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Abstract

Background: The experience with running various types of classification on the CAMDA neuroblastoma dataset
have led us to the conclusion that the results are not always obvious and may differ depending on type of analysis
and selection of genes used for classification. This paper aims in pointing out several factors that may influence the
downstreammachine learning analysis. In particular those factors are: type of the primary analysis, type of the classifier
and increased correlation between the genes sharing a protein domain. They influence the analysis directly, but also
interplay between themmay be important.
We have compiled the gene-domain database and used it for analysis to see the differences between the genes that
share a domain versus the rest of the genes in the datasets.

Results: The major findings are:

• pairs of genes that share a domain have an increased Spearman’s correlation coefficients of counts;
• genes sharing a domain are expected to have a lower predictive power due to increased correlation. For most of

the cases it can be seen with the higher number of misclassified samples;
• classifiers performance may vary depending on a method, still in most cases using genes sharing a domain in the

training set results in a higher misclassification rate;
• increased correlation in genes sharing a domain results most often in worse performance of the classifiers

regardless of the primary analysis tools used, even if the primary analysis alignment yield varies.

Conclusions: The effect of sharing a domain is likely more a results of real biological co-expression than just sequence
similarity and artifacts of mapping and counting. Still, this is more difficult to conclude and needs further research.
The effect is interesting itself, but we also point out some practical aspects in which it may influence the RNA
sequencing analysis and RNA biomarker use. In particular it means that a gene signature biomarker set build out of
RNA-sequencing results should be depleted for genes sharing common domains. It may cause to perform better
when applying classification.
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Background
The CAMDA data analysis challenge neuroblastoma
dataset includes disease phenotype classes assigned to
samples that can be attempted to be verified by run-
ning a classification with cross-validation. However, our
experience with machine learning approaches on this
dataset has proven that this type of task is not particularly
trivial. The parameters of classification such as num-
ber of misclassified samples were varying between the
methods applied.
This is why we decided to look deeper into the

factors that make difficult using RNA sequencing as
a biomarker input for machine learning techniques.
This paper describes the experience with three major
sources of bias and uncertainty in such analyses. In
particular we investigated the impact of expression
similarities and correlations for genes sharing a pro-
tein domain. In addition, the interplay between a pri-
mary analysis (alignment) and types of classifier is taken
into account.
We do not intend to present just a negative results paper

stating that the classification task is difficult in reaching
the “biological truth”. Apart from showing difficulties in
the analyses, we point out good practices thatmay be lead-
ing to better practical utility of classification based upon
RNA sequencing.
This is also why we decided to go beyond just the

CAMDA dataset. Three public datasets similar in size and
content to the CAMDA one have been used to make the
outcome more comprehensible.

Correlation-based approaches in RNA sequencing
Many of the methods of data analysis in transcriptomics
use specific measures for genes co-expression. One
of the most obvious approaches is using a correlation
coefficient. It is in fact the basis for popular heatmaps
and hierarchical clustering of measured samples.
However, as pointed out in the study [1] the positive
correlations between the transcriptomics measurements
may be an effect of real biological co-expression as well
as artefactual correlation due to the technology specific
issues. It is practically not possible to fully distinguish
the increased correlation from both of the reasons. The
study [1] has proven that in the Affymetrix techonology
the increased correlation is seen for probesets that share
genes with the same sequence.

Lack of an ideal database of nucleotide-level similarity in
domains
In this analysis we propose an approach that is focused
on gene structure and sequence composition in con-
text of genome-wide analysis concerning the influence of
protein domains, using the information from the PFAM
database [2]. The domains described in PFAM are the

results of aminoacid-level analysis of sequences, thus not
all the protein domain may have enough similarities on
the nucleotide level of mRNA. Still, we use it as an ini-
tial approximation for sequence similarity, as creating a
similar nucleotide database may be non-trivial, eg. the
databse RFAM [3] includes only domains in non-coding
sequences.

