
RESEARCH Open Access

Exploring the importance of cancer
pathways by meta-analysis of differential
protein expression networks in three
different cancers
Sinjini Sikdar, Somnath Datta and Susmita Datta*

Abstract

Background: It is believed that all cancers occur due to the mutation or change in one or more genes. In order to
investigate the significance of the biological pathways which are interrupted by these genetic mutations, we pursue an
integrated analysis using multiple cancer datasets released by the International Cancer Genome Consortium (ICGC).
This dataset consists of expression profiles for genes/proteins of patients receiving treatment, for three types
of cancer - Head and Neck Squamous Cell Carcinoma (HNSC), Lung Adenocarcinoma (LUAD) and Kidney Renal Clear
Cell Carcinoma (KIRC). We consider pathway analysis to identify all the biological pathways which are active among
the patients and investigate the roles of the significant pathways using a differential network analysis of the protein
expression datasets for the three cancers separately. We then integrate the pathway based results of all the three
cancers which provide a more comprehensive picture of the three cancers.

Results: From our analysis of the protein expression data, overall, RAS and PI3K signaling pathways appear to play the
most significant roles in the three cancers - Head and Neck Squamous Cell Carcinoma (HNSC), Lung Adenocarcinoma
(LUAD) and Kidney Renal Clear Cell Carcinoma (KIRC).

Conclusion: This analysis suggests that the RAS and PI3K signaling pathways are the two most important pathways in
all the three cancers and should be investigated further for their potential roles in cancers.

Reviewers: This article was reviewed by Joaquin Dopazo and Samiran Ghosh.

Keywords: ICGC, Signaling pathway, Network, Protein, Cancer

Background
Several studies have found that there are approximately
140 “driver” genes which can promote the formation of
tumors if affected by intragenic mutations. These “driver
genes” are known to be directly or indirectly responsible
for causing selective growth advantage. These “driver
genes” are classified into twelve signaling pathways. This
selective growth advantage can occur only through these
twelve signaling pathways [1]. We refer these twelve
signaling pathways as “target pathways”. It is also found
that the “target pathways” regulate three core cellular
processes - “cell fate”, “cell survival” and “genome main-
tenance” [1] . We believe understanding the roles of

these twelve pathways can result into novel therapeutic
intervention strategy. In this paper, we undertake a novel
investigation of the roles of these “target pathways”
using a differential network analysis of the protein ex-
pression datasets on three cancers namely, Head and Neck
Squamous Cell Carcinoma (HNSC), Lung Adenocarcinoma
(LUAD) and Kidney Renal Clear Cell Carcinoma (KIRC).
We find the study of protein expressions is justified as the
mutations of the previously mentioned “driver genes” alter
the protein products. These datasets are available to us
from International Cancer Genomic Consortium (ICGC) as
part of the CAMDA 2015 challenge data. We pursue an in-
tegrative analysis of protein expressions of all these three
cancer datasets to investigate whether each of these “target
pathways” plays a significant role in these three cancers.* Correspondence: susmita.datta@ufl.edu
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For example, we determine whether the proteins asso-
ciated with these pathways interact differently
between the two clinical groups (“progression” or
“complete remission”) of patients. The differentially
expressed pathways between the two disease groups
allow us to gain more insights about the functional
working mechanism of the cells than just the individ-
ual differentially expressed genes/proteins [2]. The
process begins with grouping of the proteins accord-
ing to their biological pathways, as described in the
section- Pathway analysis. Then, in the Section-
Differential network analysis, we examine whether
the network structures of all the proteins in these
“target pathways” have changed from the “complete
remission” group of patients to the “progression”
group. We also examine whether the connectivity of
each single protein in the networks of proteins in
these “target pathways” has changed between the
two groups. Then we rank the “target pathways” as
well as the constituent proteins to get overall ranked
lists which would then rank the pathways by their
global order of importance with respect to all the
three cancers (section- Rank aggregation). This rank-
ing may shed light to the regulatory roles of individ-
ual proteins in the context of all others in the
pathway. The rest of the article is organized as fol-
lows. In Results section, we report the results of
each of the analysis. Then, we conclude with a Dis-
cussion section. Then in Methods section, we de-
scribe the datasets used and all the methods used
for the analysis.

