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Abstract

Background: Neuroblastoma is the most common tumor of early childhood and is notorious for its high variability in
clinical presentation. Accurate prognosis has remained a challenge for many patients. In this study, expression profiles
from RNA-sequencing are used to predict survival times directly. Several models are investigated using various
annotation levels of expression profiles (genes, transcripts, and introns), and an ensemble predictor is proposed as a
heuristic for combining these different profiles.

Results: The use of RNA-seq data is shown to improve accuracy in comparison to using clinical data alone for
predicting overall survival times. Furthermore, clinically high-risk patients can be subclassified based on their predicted
overall survival times. In this effort, the best performing model was the elastic net using both transcripts and introns
together. This model separated patients into two groups with 2-year overall survival rates of 0.40 ± 0.11 (n = 22)
versus 0.80 ± 0.05 (n = 68). The ensemble approach gave similar results, with groups 0.42 ± 0.10 (n = 25) versus
0.82 ± 0.05 (n = 65). This suggests that the ensemble is able to effectively combine the individual RNA-seq datasets.

Conclusions: Using predicted survival times based on RNA-seq data can provide improved prognosis by
subclassifying clinically high-risk neuroblastoma patients.

Reviewers: This article was reviewed by Subharup Guha and Isabel Nepomuceno.
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Background
Neuroblastoma is the most frequently diagnosed cancer
in the first year of life and the most common extracra-
nial solid tumor in children. It accounts for 5% of all
pediatric cancer diagnoses and 10% of all pediatric oncol-
ogy deaths [1]. These numbers have improved over the
past decade, but accurate prognosis for the disease has
remained a challenge [1]. The difficulty is due to the highly
heterogeneous nature of neuroblastoma; cases can range
from tumors that spontaneously regress on their own, to
aggressive tumors that spread unabated by treatment.
In 1984, the MYCN oncogene was identified as a

biomarker for clinically aggressive tumors [2]. It has since
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been one of the most important markers for stratify-
ing patients. Genome-wide association studies have found
many other SNPs associated with an increased risk of
neuroblastoma. However, while aberrations of these genes
indicate an increased susceptibility to the disease, these
markers are less useful for stratifying patients into risk
groups after diagnosis.
The Children’s Oncology Group stratifies patients into

three risk groups using the International Neuroblastoma
Staging System (INSS) and various prognostic markers
including age at diagnosis, tumor histology, MYCN ampli-
fication, and DNA ploidy. According to the American
Cancer Society, the 5-year survival rate for these low-risk,
intermediate-risk, and high-risk groups are > 95%, 90% -
95%, and < 50%, respectively. The high-risk group typi-
cally consists of patients older than 18 months with INSS
stage 4 or patients of any age with MYCN amplification.
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Predicting survival outcomes using gene expression data
has been explored with promising results [3, 4]. These
studies use gene expression profiles with classification
methods to stratify patients into risk groups. However,
patients that are clinically labeled as high-risk pose a
particular challenge, and classifiers tend to struggle sep-
arating those patients into subgroups. In this paper, we
take the approach of modeling survival time directly using
RNA-seq data. This leads to two objectives: the first is to
evaluate the accuracy of the model in predicting exact sur-
vival times. The second is to determine whether the pre-
dicted times can be used to subclassify high-risk patients
into distinct groups.

Methods
Accelerated failure time (AFT) model
The accelerated failure time (AFT) model relates the log
survival times to a linear combination of the predictors.

log(y) = Xβ + ε, (1)

where y ∈ R+n denotes the vector of n observed sur-
vival times, X the n × p matrix with columns containing
the predictor variables for each observation, β ∈ Rp the
vector of regression coefficients, and ε ∈ Rn a vector
of independent random errors with an unspecified dis-
tribution that is assumed to be independent of X. The
predictors X are centered and scaled so that each col-
umn Xi, for i = 1, . . . , p, has zero mean and unit variance
There are two challenges to fitting this model: the high
dimensionality of X and the right censoring of y. Since
p > n, ordinary least squares (OLS) should not be used as
it will simply overfit on the data. Instead, four approaches
for dimension reduction are considered, which include
both latent factor and regularization techniques. To han-
dle right censoring, a nonparametric, iterative imputation
procedure is proposed, which allows the model to be fit as
though complete data were available.
Each of the dimension reduction techniques require the

selection of one or more tuning parameters. These param-
eters are determined by 10-fold cross validation, which
is implemented in R using two packages discussed in the
following sections.