Methods
Database of genes and domains
As the first step in the analysis the global table of
protein family domains and genes in which they are
located was built from annotation databases. Appropri-
ate database joins have been performed on the genomic
coordinates of genes (AceView for CAMDA dataset or
Ensembl) and domains from Pfam. The data may be
interpreted as a graph where the nodes are genes and
domains. The graph consists of gene-domain-gene motifs,
as a gene is connected with another gene always via
a domain and vice versa. This builds the structural
“galaxies” of gene families interconnected with domains
(see Fig. 1). The graphs in Fig. 1 were created using Gephi
tool (ver.0.9.1) [4].

Datasets analyzed
Additional analysis is using three different datasets from
NCBI Gene Expression Omnibus (GEO) public database
[5] with the data series accession numbers GSE22260,
GSE50760 and GSE87340. All of them contain human
RNA-seq data for cancer-related studies.

• Dataset GSE50760 [6]. Dataset includes RNA-seq
data of 54 samples (normal colon, primary CRC, and
liver metastasis) were generated from 18 CRC
patients.

• Dataset GSE22260 [7]. Dataset includes RNA-seq
data of 20 samples prostate cancer tumors and 10
samples matched normal tissues.

• Dataset GSE87340 [8]). Dataset includes RNA-seq
data of 54 samples, 27 pairs of tumor and normal
tissues from lung adenocarcinoma patients. Since
there were samples with paired-end and single end
reads, we have only used the subset of 44 samples out
of 54 with single-end reads.

RNA sequencing data processing
Data transformation and processing was performed by
the following RNA-seq primary analysis workflow: SRA
Toolkit (ver.2.8.2) was used to achieve the raw data in fastq
format. Three different mappers (Hisat2 (ver.2.1.0) [9],
Subread (ver.1.5.2) [10], Star (ver.2.5) [11]) have been
used to align the reads to the reference human genome
(GRCh38/hg38). Mappers were used with their default
settings. The reference genome index for each mapper
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Fig. 1 Graphs visualized in Gephi, depicting genes interconnected with domains. Left - the global picture, right - a single disconnected sub-graph. It
shows that the interconnection of domains in the genes are not regular and trivial

has been built with the internal tools based on the ref-
erence human genome. SAMtools (ver.1.2) [12] and fea-
tureCounts function [13] from package Subread (ver.1.5.2)
[10] were used to perform gene counting. Differential gene
expression was identified from gene-level read counts
using edgeR [14].

Co-expression of genes sharing a domain
The analysis included calculating co-expression coeffi-
cients for genes that share a structural domain. Gene
expression values for different samples can be repre-
sented as a vector. Thus calculating the co-expression
measure between a pair of genes is the same as calcu-
lating the selected measure for two vectors of numbers.
It is assumed that count data follows negative bino-
mial distribution. That is why we checked one of the
most commonly used co-expression measures - Spear-
man’s rank correlation coefficient, following the method
from [1]. This measume is a nonparametric (distribution-
free) rank statistic that allows to calculate correlation
for non-Gaussian distributions. The distributions of cor-
relation have been generated for the gene pairs shar-
ing a domain and for a random gene pairs without a
domain.
In addition, machine learning approaches have been

used for finding the effectiveness of prediction of
some differentially expressed genes. First, the differential
expression was performed with edgeR approach [14]. We

choose as a differentially expressed genes all the genes
with the significance level α = 0.05.

