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Abstract

Background: The microbial communities populating human and natural environments have been extensively
characterized with shotgun metagenomics, which provides an in-depth representation of the microbial diversity
within a sample. Microbes thriving in urban environments may be crucially important for human health, but have
received less attention than those of other environments. Ongoing efforts started to target urban microbiomes at a
large scale, but the most recent computational methods to profile these metagenomes have never been applied in
this context. It is thus currently unclear whether such methods, that have proven successful at distinguishing even
closely related strains in human microbiomes, are also effective in urban settings for tasks such as cultivation-free
pathogen detection and microbial surveillance. Here, we aimed at a) testing the currently available metagenomic
profiling tools on urban metagenomics; b) characterizing the organisms in urban environment at the resolution of
single strain and c) discussing the biological insights that can be inferred from such methods.

Results: We applied three complementary methods on the 1614 metagenomes of the CAMDA 2017 challenge.
With MetaMLST we identified 121 known sequence-types from 15 species of clinical relevance. For instance, we
identified several Acinetobacter strains that were close to the nosocomial opportunistic pathogen A. nosocomialis.
With StrainPhlAn, a generalized version of the MetaMLST approach, we inferred the phylogenetic structure of
Pseudomonas stutzeri strains and suggested that the strain-level heterogeneity in environmental samples is higher
than in the human microbiome. Finally, we also probed the functional potential of the different strains with
PanPhlAn. We further showed that SNV-based and pangenome-based profiling provide complementary information
that can be combined to investigate the evolutionary trajectories of microbes and to identify specific genetic
determinants of virulence and antibiotic resistances within closely related strains.

Conclusion: We show that strain-level methods developed primarily for the analysis of human microbiomes can be
effective for city-associated microbiomes. In fact, (opportunistic) pathogens can be tracked and monitored across
many hundreds of urban metagenomes. However, while more effort is needed to profile strains of currently
uncharacterized species, this work poses the basis for high-resolution analyses of microbiomes sampled in city and
mass transportation environments.
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Background
Complex communities of bacteria, fungi, viruses and
micro-eukaryotes, called microbiomes, are an integral
part of human and natural ecosystems [1, 2]. Shotgun
metagenomics [3] is a powerful tool to investigate such
microbiomes. Indeed, metagenomics has enabled investi-
gations such as those identifying associations between
microbial communities and human diseases [1, 4–7] and
it has even permitted the discovery of whole new bacter-
ial phyla populating aquatic systems [8]. However, while
the microbiomes associated with the human body and
with natural environments like soil and oceans have
been extensively investigated [2, 9–11], there are instead
only a few works characterizing the microbial communi-
ties associated with urban environments [12, 13].
The microbial communities populating the urban en-

vironment are in direct contact with the city’s inhabi-
tants and their associated microbiomes. Therefore, it is
natural to assume there is interplay between the two,
with the human inhabitants that have the ability to ei-
ther acquire or deposit microbes as they travel through
urban environments [13–15]. Similarly to the ongoing
efforts to characterize the role of microbiomes associ-
ated with the built environments (e.g. homes and offices)
[16–19] microbial entities thriving within cities should
also be considered for their potential interaction with
the human microbiome. With the urban population pro-
jected to increase by 2.5 billion by 2050 [20–22], it is
thus imperative to characterize the microbes that inhabit
our cities and their genetic and functional diversity. In-
deed, the study of urban microbiomes can be crucial for
epidemiology and pathogen surveillance, but also for
monitoring the spread of genetic microbial traits like
genes responsible for resistance to antibiotics, similarly
to what has recently been proposed in clinical settings
[23, 24]. Recently, endeavors like the MetaSUB Project
have started to characterize the composition of the mi-
crobial inhabitants of urban environments [25], but the
increasing effort in sampling and metagenomic sequen-
cing from these environments has to be paralleled with
either the development or adaptation of computational
tools able to fully exploit this urban metagenomic data.
Computational metagenomic approaches for micro-

biome analysis are in part dependent on the source of
the metagenome. The human gut microbiome, for ex-
ample, can be successfully profiled by assembly-free
methods [1] whereas environmental microbiomes char-
acterized by a much larger diversity are typically more
dependent on metagenomic assembly [26, 27] and bin-
ning [28, 29]. The latest advances in computational
metagenomics now permits profiling metagenomes at
the sub-species resolution of single strains [30–35] and
these methods are particularly suited for the analysis of
human microbiomes [36–39]. However, little is known

about the utility of existing profiling tools when applied
to urban metagenomes, and strain-level analysis has
never been applied to the urban setting.
In this work we tested, validated, post-processed and

interpreted the application of three strain-level profiling
tools originally developed for the human microbiome on
a large set of urban metagenomic samples. We analyzed
a total of 1614 metagenomes of the MetaSUB dataset
distributed as a CAMDA challenge (from now on simply
referred to as “MetaSUB dataset”).