PLS
With partial least squares (PLS), a collection of v < n
orthogonal latent factors are computed as linear combi-
nations of the original covariates. The construction of the
latent factors takes into account both X and y; this is in
contrast to principal component analysis (PCA), which
only considers X. A review of PLS and its application to
genomic data can be found in [5]. Once the v latent factors
are computed, the AFT model is fit using OLS with these
new variables.

PLS is implemented using the “spls” R package [6]. The
number of latent factors v is a tuning parameter, which
is determined from 10-fold cross validation. The optimal
value of v is searched over v = 1, . . . , 10.

SPLS
Like PLS, the sparse partial least squares (SPLS) also con-
structs latent factors, but it incorporates L1 regularization
in the process [7]. This induces sparsity in each linear
combination of the original covariates that make up the
latent factors. There are two tuning parameters, the num-
ber of latent factors v < n and the shrinkage parameter
η ∈ (0, 1) for the regularization. Both of these are deter-
mined from 10-fold cross validation using the “spls” R
package [6]. The optimal values of v and η are searched
over the grid of points with v=1, ..,10 and η = 0.1, . . . , 0.9.
Note, to implement PLS the shrinkage parameter, η, is

set to zero.

Lasso
The least absolute shrinkage and selection operator (lasso)
fits the model using least squares subject to an L1 con-
straint on the parameters

∑p
j=1 |β̂j| ≤ λ, where λ > 0 is

a tuning parameter that affects the amount of shrinkage
[8]. This constraint induces sparsity in the estimated coef-
ficients, setting many coefficients to zero and shrinking
others.
The model is fit using the “glmnet” R package [9], which

performs 10-fold cross validation to select λ.

Elastic net
The elastic net (elnet) uses a similar approach as the
lasso. It combines both L1 and L2 penalties; the estimator
minimizes the convex function

1
2
||Y − Xβ||22 + λ

[
1
2
(1 − α)||β||22 + α||β||1

]

, (2)

where λ > 0 and α ∈ [0, 1] are two tuning parameters
[10]. When α = 1, this reduces to the lasso. By includ-
ing some component of the L2 penalty, groups of strongly
correlated variables tend to be included or excluded in the
model together. The “glmnet” R package [9] is used to fit
the model and determine both tuning parameters.

Imputation for right censoring
Let

{
(yi, δi,Xi)|i = 1, . . . , n

}
denote the set of observed

survival times, indicators for death from disease, and the
p-dimensional vector of covariates for the n patients in the
dataset. Let Ti denote the true survival times for patient
i = 1, . . . , n. If the ith patient’s survival time is censored
(i.e. δi = 0) then we only observe yi < Ti. That is, Ti is
unobserved.
To deal with this right censoring, the dataset imputa-

tion procedure from [11] is used. This procedure is briefly
summarized here. To begin, an initial estimate β̂(0) is
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obtained by fitting the AFT model using only the uncen-
sored data. Then, in each of k = 1, . . . , nK iterations, do
the following.

1 Calculate the Kaplan-Meier estimate Ŝ(k)(e) of the
distribution of model error using {(ei, δi)|i = 1, . . . , n}
where ei = log(yi) − XT

i β̂(k−1).
2 Impute nD new datasets by replacing each censored

log(yi) with XT
i β̂(k−1) + e∗i , where e∗i is a sampled

model residual from the conditional distribution
Ŝ(k)(e|e > ei). This condition ensures that the
imputed observation will be larger than the observed
right-censored time.

3 Use the new datasets to compute nD new estimates
β̃

(k)
j for j = 1, . . . , nD.

4 Average the nD estimates to obtain a final estimate
β̂(k) = 1

nD
∑nD

j=1 β̃
(k)
j .

The process is repeated for nK iterations, and the final
estimate β̂(nK ) is returned.
To balance between computation time and simulation

variability, we chose to run nK = 5 iterations, imputing
nD = 5 datasets in each.

Ensemble method
The ensemble method incorporates bagging with rank
aggregation over each performance measure. The 12
models using genes, transcripts, and introns each with
PLS, SPLS, lasso, and elnet are considered, along with the
clinical data only model. These 13 models are combined
using the ensemble method presented in [12], which is
briefly summarized here.
For i = 1, . . . ,B iterations, do the following

1 From the original training dataset, resample n
observations with replacement. This set is referred to
as the bag and will be used to train the ensemble. The
out of bag (OOB) samples consist of those not
chosen for the bag and are used to test the ensemble.