Machine learing approaches - classification of samples
Then, in this set, we looked for the domain that is con-
nected with the biggest number of genes. Next, we cal-
culated the classification error taking into account those
chosen genes and as the opposite - the second subset con-
sisted of genes sharing no domains. In each dataset the
classification attribute was the sample group division from
the published experiments. As the variables in the classi-
fiers count data tables of the chosen genes connected with
one domain or the top of differentially expressed genes
without domains were used. The number of genes that
was taken for the machine learning was limited with half
of the number of samples in the experiments, to avoid
overtraining (Hughes phenomenon) [15]. We trained the
classifiers based on these variables to find if the sample
matches the particular clinical phenotype group. We used
the following classifiers: k-nearest neighbor [16], support
vector machine [17], the neural network [18] and ran-
dom forest [19]. All of these classifiers are included in
the MLInterfaces R package [20]. This package unifies
the Bioconductor approached to the classification, thuse
we treated it as a “golden standard” in the area. 5 fold
cross-validation was used to calculate prediction errors
counted as misclassification of samples. An alternative, in
particular in practical solutions, would be using ensemble
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or ranked classifiers, eg as described in [21], still in this
study we intend to test mainly the performance of well-
known general purpose classifiers to point out possible
artifacts with domain-associated genes in the input data.
All the analyses have been carried out using R v3.4.0 and
BioConductor v3.4.

Results and Discussion
Initial results with the CAMDA dataset
For the CAMDA neuroblastoma dataset the Spearman’s
correlation distribution have shown a shift towards pos-
itive values for the gene pairs linked by a domain. Only
in the case of neural networks the classification with the
genes sharing domain was better than without (see Fig. 2).
Those results have been the direct motivation to test this
approach with other datasets.

Properties of datasets mapped to the reference genome
The datasets have been aligned to the reference genome
using three different mappers in order to see the influ-
ence of the alignment software. The distribution of reads
abundance in genes shows that no particular mapper
proves to be clearly superior. Also the three datasets differ
significantly in the reads abundance in genes (see Fig. 3).

Standard differential expression analysis
In all the datasets a differential expression analysis has
been performed with edgeR. Typically, almost half of the
significantly expressed genes are those that have a PFAM
domain (see Table 1).

Analysis using the knowledge of shared domains
For the database integration done with Pfam and Ace-
View, there are 20566 genes that share a domain, and

12666 genes without a domain. For analogous Ensembl
joins there are 16923 genes with the domain and 41069
without.
We have calculated Spearman’s correlation coefficient

between the expression values of genes that share the
same domain and between the expression values of genes
that do not share any domain. Figure 4 depicts the
histogram-based distributions of correlation coefficients
between the log value of counts for 25000 randomly cho-
sen pairs of genes that share the same domains (green) or
do not share any domain (red).
The increased correlation is visible in all the cases. In the

Affymetrix technology such phenomenon was explained
partly by the artifacts of sequence similarity, partly by a
real biological co-expression [1]. In RNA-seq one can try
to distinguish between those two types of effects on cor-
relation by counting or not the multiple mapping reads, eg
using featureCount [10]. Typically, the count tables of not
multiple mapped genes include smaller numbers of reads.
We have studied the differences between the counting
with and without multiple mapping reads, but the results
were not conclusive. There is some “signal propagation”
between the genes sharing a domain in the case ofmultiple
mapping, but it was hard to calculate that it has significant
effect on the correlation increase. The effect of increased
correlation exists, thus it has to be assumed that it is a
mixture of biological co-expression and multiple mapping
of reads to the similar sequences in domains.

Influence of genes with domains on the classification
outcome
The result of RNA-seq experiments are the datasets
describing the expression of thousands of genes simulta-
neously. This explains the increase of the computational

Fig. 2 Spearman’s correlation distribution and violinplots of percentage of misclassified samples for genes with and without domains in CAMDA
neuroblastoma dataset. On the left the red color is for the histogram-based distribution of Spearman’s correlation coefficient for a random selection
of gene pairs without domains. Green color stands for Spearman’s correlation coefficient for the genes that share a PFAM domains (database built
with AceView genes). Shades in the line are ranges from 100 simulations of the distribution. On the right there is violin plot of percentage of
misclassified samples for 4 classifiers based on DEG with and without domains. Total number of samples in dataset was 302
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Fig. 3 Division of genes based on number of reads aligned to those genes. Barplots of the number of genes with the division of number of reads
assigned for the genes for three datasets from the NCBI GEO public database, aligned with three different mappers (Hisat2, Star, Subread) were
generated. Colors in barplots mean the ranges of number of reads that are aligned to the genes