Results and discussion
We applied three strain-level computational profiling ap-
proaches for metagenomic data (MetaMLST [35],
StrainPhlAn [34], PanPhlAn [33]) to a total of 1614 en-
vironmental samples collected across the urban environ-
ment of three cities in the United States: New York [13],
Boston [12], and Sacramento (unpublished data). The
metagenomes were analyzed in the framework of the
CAMDA 2017 Challenge conference and are herein re-
ferred to as the “MetaSUB data set” which includes the
unpublished data of the Sacramento urban environment.
The methods adopted in this analysis have the capability

to characterize microbial organisms from metagenomes at
the resolution of single strains of known species and they
exploit different genomic features, but they have never
been applied to urban metagenomes (see Methods).

Strain typing by multi locus sequence typing using
MetaMLST
The first strain typing approach we considered is based
on Multi Locus Sequence Typing (MLST). MLST is an
effective cultivation-based technique that is frequently
used in clinical microbiology and epidemiology to iden-
tify and trace microbial pathogens [40, 41]. The method
exploits a reduced set of hypervariable loci (usually from
7 to 10) of the target species, which are subjected to
Sanger amplicon sequencing and used to define an al-
lelic profile for each strain, called a sequence Type (ST)
[42]. MetaMLST [35] is a recent metagenomic
cultivation-free extension of the approach that takes ad-
vantage of the hundreds of MLST typings available in
public databases [43, 44] and performs an in-silico
MLST analysis on the raw metagenomic reads.
MetaMLST detects already observed STs, but can also
discover new ones that diverge from the already publicly
available types (see Methods).
We applied MetaMLST to profile every species for

which an established MLST schema is available. In the
MetaSUB dataset a total of 551 samples were positive
for at least one species and we recovered a total of 121
known and 510 novel STs of a total of 15 different spe-
cies (Table 1). The most prevalent species found in the
MetaSUB dataset by MetaMLST were Acinetobacter
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baumannii, Enterobacter cloacae, and Stenotrophomonas
maltophilia, and the most prevalent STs were A. bau-
mannii ST-71 (detected 20 times) and Klebsiella oxytoca
ST-44 (detected 8 times).
A. baumannii was originally described as an environ-

mental bacterium and has been isolated from soil and
water [45], but it can also be an opportunistic pathogen
[46]. It is one of the six members of the pathogenic
group ESKAPE [47] and it is frequently responsible for
nosocomial infections. A. baumannii and the closely re-
lated species Acinetobacter calcoaceticus, Acinetobacter
pittii and Acinetobacter nosocomialis are members of the
ACB complex [48, 49] and, due to the genetic similarity
within this complex, a single MLST schema [50] is used
for the whole group [51]. Members of the ACB complex
were detected in 192 New York urban metagenomes.
When we modelled the detected STs and the reference
isolates downloaded from public sources [43, 50] with
the minimum spanning tree approach, we found that the
majority of the strains from the MetaSUB samples
belonged to A. nosocomialis and A. calcoaceticus STs
(Fig. 1a). The majority of the detected STs fall outside
the subtree with the known and labelled A. baumannii
STs. Overall, this demonstrates the presence of Acineto-
bacter and therefore potentially opportunistic pathogens
in the urban environment and highlights how a very well
defined subtree of the group comprises strains that are
found in the ecological niche of the urban environment.

We next focused on Escherichia coli, a common mem-
ber of the human gut microbiome that is also found in
the environment. E. coli has a large number of sequence
types that can be classified in phylogroups, with the ma-
jority of commensal strains found within the phy-
logroups A and B1 [52, 53], and opportunistic
pathogenic strains, such as ExPEC E. coli, falling in phy-
logroup B2 [54]. MetaMLST detected E. coli in 19 New
York subway samples and by comparing the recovered
STs with the references available in BigsDB [43], we
were able to assign the strains to the E. coli phy-
logroups (Fig. 1b). The majority (53%) of the samples
fall in the mainly non-harmful phylogroup A. One
sample harboured a novel E. coli type (adk 37; fumC
38; gyrB 19; icd 37; mdh NEW; purA 11; recA 26)
very closely related to ST-95 (3 SNVs over 3423 total
nucleotides) profile, which is one of the most com-
monly found E. coli phylogroup B2 strains [55, 56].
These results highlight that MetaMLST is capable of
detecting microbes at the strain level in complex en-
vironmental communities, thus enabling epidemiology
modelling from urban samples.