Results
Pathway analysis results
For each cancer type, we find representation of five out
of twelve “target pathways” in our sample of 132 pro-
teins using “GO” clustering tool [3, 4]; they are the PI3K
signaling pathway, Cell Cycle, Apoptosis, RAS signaling
pathway and MAPK signaling pathway. It is interesting
to note that all these five “target pathways” are all related
to “cell survival” function.

Differential network analysis results
Next, we determine whether there is any significant
difference in the network structures of the “target path-
ways” between the two groups of patients (“progression”
vs “complete remission”). We perform differential net-
work analysis [5, 6] of the network of proteins in these
representative “target pathways” between the two groups
of patients (“progression” vs “complete remission”) using
the test statistic given in Equation 1, with Pearson’s
correlation coefficients as connectivity scores and abso-
lute distance measure for each of the three cancer types.
The p-values of the analysis are reported in Table 1.

Based on these results, we have the following findings: the
RAS signaling pathway is highly significant (p-value = 0.026)
and MAPK signaling pathway is marginally significant
(p-value = 0.082) in HNSC; for LUAD, PI3K signaling
pathway is highly significant (p-value = 0.013).
A graphical representation of the network structure of

the proteins in the two groups of patients for RAS sig-
naling pathway in HNSC is shown in Fig. 1. In this
figure, two proteins are connected if the connectivity
score between them is significantly large. Different
colors and shades in the figure represent positive or
negative correlations and the thickness of the lines rep-
resents the strength of the associations. A visual inspec-
tion reveals some obvious differences in the network
connectivity between the two groups of patients. It can
be seen from Fig. 1 that the protein MET has very high
connectivity with the proteins GAB2 and MAPK1 in the
“progression” group, whereas no such connectivity can
be seen between them in the “complete remission”
group. On the other hand, MET can be seen to be con-
nected with NFKB1 and BAD in the “complete remis-
sion” group but no such connectivity can be seen in the
“progression” group. Also, it is interesting to note that
MET has 100% connectivity with RAF1 in the “complete
remission” group. The protein GAB2 appears to be
highly connected with MAPK9 in the “progression”
group but no connectivity can be seen between them in
the “complete remission” group. GAB2 is also connected
with PRKCA only in the “progression” group. Further,
GAB2 has 100% connectivity with MAPK1 in the “pro-
gression” group. In the “progression” group, MAPK1
and BAD are connected among themselves and also with
EGFR, which is further connected with KIT. But no such
interesting connections can be seen in the “complete re-
mission” group. Summarizing, GAB2, MAPK1, MET,
and BAD show noticeably different connectivities in the
two networks. The corresponding genes are known on-
cogenes. GAB2 is known to be overexpressed in multiple
human tumors especially in melanoma. It is altered by
MAPK and PI3K signaling pathways [7]. MAPK1 (Mito-
gen-activated protein kinase 1) is broadly implicated in
many cancers [8]. MET is associated with MET signaling
process. In many cancers involving solid tumors,

Table 1 “Target pathways” along with the p-values obtained
from differential network analysis for each cancer type

Target Pathway Cancer Type

HNSC LUAD KIRC

RAS signaling pathway 0.026 0.507 0.156

MAPK signaling pathway 0.082 0.759 0.517

PI3K signaling pathway 0.241 0.013 0.774

Apoptosis 0.407 0.417 0.487

Cell Cycle 0.410 0.238 0.997
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inhibiting this signaling has major therapeutic effect [9].
Similarly, it is found that BAD is a pro-apoptotic pro-
tein which has been identified as an integrator of
several anti-apoptotic signaling pathways in prostate
cancer cells [10].
A graphical representation of the network structure of

the proteins in PI3K signaling pathway for the two
groups of patients in LUAD is shown in Fig. 2. From the
figure, it can be seen that the protein MET has interest-
ing connections with the proteins CASP9, FOXO3,
YWHAE and MAPK1 in the “progression” group
whereas no such interesting connections can be found
in the “complete remission” group. Also, PRKCA is con-
nected with FRAP1, MAPK1, BCL2L11 and NFKB1 in
the “progression” group but no such connectivity can be
seen in the “complete remission” group. The protein
MAPK1 seems to be connected with MET, YWHAE,
PRKCA, FRAP1 and TSC2 in the “progression” group
whereas it is only connected with TSC2 in the “complete
remission” group. Here, MET, PRKCA and MAPK1
show significant differences in the two networks.
PRKCA is a serine/threonine-protein kinase that is
highly expressed in a number of cancer cells where it
can act as a tumor promoter and is implicated in malig-
nant phenotypes of several tumors such as gliomas and
breast cancers [11].
Our analysis of individual proteins using the test stat-