complexity involved in the classification process and has
an adverse effect on the estimation of the prediction. In
this part of our investigations we wanted to determine
what is the prediction error in the case of classification.
The gene selection process can help to obtain a subset
of genes that can be used to distinguish different sample
classes, often called a genomic signature. Therefore, it is
important to carry out this step of analysis as efficiently as
possible.
The idea was to take into account the correlation struc-

ture of the genes in the selection process. We used the
assumption from [22] proven additionally in the [23] that
genes that are highly correlated with one to another, often
belong to the same metabolic pathways or perform sim-
ilar functions in the cells. Similar point in the context of
genomic variant data was made in the study [24]. Thus in
the classification process one should avoid the selection
of highly correlated genes because they do not contribute
withmuch additional information to the classification [25]
and also generate similar prediction errors in the process

Table 1 Number of differentially expressed genes (DEG) with
and without domains for considered datasets and mappers

Mapers No of DEG Datasets

GSE22260 GSE50760 GSE87340

Hisat Total 359 7182 11048

With/no domains 245 / 114 5141 / 2041 7839 / 3209

Star Total 430 7264 11619

With/no domains 271 / 159 5165 / 2055 7985 / 3634

Subread Total 579 7918 11402

With/no domains 369 / 210 5350 / 2568 8029 / 3373

For each dataset and mapper the number of total number of DEG, as well as
number of DEG with and without domains was calculated. In each case there were
more DEG with domains

of discriminant analysis [26]. Therefore we used two sub-
sets of significant genes: with and without domains.
Having the confirmation that correlation for genes with

domains was shifted to the right compared to the ones
without any domain, we wanted to check what will be the
prediction efficiency. From the results of machine learn-
ing most classifiers performed better when DEG without
domains were used as variables (see Fig. 5). The knn clas-
sifier in the case of genes with domain has a high variety
for most of the datasets and mappers. Neural network
and random forest classifiers in the case of genes without
domains result with the lowest percentages of the misclas-
sification. In most of the cases, the classifiers trained using
genes with domains had on average more misclassified
samples. Only in the case of SVM as a classifier, in particu-
lar with STAR or Subread mapping, the effect was slightly
opposite - genes with domains performed a bit better with
classification. Combination of SVM and Hisat2 mapping
was giving more misclassification with domains.

Conclusions
The main direct conclusion from the validation of
machine learning techniques based on two cases is that
we get lower percentages of misclassified samples for the
case where genes with no domains are taken into account.
Using a genomic signature with genes sharing a domain
leeds most often to worse and less informative results of
classification. The way out can be eg. drawing a graph
of domain connections for the genomic signature such
as in Fig. 1 and replacing some of the domain-connected
genes with subsequent significant ones. Another good
practice that can be suggested is checking various types of
classifiers - as there is no obviously superior one. In addi-
tion, the classifiers perform differently for genes sharing
a domain. Like other aspects of RNA sequencing analysis
results, it is very much dataset dependent.
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Fig. 4 Spearman’s correlation distribution for the pairs of genes with and without domains. Red color is reserved for the histogram-based distribution
of a correlation between random selection of 25000 gene pairs without domains. Green color is connected with Spearman’s correlation coefficient
for 25000 genes that share a PFAM domains. Lines in the middle are the mean distributions of correlation based on 100 simulations of the choice of
genes. Shades in lines signify minimum and maximum values based on 100 simulations. Genes with domains have shifted correlation to the right

Reviewers’ comments
Reviewer’s report 1: Dimitar Vassilev, Faculty of
Mathematics and Informatics, Sofia University, Bulgaria
The submitted manuscript is result of interesting data
analysis research approach. It is valuable and has some
obvious merits in particular for providing a platform for
validation of the methods used for classification of genes
sharing protein family domains. From a methodological
point of view it is obvious that authors applied a decent
arsenal of statistical methods and machine learning pro-
cedures. The English language is at a decent level and a
possible minor stylistic improvement will be very help-
ful to the manuscript. The results of the study reveal the
influence of some studied factors on the classification of
the studied genes. Authors discussed that by the lower
predictive power of the genes sharing domain. This is
related also to the right choice of the classifiers, which
performance may vary depending on the method applied.