Phylogenetic strain characterization using extended
single nucleotide variant profiling
MetaMLST is a rapid method for the strain level profil-
ing of a species for which a MLST schema exists and
strains are identified by exploiting single nucleotide

Table 1 Results of MetaMLST applied to the 1614 samples of the MetaSUB dataset. MetaMLST was applied on the full panel of 113
species, detecting in total 121 known and 510 previously unobserved profiles. The table reports the number of samples and STs
found for both known and novel STs of the 15 species profiled in the MetaSUB dataset. The prevalence values are normalized over
the total number of samples (1614)

Species Known Novel

Number
of samples

Number
of STs

Number
of samples

Number
of STs

Prevalence
across dataset

Most prevalent
ST (samples)

Acinetobacter baumannii 69 22 123 117 11.90% ST71 (20)

Enterobacter cloacae 63 39 89 85 9.42% ST50 (7)

Stenotrophomonas maltophilia 15 12 98 90 7.00% ST100009 (3)

Cronobacter spp. 2 2 66 56 4.21%

Klebsiella pneumoniae 13 12 38 38 3.16%

Bacillus cereus 15 11 17 17 1.98%

Klebsiella oxytoca 12 5 18 18 1.86% ST44 (8)

Achromobacter spp. 2 2 27 27 1.80%

Enrerococcus faecalis 6 5 18 18 1.49%

Propionibacterium acnes 4 2 18 18 1.36%

Escherihia coli 3 2 16 15 1.18%

Pseudomonas fluorescens 1 1 7 6 0.50%

Pseudomonas aeruginosa 5 1 1 4 0.37%

Clostridium botulinum 1 5 5 1 0.37%

Total 211 121 541 510
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variants (SNVs) within a small set of genetic loci. With
the goal of extending this approach, we recently devel-
oped StrainPhlAn [34], which characterizes strains in
metagenomes by targeting the SNVs within clade-
specific markers (> 200 markers for each species). The
increased number of loci enables a finer resolution for
distinguishing closely related strains, and unlike
MetaMLST is applicable to any species of interest for
which at least one reference genome is available.
We applied StrainPhlAn to the microbial species identi-

fied in the MetaSUB dataset by the species profiling tool
MetaPhlAn2 [57]. In total, we identified 539 microbial
species with a relative abundance above 0.5%. Of these,
155 were present in more than 10 samples with only a
minor correlation between the sequencing depth of each
sample and the observed number of species (Add-
itional file 1: Figure S1). In samples from New York we
found Pseudomonas stutzeri and Stenotrophomonas

maltophilia to be the most abundant carachterized species
(Additional file 2: Table S1). Boston was instead domi-
nated by Propionibacterium acnes as previously reported
[12], while the city of Sacramento showed a high preva-
lence of species in the Geodermatophilaceae family and
Hymenobacter genus, which are known environmental
bacteria [58, 59]. In addition, in the Sacramento samples
we found other potential opportunistic pathogens such as
Halomonas spp. [60] and Kocuria spp., which is a species
commonly found both in soil and human skin [61–63].
The most prevalent species identified in New York, P.

stutzeri, was identified in 967 samples across the New
York dataset. Of those, 416 samples harboured P. stut-
zeri at a sufficient coverage to be profiled by StrainPh-
lAn. The StrainPhlAn inferred phylogeny highlighted the
presence of three clusters of P. stutzeri strains that do
not correlate with the geographic area from which the
sample was taken (Fig. 2a) nor are they correlated with

a b

Fig. 1 Application of MetaMLST to the 1614 urban metagenomes of the MetaSUB dataset. Minimum spanning trees (MST) were generated on
the basis of the allelic profile [86], where each node in the MST represents a Sequence Type (ST) and an edge connects similar STs (i.e. sharing at
least one identical locus) with a length proportional to their allelic-profiles similarity. The two MSTs were built with PhyloViz [85]. The 139 detected
STs of A. baumannii (a) and the 17 STs of E. coli (b) are placed in the tree together with the available known STs for which the species is available.
In both trees, the STs of the samples from the New York built environment are colored in red
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other sample characteristics such as surface material
(Fig. 2b). This may suggest that samples collected in
high-density and high-transit urban environments may
be extremely heterogeneous without evidence of sub-
niche selection. Alternatively, this could be a reflection
of these species being carried around between stations
and other surfaces of the urban furniture by commuters.
Although this has never been previously observed, further
research is needed to demonstrate such kind of events.
We next profiled S. maltophilia, which is the second

most prevalent species in the New York dataset. S. malto-
philia is not only a common environmental bacterium,
but also a nosocomial opportunistic pathogen in

immunocompromised patients [64]. We found 654
samples in which S. maltophilia was present. Of
those, 111 samples harboured S. maltophilia at a suf-
ficient coverage to be profiled by StrainPhlAn and
were considered in the phylogenetic analysis. From
the ordination plot based on inter-strain genetic dis-
tances, we identified three main clusters (Fig. 2c) that,
similarly to P. stutzeri, did not show any correlation
with either the geography or the surface material
from which the sample was taken, supporting the hy-
pothesis that the genetic structures of microbial spe-
cies and sample characteristics in urban environments
tend to be uncoupled.