istic given in Equation 4 produces Fig. 3 (a-c). The pie

charts represent the proportions of top fifty differentially
connected proteins for each of the “target pathways” in
the three cancers. This provides a global visual represen-
tation of the relative importance of the “target pathways”
in all three cancers. For all the three cancers, PI3K and
RAS signaling pathways show significant contributions
in terms of differential network connectivity.

Rank aggregation results
Next, we rank the relative importance of the “target
pathways” based on the p-values, obtained using
Equation 3 from the differential network analysis, so
that we can get an idea about the ordering of import-
ance of the “target pathways”. Since, the ordering vary
from one cancer to another; we obtain a rank aggre-
gated list of the “target pathways” using RankAggreg
[12, 13]. Table 2 shows the ordering of the five
“target pathways” for the three cancers along with the
rank aggregated list. Thus overall, the RAS signaling
pathway appears to be most important followed by
the PI3K signaling pathway, based on our integrative
analysis of the available data on three cancers.
We also obtain a rank aggregated list of the proteins,

based on the p-values of the tests based on differential
connectivity of each protein in the two different net-
works of the two patient groups. The proportions of top
fifty differentially connected proteins for each of the
“target pathways” are shown in Fig. 3(d). Once again,

Fig. 1 Network structure for RAS signaling pathway in Head and Neck Squamous Cell Carcinoma (HNSC)

Fig. 2 Network structure for PI3K signaling pathway in Lung Adenocarcinoma (LUAD)
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PI3K and RAS take the top two most important spots in
terms of differential network connectivity.

Discussion and Conclusion
It is known that for most cancers with solid tumors the
genes in the above mentioned “target pathways” display
somatic mutations and change their protein products [1] .
In all human tumors, PI3K is known to be as one of the
most frequently targeted pathways. Mutation in PI3K path-
way components contributes up to 30% of all human can-
cer and is known to be activated by RAS [14]. It is
interesting to know that PI3K is a regulatory subunit, which
binds to cell-surface receptors and to the RAS protein.
Genes and proteins in PI3K and RAS have been investi-
gated as therapeutic targets for many cancers [15, 16]. Here
this purely quantitative analysis of the existing protein ex-
pression data of three different cancers also reveals the sig-
nificant alteration of the proteins in PI3K and RAS
pathways. Our findings are consistent with this and suggest
that continued future efforts be made in this direction.
Since genes act in consort during a biological process, a

network analysis is essential for a system-wide under-
standing. Thus, a study of differential network connectiv-
ity could yield interesting findings that are not possible
from a differential expression analysis of individual
proteins. In addition, pathway level information should be

incorporated in a differential network analysis whenever
possible. It can be seen from Fig. 3(d) that on the basis of
analysis of differential connectivity of individual proteins,
PI3K emerged as the most important pathway overall.
However, this could be partly due to the fact that PI3K
pathway has the largest number of proteins compared to
the other “target pathways”. On the other hand, the test
statistic based on differential connectivity of pathways is
automatically normalized by the size of the pathway and
on the basis of this comparison, RAS turned out to be the
most significant overall as shown in Table 2.
In a recent study [17], multiple molecular profile data

of LUAD for the CAMDA 2014 lung adenocarcinoma
challenge data provided by ICGC is analyzed and it is
noted that EGFR signaling pathway plays a significant
role among the patients. Besides, it is known that EGFR
activation initiates RAS signaling [18–20], and EGFR
induces rapid increase in number of epithelial cells by
activating a network of signaling elements, including
members of the RAS and PI3K [20, 21]. Thus, it is
common for lung cancer patients to have active EGFR
mutation. Moreover, the RTK/RAS/RAF pathway, identi-
fied as the main route in causing adenocarcinoma, is
shown to be activated in patients with “common”
pathway mutations, e.g., in KRAS, BRAF, and EGFR
[22]. Although the EGFR kinase inhibitor Gefitinib is an
effective treatment for lung cancers with EGFR activat-
ing mutations, amplification of MET causes Gefitinib
resistance by driving ERBB3 (HER3)–dependent activa-
tion of PI3K [23], a pathway thought to be specific to
EGFR/ERBB family receptors. This fact, along with the
fact that MET has been found in the module of the “pro-
gression” group but not in that of the “complete remis-
sion” group in PI3K signaling pathway of LUAD (see
Fig. 2) in our current study, suggest that the patients
under study might have been treated with Gefitinib, but
the presence of MET in some of these patients (those in