The “noise” in genes classification also is related to the
increased values of the correlation of counts. I think that
the methodological side of the submitted manuscript is
logical and has enough diverse approaches and meth-
ods for cross validation of the results and confirming the
authors these of the work. Although I have some remarks
concerning the methodology constructed by authors.
1. Correlations are so-called second-moment estimators

and they have certain error levels. The acceptance of the
Spearman rank correlation is not well defined as a choice
among other correlationmethods as Pearson, Kendall, etc.
This could throw more light on the explanation of the
behaviour of the subsequently used classifiers.
2. In this line fewwords about the initial data concerning

the distribution will be useful and a eloquent explanation
why the Spearman correlation was chosen
3. The machine learning methods vary by their nature

and it is difficult to choose the correct method. The
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Fig. 5 Violinplot of misclassified samples for 4 classifiers based on DEGs with and without domains. From the differentially expressed genes with the
significance level α = 0.05 we choose two subsets: the first one was the genes that share one particular domain (with the biggest number of genes
connected to this domain) and the second was the genes that share no domain. Validation was performed with 5 fold cross-validation. Percentages
of misclassified samples are mostly lower for the cases where genes with no domains are taken into account

the choice and a subsequent comparison of the used
four machine learning methods should be additionally
explained and related to the variation of the classifiers.
4. The machine learning classification approaches used

by authors have opened some methodological questions
which are more related to the methods for preprocess-
ing of the data and the direct use of deep learning could
not lead to desired results. I will suggest the deep learn-
ing methodology suggestions made at the end of the
conclusions to be removed.
Authors’ response:
1. and 2. Although Pearson’s correlation coefficient could

be effective as a similarity measure for gene expression
data [27] the main drawback of Pearson’s correlation
coefficient is that it assumes an approximate Gaussian
distribution and may not be robust for non-Gaussian dis-
tributions [28]. We are assuming that read counts follow

negative binomial distribution. To address this, Spear-
man’s rank-order correlation coefficient has been suggested
in literature as one of the alternative similarity measures
[29]. Spearman’s rank correlation coefficient is a nonpara-
metric (distribution-free) rank statistic. It is a measure
of a monotone association that is used without making
any assumptions about the frequency distribution of the
variables.
3. It was one of the issues that the paper attempts to

point out: that the machine learning methods vary in
their purpose, characteristics and performance on spe-
cific dataset, but what agrees is that they perform gener-
ally better on genes that do not share common domains.
The selection of machine learning methods thus was
intended to include most typical and popular ones so
we decided on those used in the package MLInterfaces
[20], which is a sort of unifying approach for classifiers.
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The explanation in the Methods section was expanded
accordingly.
4. The deep learning reference was too far-fetched indeed,

so we have removed it following the Reviewer advice.

Reviewer’s report 2: Susmita Datta, Department of
Biostatistics, University of Florida, Gainesville, USA
In this work authors analyzed the Neuroblastoma
CAMDA challenge data to identify samples with genomic
biomarkers using RNA-deq data. In doing so, they realized
that the classification results vary across different tuning
parameters of a classification algorithm. Hence they ana-
lyzed three more GEO data in order to reconfirm their
findings about this fact of classification. In order to do
that, they have realized that the genes sharing common
domains are correlated and moreover, classifying samples
with the correlated genes resulted poorer classification
accuracy. Moreover, the classification accuracy depended
on the tuning parameters of the algorithms.
Although the results are interesting for these datasets,