a b

Fig. 2 Strain-level phylogenetic analysis of the two most prevalent bacterial species identified in the metagenomic samples of the New York
urban environment. The phylogenetic trees are inferred by applying StrainPhlAn on the raw sequencing reads. a Maximum likelihood phylogeny
of P. stutzeri (built with RAxML [83] internally in StrainPhlAn). The root of the phylogenetic tree is placed using P. putida as an outgroup. Nodes
are colored by the New York Borough from which the sample was collected, with black stars representing reference genomes. The height of the
bars of the bar-plot on the outer ring represents the relative abundance of P. stutzeri as computed by MetaPhlAn2, while the color represents the
surface material of the sample. The lengths of branches marked with a double horizontal line are reduced by 50% (b, c) PCA plot based on the
genetic distance computed on the species-specific markers sequences of 416 samples and 18 reference genomes of P. stutzeri (b) and 111
samples and 80 reference genomes of S. maltophilia (c). The points are colored according to the New York Borough
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Evidence for high intra-species strain heterogeneity in
urban microbiome samples
Complex microbial communities can harbor multiple
strains of the same species. This is a well-known charac-
teristic for both human associated [34, 65] and environ-
mental microbiomes, but profiling multiple related
strains simultaneously within the same sample is cur-
rently very challenging [3]. It is nonetheless important to
quantify the strain level heterogeneity within a sample.
Similarly to what we did previously for the human gut
microbiome [34], we investigated the strain heterogen-
eity for the species in the urban microbiomes. This was
performed by quantifying the rate of polymorphic nucle-
otides for each position along of the species’ reads-to-
markers alignments (see Methods). We computed the
estimate of strain-heterogeneity for a number of the
most prevalent species in each city (Fig. 3).
We observed a higher intra-species variability in the

MetaSUB dataset than what we previously found in the
human gut microbiome [34], thus suggesting that the
higher complexity and species richness of environmental
microbiomes [3] is also reflected at the sub-species level.
For instance, E. cloacae and P. acnes show high median
polymorphic rates (Fig. 3) suggesting that more than one
strain of the species is present within the sample. In
contrast, for P. putida and E. coli a single strain domi-
nates the community for most of the samples. We also
highlight the presence of species characterized by higher
polymorphic-rates inter quantile ranges (IQR), like P.
stutzeri and S. maltophilia, suggesting that these species
are sometimes single-strain dominated and other times
they are represented simultaneously by many distinct
strains. We can speculate that the higher percentages of

polymorphic rates can be due to the high number of dis-
tinct microbial sources (subway users) coming in contact
with the sampled surfaces. Overall, these results high-
light that the same species can harbour a substantial
strain heterogeneity across samples, and that these
strains can sometimes coexist in the same niche.

Functional profiling of strains based on species’
pangenomes
MetaMLST and StrainPhlAn are based on the compari-
son of the SNVs within species-specific markers. Micro-
bial species can also be profiled according to the
presence or absence of their gene repertoire [66–68]. In
order to profile strains according to their genomic con-
tent (gene repertoires), we applied PanPhlAn, a software
tool that outputs the gene presence-absence profile for a
given species in a metagenome. In addition to the infer-
ence of the relatedness of strains, this approach can also
be useful to identify specific strain-specific genomic
traits. These include, for instance, antibiotic resistance
and virulence determinants that can be present in only a
subset of the strains in a species. In previous studies,
PanPhlAn proved successful in detecting pathogenic
species besides commensal strains of E. coli [33, 69], but
again this was performed only in human-associated
microbiomes.
To test whether differences in strains could be ob-

served in the urban metagenomes, we applied PanPhlAn
to target E. coli in the New York dataset. E. coli was de-
tected at sufficient coverage for profiling in 19 samples,
of which five were among those profiled with
MetaMLST. Comparing the presence-absence profiles of
this 19 E. coli with a selection of reference genomes (i.e.