Fig. 3 Relative contributions of the “target pathways” in the three cancers separately as well as combined

Table 2 “Target pathways” ordered by p-values for each cancer
type along with the overall ordering

Cancer type Pathway ordering by p-values

HNSC R, M, P, A, C

LUAD P, C, A, R, M

KIRC R, A, M, P, C

Overall R, P, M, A, C

R RAS Signaling pathway, M MAPK Signaling pathway, P PI3K
Signaling pathway
A Apoptosis, C Cell Cycle
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the “progression” group) may have led to the resistance
to this drug. However, this is subject to verification as
we don’t have the information regarding the treatment
regime for any of these patients. This highlights the po-
tential role of MET in lung cancer progression.
An interesting observation from Fig. 3 is that much

lesser proportion of proteins in cell cycle pathway is differ-
entially connected between the two groups of patients in
KIRC compared to LUAD and HNSC. So underlying mo-
lecular mechanisms related to cell cycle pathway may be a
little different in KIRC compared to LUAD and HNSC.
In a recent paper [24], patient level information such as

mutation profiles is incorporated to identify protein-protein
interaction (PPI) interfaces enriched in somatic mutations.
It will be interesting to explore how to incorporate patient
heterogeneity information into our approach.

Methods
We have analyzed the preprocessed challenge datasets
for CAMDA 2015 provided by the International Cancer
Genomic Consortium (ICGC). For our study, we have
considered the protein expression and the clinical pro-
files of the patients for the three cancers: Head and
Neck Squamous Cell Carcinoma (HNSC), Lung Adeno-
carcinoma (LUAD), and Kidney Renal Clear Cell Carcin-
oma (KIRC). A set of 132 proteins is present in the
protein expression profiles of each of the three cancers;
the patient sample sizes of HNSC, LUAD and KIRC are
212, 237 and 454 patients, respectively. The number of
patients in the clinical profile of HNSC, LUAD and
KIRC are respectively 422, 473 and 515. The clinical
profile of each of the cancer type represents the disease
status (“progression” or “complete remission”) of each
patient. However, 44, 111 and 28 patients have missing
disease status in the clinical data of HNSC, LUAD and
KIRC respectively. After removing the patients who have
missing disease status, we are left with 185 patients (71
in “progression” group and 114 in “complete remission”
group) in HNSC, 172 patients (51 in “progression” group
and 121 in “complete remission” group) in LUAD and
430 patients (132 in “progression” group and 298 in
“complete remission” group) in KIRC, each with expres-
sion values of 132 proteins. In summary, we have two
groups of patients for each cancer type and a set of re-
corded protein expression values of 132 proteins for
each of them.

Pathway analysis
From several studies, it has been found that approxi-
mately there are 140 genes that are responsible for se-
lective growth advantage. These genes are termed as
“driver” genes. As mentioned before in the Background,
mutations occur in a typical tumor due to two to eight
such “driver” genes, while there are only twelve signaling

pathways which allow selective growth advantage. These
twelve signaling pathways (“target pathways”) are: TGF � β
, MAPK, STAT, PI3K, RAS, Cell Cycle/Apoptosis, NOTCH,
HH, APC, Chromatin modification, Transcriptional regula-
tion and DNA damage control. Among these, TGF� β ,
MAPK, STAT, PI3K, RAS and Cell Cycle/Apoptosis regu-
late “cell survival”; NOTCH, HH, APC, Chromatin modifi-
cation and Transcriptional regulation regulate “cell fate”;
while the DNA damage control signaling pathway regulates
“genome maintenance”. We have separately analyzed the
protein profiles of the three cancer types using “GO”
clustering tool [3, 4] and grouped the proteins according to
their biological pathways. As selective growth advantage can
occur only through the “target pathways”, we have consid-
ered only the proteins included in the “target pathways” for
our analysis.