in general, these results have been shown before. The
basic idea for using group LASSO and fused support
vector machine (Rapaport et al., 2008) where a fused
penalty is added enforcing similar weights on correlated
features provides better classification compared to just
LASSO. The result of the difference in classification accu-
racy, using different classification algorithms and different
tuning parameters have been widely noted and Datta,
Pihur and Datta (BMC Bioinformatics, 2010) provided a
solution to the problem by proposing an adaptive opti-
mal ensemble classifier via bagging and rank aggrega-
tion. This optimal ensemble classifier performs at least
as best as the best classifier within a set of given clas-
sifiers with different tuning parameters. Authors must
provide the references and acknowledge these established
results and possibly use them in this context. Never-
theless, the findings of this manuscript are correct and
noteworthy.
Authors’ response:
The issue of classifier performance on genomic is indeed

described in a number of papers as it addresses one of the
central issues in practical use of genomics results e.g. in pre-
cision medicine, namely the genomic signatures. The fact
that correlating features influence the outcome of classi-
fication we have cited using the study on gene expression
[22] tested and extended in the PhD thesis of one of the
authors [23]. The study [24] is a complementary one with
data from genomic variants, so was mentioned appropri-
ately. To some extent our work is also indeed based on the
ideas from extensive benchmarking of machine learning
algorithms as described in [21]. This paper provides also
the suggestion of using ensemble classifier. Our main point
was a warning in the case of using typical classifiers, so we
gladly cite this study as a pointer for the readers towards

a more sophisticated, but likely efficient solution, while
in this study we intend to test mainly the performance of
well-known general purpose classifiers to point out possible
artifacts with domain-associated genes in the input data.

Abbreviations
CAMDA: Critical assesment of massive data analysis - conference and data
analysis challenge; DEG: Differentially expressed genes; KNN: k-nearest
neighbors algorithm; NNET: Neural network algorithm; PFAM/RFAM:
Databases of protein and nucleotide sequence families; RNA: ribonucleic acid;
rF: Random forest algorithm; SVM: support vector machine algorithm

Acknowledgements
The high-performance calculations were carried out at the Poznan
Supercomputing— Networking Centre, project 337.

Funding
This research has been partly supported by Polish National Science Center
grants: 2015/17/D/ST6/04063 and 2014/13/B/NZ2/01248.

Availability of data andmaterials
Not applicable

Authors’ contributions
AL and MO compiled the database of genes and domains, AL, JZW and ASB
performed the primary analysis and machine learning. ASB and JZW
performed statistical analysis. All authors participated in writing the
manuscript. All authors read and approved the final manuscript.

Authors’ information
Not applicable

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Computer Science, Poznan University of Technology,
Piotrowo 2, 60-965 Poznan, Poland. 2Department of Mathematical and
Statistical Methods, Poznan University of Life Sciences, Wojska Polskiego 28,
60-637 Poznan, Poland. 3Scientific IT Services, ETH Zurich, Weinbergstrasse 11,
8092, Zürich, Switzerland.

Received: 16 October 2017 Accepted: 6 February 2018

References
1. Okoniewski MJ, Miller CJ. Hybridization interactions between probesets

in short oligo microarrays lead to spurious correlations. BMC
Bioinformatics. 2006;7(1):276.

2. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR,
Heger A, Hetherington K, Holm L, Mistry J, et al. Pfam: the protein
families database. Nucleic Acids Res. 2013;42(D1):222–30.

3. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. Rfam: an
rna family database. Nucleic Acids Res. 2003;31(1):439–41.

4. Bastian M, Heymann S, Jacomy M. Gephi: an open source software for
exploring and manipulating networks. http://www.aaai.org/ocs/index.
php/ICWSM/09/paper/view/154. Accessed 11 Feb 2018.

5. NCBI Gene Expression Omnibus (GEO). http://www.ncbi.nlm.nih.gov/geo.
Accessed 11 Feb 2018.

http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.ncbi.nlm.nih.gov/geo
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