Fig. 3 Strain heterogeneity distribution for a set of highly prevalent species across the MetaSUB dataset. For each species, we report the
distribution of the average rate of non polymorphic sites in the sample (see Methods). The boxes show the first and third quartiles of
the dataset, the bar inside the box represents the median (second quartile), while the whiskers extend to cover the 99.3% of the distribution. External
points represent outliers
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those contained in PanPhlAn), revealed that the New
York samples had a genetic functional potential similar
to the largely non-pathogenic phylogroups A and B1,
similarly to what was shown with MetaMLST. Con-
versely, only two samples were close to phylogroup B2
(Fig. 4a).
An analysis based on the genomic content of the spe-

cies of interest can highlight the presence of specific
traits of a species within a complex microbial commu-
nity [70]. For example, it would be useful for epidemio-
logical and microbial surveillance to profile and trace
directly specific antibiotic resistance genes or virulence
factors. To test whether the identification of a specific
genetic capability could be achieved in the urban envir-
onment, we applied PanPhlAn to profile a species com-
monly identified in the MetaSUB dataset, P. stutzeri,
which is also known to encode for different antibiotic re-
sistances [71, 72]. As an example, we specifically tar-
geted the presence of the mexA gene, a component of
the MexAB-OprM efflux system, which can confer re-
sistance to numerous antibiotics and other antimicrobial
agents [73, 74]. We found that P. stutzeri mexA strains
were present in a subset of the New York samples. In
total, 372 New York samples encoded mexA, while 56
samples did not (Fig. 4b), and the PanPhlAn results were
generally in agreement with the three clusters model ob-
tained with StrainPhlAn. Interestingly, while clusters of

P. stutzeri grouped both according to the genetics and
the presence/absence of mexA, few strains that con-
tained mexA clustered genetically with strains that did
not contain the gene and vice-versa. Indeed, the pres-
ence of the same protein encoded by two strains that are
genetically very distant may imply that the presence of
mexA in some of these strains is imputable to some de-
gree of lateral gene-transfer.
Overall, these findings highlight that it is possible to

type at the functional level populations in the urban
metagenomes using strain-level approaches based on the
overall genomic repertoire and that samples can be in-
vestigated at a deeper level to unravel the diversity of
specific microbial genetic traits among complex
communities.

Comparing strain profiling by SNVs and gene content.
The two approaches we presented so far can reflect the
strain-level diversity within a species, either taking in
consideration the genomic content of strains, or their
phylogenies. However, the two methods can convey dif-
ferent information. For example, as highlighted above
for the mexA gene in Pseudomonas stutzeri, two strains
could be phylogenetically very similar while displaying
different resistance capabilities, which is why these
methods should be considered complementary. In order
to further evaluate the consistency and complementarity

a b

Fig. 4 Functional profiling of the species of the MetaSUB dataset across the New York urban environment. a PanPhlAn presence-absence matrix
of Escherichia coli. The rows represent the gene families while columns represent the samples. The top colorbar highlights the New York Borough
and the E. coli reference genomes’ phylogroups. In the heatmap yellow corresponds to presence, black corresponds to absence. Only the
gene-families present in less than 90% and more than 10% of the samples were included. b PCA plot based on the genetic distance computed
on the species-specific markers sequences of 416 samples and 18 reference genomes of Pseudomonas stutzeri as reported in Fig. 2c. Each point is
a sample and is colored according to the presence-absence of the mexA component of the Pseudomonas MexAB-OprM efflux system
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of the two approaches to profile strains, we performed a
comparison between the two distance measures of PanPh-
lAn and StrainPhlAn. We investigated a panel of the
urban species already analyzed above, and computed the
pairwise phylogenetic (StrainPhlAn) and phylogenomic
(PanPhlAn) distances within the samples (see Methods).
We found that genetic and genomic variations within

the same sample are generally correlated for all the six
species considered, confirming that both measures are
an effective proxy for strain relatedness and identity
across samples (Fig. 5). However, the correlation coeffi-
cient varied across species, spacing from 0.34 (p-value 5.
2e− 219) for A. radioresistens to 0.85 (p-value 6.9e− 17) for
E. cloacae. These values reflect a different consistency
between the phylogenetic signal and the evolutionary
modifications of the functional profiles.
We also highlight the presence of samples that, re-

gardless of the species, are much more functionally simi-
lar than the phylogenetic modeling would suggest,
possibly reflecting convergent functional adaptation.
Conversely, increased genomic content distances, suggests

rapid functional divergence potentially due to plasmids,
bacteriophages, or other lateral gene-transfer events. Such
patterns, detected for example in P. stutzeri and A. radio-
resistens, are suggesting that strains can be very similar ac-
cording to phylogeny and still be notably diverse in their
functional potential.