Differential network analysis
For each cancer, in order to identify whether the net-
work structures of the “target pathways” have changed
from the “complete remission” group to the “progres-
sion” group, we have performed differential network
analysis [5] using the R package dna [6] . This differen-
tial network analysis for each pathway is conducted
based on connectivity scores between the proteins in
these “target pathways”. The difference in connectivity
between the two groups (“progression” versus “complete
remission”) is computed mathematically, using the fol-
lowing statistic:

ΔðFÞ ¼ 1
kðk−1Þ

X

p≠p′∈F

jsprpp′−scrpp′ j ð1Þ

where F denotes the set of proteins present in a “target
pathway” and k denotes the number of proteins in F .
Here spp '

pr and spp '
cr are the connectivity scores between

the proteins p and p ' in the “progression” and “complete
remission” groups, respectively. For our analysis, the
connectivity score of a protein pair in a network is taken
to be the Pearson’s correlation coefficient of the expres-
sion values of the two proteins in the corresponding
sample data. A permutation test is then carried out
using the test statistic Δ(F) as follows: let p denote the
number of proteins in the sample (132 in this case). Let
Npr and Ncr denote the number of patients in the “pro-
gression” group and in the “complete remission” group,
respectively. The expression profiles of the patients in
the two groups are given in the matrix form of orders
Npr × p and Ncr × p, respectively. Now, a matrix E is
constructed by merging the rows of the two profiles, i.e.,
E is of order (Npr + Ncr) × p. Then, the rows of E are
randomly permuted and the first Npr patients are consid-
ered as one group and the remaining Ncr patients as
another group. For the ith permutation, the connectivity
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scores spp '
pr,i and spp '

cr,i between the proteins p and p ' are
then computed using the expression profiles of the
permuted data. Thus, the ith permuted test statistic
Δ(F,i) is given by

ΔðF ; iÞ ¼ 1
kðk−1Þ

X

p≠p′∈F

jspr;ipp′−s
cr;i
pp′ j ð2Þ

This process is repeated 1000 times and the observed
level of significance (p-value) is obtained using

pval ℱð Þ ¼ 1
1000

X1000

i¼1

I Δ ℱ; ið Þ≥Δ ℱð Þð Þ ð3Þ

Next, we have constructed graphical networks for
those “target pathways” for which the p-values are
significant, so that we get an idea about the network struc-
tures in each of the two groups. The graphical networks
are constructed by connecting each pair of proteins for
which the connectivity score exceeds a threshold.
In addition to testing the overall pathway significance

for each cancer, we have also tested whether the con-
nectivity of each single protein has changed between the
two groups (“progression” vs “complete remission”)
using the following statistic:

dðpÞ ¼ 1
f −1

X

p′∈G; p′≠p

jsprpp′−scrpp′ j ð4Þ

Where G denotes the set of all proteins and f is the
number of proteins in G. Once again, a permutation test
is carried out for each protein, in the way described
before. The p-value corresponding to each protein is ob-
tained using Equation 3, with Δ(F) and Δ(F, i) replaced
by d(p) and d(p, i) respectively, where d(p, i) is given by

dðp; iÞ ¼ 1
f −1

X

p′∈G; p′≠p

jspr;ipp′−s
cr;i
pp′ j ð5Þ

Rank aggregation
The p-values, obtained using the test statistic given in
Equation 1, are used to obtain ranked lists of the “target
pathways” for each cancer type. Here, ranking is done in
such a way that the “target pathway” with the lowest p-
value gets rank 1, the next one gets rank 2 and so on.
Since, these ranked lists vary according to the cancer
type; we need to aggregate them in a meaningful way to
get an overall ranked list which would then rank the
pathways by their global order of importance. In other
words, this overall ranked list may provide us with the
most important “target pathways” in all the three can-
cers. In order to get this overall ranked list, we have used
the R package RankAggreg [12, 13] based on the Cross-
entropy Monte Carlo algorithm [25]. In the framework

of optimization problem, RankAggreg [12, 13] minimizes
an objective function, so that a final ordered list is
obtained which is close to all the individual ordered
lists, simultaneously. The objective function is defined
as follows