2 Each of theM = 13models are fit on the bag samples.
3 Compute K performance measures for each model

using the OOB samples.
4 The models are ordered Ri

(j), for j = 1, . . . ,M, by
rank aggregation of the K measures. The best model
Ri

(1) is collected.

This process results in a collection of B models. The
ensemble method uses the average of the predicted sur-
vival times from each of these Bmodels.
In this study, we consider K = 3 different measures:

the RMSE and two logrank test statistics described below.
A total of B = 20 iterations are conducted, which keeps
the computational burden at a minimum while maintain-
ing desirable results. In addition, to avoid repeating the
imputation procedure for eachmodel at each iteration, the

censored data is imputed once at the start of the ensemble
training; the censored survival times are replaced with the
predicted times from the single best model (TI-4).

Classification: LPS vs. non-LPS
The second goal is to subclassify clinically high-risk
patients. A new dichotomous variable is created to classify
patients: If the predicted survival time is less than t > 0
years, we say the patient has low predicted survival (LPS).
Otherwise, the patient is non-LPS. For patient i = 1, ..., n
with predicted survival time ŷi, let

LPSi,t =
{
1 if ŷi ≤ t
0 otherwise . (3)

Two cutoffs were considered with t = 2 and t = 5 years.
For clinically high-risk patients, the t = 2 cutoff is use-
ful for identifying those with a significantly lower survival
rate. In the general population of neuroblastoma patients,
the t = 5 cutoff is useful as an alternative way to iden-
tify high-risk patients, but it cannot tease out the more
extreme cases.

Performance measures
Performance is evaluated on the testing dataset by four
different measures.
The first involves the prediction error of survival times.

This is measured by the root mean squared error, adjusted
to account for the censoring by reweighting each error by
the inverse probability of censoring [13]. This is given by,

RMSE =
(
1
n

n∑

i=1

δi
(
yi − ŷi

)2

ŜC
(
TC
i −)

)1/2

, (4)

where n is the sample size of the testing dataset, δi is 1
if the ith patient is uncensored and 0 otherwise, yi is the
observed survival time for patient i, ŷi is the predicted
survival time, and ŜC is the survival function of censor-
ing. Note that ŜC can be estimated by the Kaplan-Meier
estimator with δ replaced by 1 − δ.
A reviewer suggested Harrell’s c-index as an alternative

measure to RMSE. The c-indexmeasures the concordance
of predicted survival times with true survival times. It is
computed as

ĈH =
∑

i�=j δiI
(
ŷi < ŷj

)
I
(
yi < yj

)

∑
i�=j δiI(yi < yj)

. (5)

In contrast to RMSE, the c-index only considers the rel-
ative ordering of the predicted times. The c-index ranges
from 0 to 1, with values close to 1 indicating strong
performance.
The final two measures are based on the LPS classifica-

tion of patients using cutoffs t = 2 and t = 5. A model is
considered to peform well if it is able to separate patients
into two groups having distinctly different survival curves.
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To measure this property, the logrank test [14] is used,
which compares the estimated survival curves for each
group (LPS versus non-LPS). The test statistic is given by

(
Og − Eg

)2

Var
(
Og − Eg

) , (6)

where Og − Eg = ∑
f∈F

(
dg,f − df (ng,f /nf )

)
is the sum

of observed minus expected deaths in group g = 1, 2,
where F is the set of all observed survival times, dg,f is
the number of deaths in group g at time f, ng,f is the
number of patients at risk in group g at time f, and nf
is the total number at risk at time f. The survdiff func-
tion in the “survival” R package [15] is used to compute
this statistic. Under the null hypothesis of no difference
between survival curves, the logrank test statistic has an
asymptotically χ2 distribution with 1 degree of freedom.
The performance measures for eachmodel are shown in

Figs. 1 and 2. For RMSE and the logrank tests, smaller val-
ues correspond to better performance. For c-index, values
close to 1 are better. The error bars are 95% confidence
intervals obtained by bootstraping on the testing dataset;
observations are resampled with replacement and each
measure is recomputed. The process is repeated B = 1000
times. The 2.5th and 97.5th percentiles are used for the
lower and upper confidence limits, respectively.

Datasets
The datasets can be accessed from the GEO database
with accession number GSE49711 [16, 17]. The data are
comprised of tumor samples from 498 neuroblastoma
patients from seven countries: Belgium (n = 1), Germany
(n = 420), Israel (n = 11), Italy (n = 5), Spain (n = 14),
United Kingdom (n = 5), and United States (n = 42).
Several clinical variables are available for each patient,
along with the RNA-sequencing information from their
tumor sample. In [16], the data were randomly sepa-
rated into a training set and testing set; this partition was
recorded with the clinical data and is used here.