Conclusions
We presented here the application of three strain level
profiling tools to environmental urban metagenomics.
While these tools were specifically developed for the
context of the human microbiome, we highlighted that it
is possible to apply them to efficiently perform strain
profiling in the context of the urban environment. We
provide evidence that potential pathogenic species can
be recovered, typed, and traced across microbial com-
munities that are wider and more complex than the ones
we observe in the human microbiome. Moreover, the
phylogenetic relation of strains in the same species and
their functional repertoires can be simultaneously pro-
filed, thus providing a more complete characterization of

Fig. 5 Normalised phylogenetic distance vs genomic-content distance within samples of six representative species of the MetaSub dataset. Each
data point refers to a pair of two strains of the same species in different samples. The genomic distance is defined as the normalised Hamming
distance between binary vectors of presence-absence as reported by PanPhlAn. The phylogenetic distance is defined as the branch length distance
of the two leaves in the StrainPhlAn phylogenetic tree, normalised over the total branch length of the tree. Pearson’s correlation coefficients are A.
pittii: 0.57, E. cloacae: 0.85, E. coli: 0.75, P. acnes: 0.79, A. radioresistens: 0.34 and P. stutzeri: 0.41. P-values are always lower than 1e-5
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strains in the samples. These findings suggest that the
tools presented above are effective for the purposes of
pathogen surveillance and epidemiology in the context
of environmental metagenomics.
The three methods presented in this work are capable

of profiling microbes that are close to a reference se-
quences (MetaMLST), or for which a sequenced genome
for the target species exists (StrainPhlAn and PanPh-
lAn). Because environmental microbiomes can contain a
larger amount of unknown species [3] compared to hu-
man associated microbiomes, this dependency on
already sequenced data can limit strain profiling to only
a portion of the whole microbiomes. Additional profiling
approaches can exploit metagenomically assembled con-
tigs or genomes [3, 26–28, 30, 75] which are widely
employed in environmental metagenomics and are ne-
cessary when targeting the fraction of not previously se-
quenced taxa. Our strain-profiling methods can be
extended to use metagenomic assembled genomes as
reference, and this would provide a combined assembly-
based and assembly-free tool to explore the uncharacter-
ized diversity in microbiome samples with strain-level
resolution.
This work demonstrates that assembly-free strain-level

profiling through SNVs and genomic content is a prom-
ising technique for comprehensive strain-resolved meta-
genomics in the urban environment.

Methods
We profiled a total of 1614 samples with three strain-
level profiling tools described below. The dataset com-
prehended 1572 samples collected in the city of New
York (NY, U.S.A., [13]), 24 samples collected in the city
of Boston (MA, U.S.A., [12]) and 18 samples collected in
the city of Sacramento (CA, U.S.A., unpublished).
Samples from Boston and New York are publicly avail-

able at NCBI under accession numbers PRJNA301589
and PRJNA271013, respectively.

MetaMLST
MetaMLST [35] is a tool for strain-level typing and
identification from metagenomic data. It exploits the
Multi Locus Sequence Typing (MLST) approach and
performs an in-silico reconstruction of the MLST loci
using a reference-guided majority rule consensus
method. MetaMLST detects the sequence type (ST) of
the most abundant strain the target species in the sam-
ple. Specifically, MetaMLST reconstructs the sequence
of each locus from the raw metagenomic reads and com-
pares it with a database of previously observed variants.
Additionally, MetaMLST is capable of identifying new
loci that diverge from the closest known sequence by up
to 10 single nucleotide variants (SNVs). Hence, MetaMLST

detects both known and novel (i.e. previously unobserved
types) STs.
We applied MetaMLST version 1.1 to the entire Meta-

SUB dataset by mapping the raw reads against the
MetaMLST database as of April 2017, consisting of 113
organisms, 798 loci, 46.2 Mbp and 12,929 total profiles.
The mapping was performed with bowtie2 [76], version
2.2.6 as previously described (parameters: -D 20 -R 3 -N
0 -L 20 -i S,1,0.50 -a –no-unal) [35]. Alignment files
were sorted with Samtools version 1.3.1 [77]. We re-
ported only the species for which at least one known ST
could be detected.

