing the normalization method paper for reference.
method.

Authors’ response:

1. We have described the role and the choice of the
weights.

2. The two suggested references have been added.

Reviewer’s report 2: Partha Dey (pdey.bit@gmail.com),
Academy of Technology at Adisaptagram, Hooghly, India
The article “Inter-platform Concordance of Gene Expres-
sion Data for the Prediction of Chemical Mode of Action”
by Siriwardhana et al. studies the consistency of the cross-
platform classification accuracy between microarray and
RNASeq in their ability to classify samples based on
genomic information. Seven classifiers and an adaptive
ensemble classifier developed around them were used to
predict the Chemical Modes of Actions (MOA) on Rat
Liver samples. The article is well written and nicely orga-
nized. In addition, addressing these few points should
increase the impact of the research work across various
spectrum of readers:

1. The “Results” section comes before the “Methods”
section; if this is not due to some restriction of the
publishers or typical of the field of investigation, the
sequence may be reversed (to corroborate with usual
practice in most research articles: after Methodology
should come Results).

2. In the “Methods” section: The authors have
mentioned the use of ’sampling with replacement.’ It
would be relevant here to state the specific advantage
of sampling with replacement as compared to
sampling without replacement (which would result
in a partition of the original training set into a
pure-training and a in house-testing subsets– instead
of some repeated data in the training samples and
OOB samples for measuring the performance of the
classifier). A brief description of the details of the
different classifiers (viz. SVM, RF, LDA, PLS+RF,
PLS+LDA, PCA+RF, PCA+LDA, and RPART), e.g.
how many PCs were taken (or at least their range
across different cases), whether linear or non-linear

SVs, binary or n-ary partitioning, etc. may be
provided to assist later users in this field to know the
optimum classifier parameters.

3. In the “Discussion” section: Could a clue be given as
to why the Ensemble classifier performed worse than
at least one intrinsic classifier in those few scenarios?
In particular, is a better ensemble approach possible,
or is it in general impossible to have an ensemble
classifier that performs best on all performance
indices? It would be nice to have a commentary
summarizing the important genes reported in
Tables 6, 7, 8 and 9. For example those genes that
appeared in most of the tables in Microarray or
RNASeq, or both might be listed to enable the
biologist to get the condensed information from this
study.

Authors’ response: Sampling with replacement is part
of bootstrap which is standard procedure in bagging. An
advantage is that training data of the same size as the orig-
inal can be created and also the out of bag samples can
be used as test data in a natural way. The classifiers were
described in Datta et al. (2010). The tuning parameters
were selected by cross validation as described in the paper.
The ensemble classifier is optimal in an overall sense as
defined by the rank aggregation procedure. It may not be
possible to beat every individual classifier with respect to
every performance measure. We have commented on some
genes in Section “Importance of genes”.
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