Ο xð Þ ¼
Xm

i¼1

wid x;Y ið Þ ð6Þ

Here, Yi is the ith ordered list, x is the proposed or-
dered list, d is a distance measure and wi denotes the
weight associated with the ordered list Yi. The aim here
is to find x* for which the objective function O(x), given
in Equation 6, is minimum. In other words,

x� ¼ argmin
Xm

i¼1

wid x;Y ið Þ ð7Þ

For our analysis, we have considered the p-values, ob-
tained from Equation 3, as our weights (wi). Here, Yi is
the ith ordered list of “target pathways”. As a distance
measure, we have considered weighted Spearman’s foo-
trule distance [26]. A brief description of the algorithm
of the weighted Spearman’s footrule distance, used for
our purpose, is as follows: Let pi(1); pi(2); … ; p(5) be the
p-values (in ascending order) associated with the ith or-
dered list, Yi. Let rA(Yi) and rA(x) denote the ranks of the
“target pathway” A in the ith ordered list Yi and the pro-
posed ordered list x, respectively. Then, the weighted
Spearman’s footrule distance is given by

S x; Y ið Þ ¼
X

t�Y i∪x

p rt Y ið Þð Þ−p rt xð Þð Þj j�jrt Y ið Þ−rt xð Þj

ð8Þ
For our second analysis at the individual protein level,

the p-values, obtained using the test statistic given in
Equation 4, are used to rank the set of 132 individual
proteins. An overall ranked list of these proteins is
obtained using the R package RankAggreg [12, 13] in a
similar way.

Reviewers’ comments
The authors thank the reviewers for their comments.
When possible, the manuscript has been modified
according to their recommendations.

Reviewer 1 (Joaquin Dopazo)
The manuscript “Exploring the Importance of Cancer
Pathways by Meta-Analysis of Differential Protein
Expression Networks in Three Different Cancers by
Sikdar et al., presents an elegant comparative analysis of
the differences between good and bad prognostic in dif-
ferent cancers in terms of pathway activity instead of
using the conventional gene-based perspective.
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There are, however, several points that need some clari-
fication for the proper understanding of the manuscript. It
is not clear for me how the subnetworks (pathways) have
been defined? I am not sure if they used the g: profiler for
this purpose (BTW, what is the justification of using the g:
profiler? because it is not among the most cited tools for
functional analysis). Or they used the connectivity values
(taken from coexpressions) to define the edges? If so, what
threshold is used to define a connection?
The results are interesting because they show how,

taking into account the proteins within the context of
the network of interactions linking them, is superior to
the conventional one-gene-at-a- time approaches. How-
ever, I think this fact, which is one of the main contribu-
tions of the paper, is not sufficiently reflected in the
manuscript. It would be nice if they can include a table
or any type of comparative where they can prove that
they can find richer results analysing these proteins
within the pathways than analysing them alone.
Additionally, it is worth mentioning, within the

context of network analysis, new approaches based on
the 3D solved interactome, such as Porta-Pardo et al.,
2015, PLoS Comp Biol http://journals.plos.org/plos-
compbiol/article?id=10.1371/journal.pcbi.1004518.
Author’s response: We have used g: profiler for grouping

the proteins functionally because it can handle much
larger collection of features, for example, genes, proteins,
etc., compared to DAVID. We have also used DAVID with
KEGG database and got three “target pathways” in
common with g: profiler and more than 93% of the proteins
were common between the two results (details not shown).
In addition, we have tried other pathway systems, namely,
PANTHER and BIOCARTA and got, respectively, four and
five “target pathways” in common with our results (details
not shown).
To answer the second part of the comment, we have

used connectivity scores with a threshold value of 0.7 to
define the edges.
We have conducted tests of differential connectivity of each

individual protein between the two groups (progression vs
complete remission) and considered the top fifty differentially
connected proteins for each of the three “target pathways”
which were then rank aggregated. These results are shown in
Fig. 3. These results are contrasted with the results from
pathway level analysis (Table 2) in the Discussion section of
the revised paper. We also note that our pathway level
analysis uses a natural normalization with respect to the
size of the underlying pathway.
Thank you for the reference. It has been cited in the

revised paper (see the Discussionsection).

Reviewer 2 (Samiran Ghosh)
It is a nice conference article describing meta-analysis.
The authors used rank based approach. My only suggestion

if they considered random effect based meta -analysis
approach also. Overall nice paper.
Author’s response: We prefer our nonparametric

approach since reliable parametric models incorporating
random effects terms are not available for the current
problem. In addition, the purpose of our "meta-analysis" is
somewhat different from the more common use of the term.
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