StrainPhlAn
StrainPhlAn [34] is a tool for identifying the specific
strain of a given species within a metagenome. The tool
is designed to track strains across large collections of
samples and takes as input the raw metagenomic reads
in FASTQ format. After mapping the reads against the
set of species specific markers (> 200 per species),
StrainPhlAn reconstructs the sample specific marker loci
using a variant calling approach and outputs the se-
quences of each sample-specific marker in FASTA for-
mat. Sequences are extracted from the raw reads using a
reference-free majority rule that filters out noisy regions.
The resulting sequences were then concatenated and
aligned by StrainPhlAn with Muscle version 3.8 [78]. In
this work, we applied StrainPhlAn to the whole Meta-
SUB dataset and investigated a panel of 12 species that
were locally prevalent in the three cities of the MetaSUB
dataset. The reconstructed markers were used to build
the phylogenetic tree and the PCA plots of P. stutzeri
and S. maltophilia (Fig. 2). The reads-to-markers align-
ments of the 12 species were used in the calculation of
the polymorphic rate (Fig. 3). StrainPhlAn version 1.0
was used with default parameters, using the mpa_v20_
m200 markers database of MetaPhlAn2 [57]. The map-
ping against the markers was performed with Bowtie2,
version 2.2.6, with the parameters implemented in the
StrainPhlAn pipeline [34].

PanPhlAn
Pangenome-based Phylogenomic Analysis (PanPhlAn) [33]
is a strain-level metagenomic profiling tool for identifying
the gene composition of a strain of a given species within
metagenomic samples. The approach of PanPhlAn is based
on the identification of presence/absence patterns in the
genomic content within the members of the same species,
across complex metagenomic samples. As the pre-built
PanPhlAn database did not include the pangenome of
Pseudomonas stutzeri, we built a custom db from 19 high-
quality reference genomes (NCBI accession numbers:
ASM19510v1, ASM21960v1, ASM26754v1, ASM27916v1,
ASM28055v1, ASM28295v1, PseStu2.0, ASM32706v1,
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PstNF13_1.0, PstB1SMN1_1.0, ASM59047v1,
ASM66191v1, ASM95268v1, ASM98286v1, ASM103864v1,
ASM106422v1, ASM127647v1, ASM157508v1) which were
first annotated using Prokka [79] and then clustered into
gene-families with Roary [80]. We profiled the 1572 New
York samples from the MetaSUB dataset with PanPhlAn
version 1.2.1.3.

Visualization and statistical tools and phylogenetic
distances
We defined the phylogenomic distance between two
samples as the pairwise Hamming Distance on the
PanPhlAn presence-absence profile for each sample, rep-
resented as binary vectors where 1 represents the pres-
ence of the gene, and 0 represents its absence. The
phylogenetic distance was calculated as the minimal
total branch-length distance between leaf nodes, normal-
ized by the total branch length, using custom python
scripts based on BioPython BaseTree [81, 82].
The phylogenetic trees were built with RAxML [83]

version 8.1.15 (parameters: -p 1989 -m GTRCAT) and
plotted with GraPhlAn [84]. Minimum Spanning Trees
were drawn with PHYLOViZ 2 [85] using the
goeBURST Full MST algorithm [86]. The principal com-
ponent analysis (PCA) plots were drawn with the scikit-
learn package using the aligned concatenated markers
sequences of StrainPhlAn as arrays of binary features.
All the overlaid metadata used to colorize the trees and
PCA plots came from the respective studies.
The presence of polymorphic sites within the reads-to-

markers alignment was calculated and reported with
StrainPhlAn [34], testing the non-polymorphic null hy-
pothesis on a binomial test on the nucleotides distribution
of each position in the alignment. The plots were drawn
with python packages seaborn and matplotlib [87].

Reviewers’ comments
Reviewer’s report 1 - Alexandra Bettina Graf, FH campus
Wien
Reviewer comments: The authors use three different
tools, MetaMLST, StrainPhlAn and PanPhlAn to profile
three urban metagenome datasets (New York, Boston,
Sacramento – as yet unpublished), which were presented
as one of the CAMDA challenges. Their stated goals are
the characterization of organisms in urban environments
at single strain level and the discussion of inferable bio-
logical insights from the analysis. Although all three
tools were already published by the authors and already
tested in with dataset from the human microbiome, the
application of the method for urban metagenome data is
interesting for two reasons: (1) urban microbiomes are
generally more complex than the human microbiome
and (2) urban microbiomes are in close contact with the
human population within cities. Reaching sub-species

and strain level resolution is of great advantage in rela-
tion to determining the pathogenicity of organisms, and
is still not a trivial task for complex datasets. The au-
thors show that the presented approach can be used to
investigate urban metagenome samples on a sub-species
and strain level and that the results can be used to fur-
ther investigate the specific dynamics of the microbial
communities found in urban environments. The authors
further show that the analysis of the pathogenic poten-
tial and dynamics of urban metagenome samples can re-
sult in valuable information in the context
epidemiological models (AMR evolution, AMR dynam-
ics – lateral gene transfer, and mobility) and surveillance
of pathogens. The described methods can only be ap-
plied to the subset of the sample for which reference
data is available. This proportion is, in the case of the
urban microbiome, much smaller than for the human
microbiome. The authors correctly recognize this limita-
tion in their work. Despite this limitation, I believe the
authors have made a valuable contribution to the field.
Minor recommendation: It would be interesting to hint
on any effect the data quality and coverage could have
on the results, since these factors can significantly influ-
ence the observed species (strain) diversity. Was there a
difference in diversity seen between the different data-
sets? Did this influence the results?
Author’s response: We thank the reviewer for her assess-

ment, with which we agree. To better clarify on the impact
of the coverage on the detection capabilities of the methods
we used, we compared the number of detected species
against the read count of each profiled sample and re-
ported the results in the Additional file 1: Figure S1. We
discussed the results in the text in the Results section. We
also corrected all the minor issues pointed out by the
reviewer.

Reviewer’s report 2 - Daniel Huson, University of
Tübingen
Reviewer comments: Summary: This paper applies
three methods, MetaMLST, StrainPhlAn and PanPhlAn
to 1614 metagenomic sequencing samples obtained from
the urban environment in NYC, Boston and Sacramento.
It addresses the question how well these methods per-
form on such data, given that they were originally devel-
oped for the analysis of human-body-associated samples.
The authors demonstrate that the methods are indeed
applicable and can provide information on strains
present in the samples. I think that this is a worthwhile
analysis and provides a good showcase for the use of the
discussed methods. Recommendations: In the introduc-
tion you make some strong statements about the role of
the urban environment and the interplay between the
microbiomes of humans and the urban environment.
You mention pathogen surveillance and the spread of
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antibiotics. It would be very useful to provide some ref-
erences for these statements, or to formulate them more
tentatively. While it seems very plausible to me that mi-
crobes may jump off and jump on humans at subway
stations, I don’t know whether this has been conclusively
shown. Also, “Urban environments, despite being im-
portant for human health,…” requires the citation of a
paper showing this. So, in general, I recommend that
you distinguish very precisely between what has been
shown and what is speculation when discussing the role
of the urban environment in human health. In the
Methods section, you provide a short summary of the
MetaMLST method. From this description, I don’t
understand how MetaMLST addresses the combinatorial
problem of matching different locus types with each
other? E.g., if there are 7 loci and for each we find 10
types, then there are 10^7 different possible STs. It
would be helpful (for me at least) if you could add a
couple of sentences explicitly explaining how this issue
is addressed.
Author’s response: We thank the reviewer for his com-

ments and we do agree that the introduction needed to
be partly amended to better address the relationship be-
tween environmental microbes and human microbiome.
Although we could not cite references in the abstract due
to Biology Direct’s authors guidelines, we added two ref-
erences in the relevant sections of the introduction. Add-
itionally, we better clarified on the importance of
microbiomes in the built environment by editing accord-
ingly the second paragraph of the introduction. To our
knowledge, transfer of human microbes between trans-
portation lines and stations has not been described before
in literature: we now mention it in the manuscript. We
further amended the text by better explaining the ana-
lysis performed by MetaMLST, and by highlighting that
only the most abundant variant of each target species is
reported by the tool. We also corrected all the minor is-
sues pointed out by the reviewer.

Reviewer’s report 3 - Trevor Cickovski, Florida
International University
Reviewer comments: The article provides a quite thor-
ough analysis of urban environments using several ana-
lysis tools that have been used primarily to study the
human microbiome, and presents several very interest-
ing and sometimes encouraging findings; especially with
respect to finding more of a difference in microbiomes
between cities compared to areas within the same city,
being able to detect and profile pathogenic bacteria, and
supporting the growing necessity of subspecies-level
profiling. While there is no methodological novelty, I do
very much like the creative combination of existing
packages in a way that can thoroughly analyze an under-
explored domain in this field. I believe that is often just

as important and viewing the purposes of Biology Direct,
discovery and application notes as well as reviews are
perfectly acceptable. The paper is well-written and orga-
nized well, I was clear of the goals, how each portion
contributed to those goals, what was found and where it
was going. I therefore recommend the paper to be pub-
lished as is.
Author’s response: We thank the reviewer for his com-

ment on the manuscript.

Additional files

Additional file 1: Figure S1. Scatterplot contrasting for each sample
the number of successfully profiled species against the metagenome size
(in million reads). Each dot corresponds to a sample in the MetaSUB
dataset. The number of detected species was calculated with
MetaPhlAn2 by requiring a species to have a relative abundance higher
than 0.5% within the sample. (PDF 113 kb)

Additional file 2: Table S1. MetaPhlAn2 output table on the whole
MetaSub dataset. Values represent the relative abundances detected for
each sample (in the columns). (CSV 16816 kb)
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