Clinical data
The clinical data consist of 11 variables. In this study, three
of these variables are used as clinical covariates: sex, age,
and MYCN status.
There are two outcomes of interest: overall survival and

event-free survival. Overall survival is calculated as the
time from diagnosis to the time of death from disease or
the last follow-up date, if the patient survived. Event-free
survival is calculated as the time from diagnosis to the
time of tumor progression, relapse, or death from disease,
or to the last follow-up date if no event occurred.

RNA-seq data
The RNA-seq data provide annotations at three feature
levels, giving datasets comprised of 60,776 genes, 263,544

transcripts, and 340,414 introns, respectively. A hierarchi-
cal version of the transcript annotation was also available
but was not used.
Normalization of the RNA-seq data was performed by

[16]. The gene counts were normalized as the log2 of the
number of bases aligned in the gene, divided by the num-
ber of terabases aligned in known genes and by the length
of the gene, with several corrections. The same normal-
ization is used for the transcript counts. The expressions
for the introns are computed as

log2
(1 + number of supporting reads) ∗ 106

number of reads supporting an intron in this data
.

The RNA-seq data are filtered prior to model fitting.
Genes and transcripts without an NCBI ID are removed.
Any variables with over 80% zero counts in the training
dataset are also omitted. A database of 3681 genes related
to neuroblastoma was obtained from the GeneCards Suite
[18]. This dataset is used to subset the remaining genes
and transcripts, resulting in 3389 genes and 47276 tran-
scripts. For the introns, their predictive ability for survival
time is ranked by fitting each intron in a Cox proportional
hazards model [19, 20]. This is repeated for both OS and
EFS times of patients in the training set. The Cox model
is fit using the “survival” R package [15]. The top 2000
introns with the smallest p-values (testing that the coeffi-
cient is zero) are used. This ranking is also performed on
the remaining genes and transcripts; the top 2,000 of each
are retained.

Results
Eighteen models are considered in total. Each model is
used to estimate overall survival (OS) and event-free sur-
vival (EFS). For a baseline of comparison, a “null” model
is fit using clinical covariates alone. Models are then con-
structed by first selecting a set of predictors: genes, tran-
scripts, introns, or both transcripts and introns (labeled
G, T, I, and TI, respectively); and then choosing one of the
four dimension reduction techniques: PLS, SPLS, lasso,
or elastic net (labeled 1-4, respectively). This gives 16
possible combinations. Finally we consider an ensemble
model, which pools together the null model and individual
models containing genes, transcripts, or introns.

Predicting survival times directly
The models using RNA-seq data tend to perform bet-
ter than the null model in predicting survival times. A
95% confidence interval (CI) for the adjusted root mean
squared error (RMSE) of eachmodel is estimated via boot-
strapping on the testing set; these are shown in Figs. 1
and 2.
For OS, the estimated 95% CI for RMSE of the null

model is (2.66, 7.61). Every other model besides G-1, G-3,
and G-4 (genes using PLS, lasso, and elnet, respectively)
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Fig. 1 Performance measures for overall survival. Each of the 18 models are assessed using the testing dataset. Four measures of performance are
considered: the adjusted root mean squared prediction error (RMSE); the logrank test statistic from using the predicted survival time as a classifier on
high-risk patients, thresholded at 2 years (LPS2) and 5 years (LPS5); and Harrell’s c-index. 95% confidence intervals are obtained by bootstraping on
the testing dataset. This is done by resampling observations with replacement and recomputing each measure. The process is repeated for
B = 1000 times, and the middle 95% of measures are used for the confidence interval

have smaller RMSE estimates than the null model. How-
ever, only the TI-2 model (transcripts and introns using
SPLS) has a confidence interval bounded below the null
model’s, with an estimated 95% CI of (1.23, 2.60) (Fig. 6).
For EFS, the improvements of the RNA-seq models over
the null model appear to be less substantial. The estimated
95%CI for RMSE of the null model is (4.37, 5.52). Only five
of the 16 RNA-seq models have lower RMSE estimates
than the null model. The TI-2 model still performed well
in comparison with a 95% CI for RMSE of (2.02, 4.49),

which overlaps slightly with the null model’s. The I-1 and
I-2 models (introns using PLS and SPLS) have confidence
intervals bounded below the null model’s (Fig. 7).
Overall, the performance of predicting exact survival

times is not completely satisfactory. For a patient with
high predicted survival, say 20 years or more, an RMSE
of 1-2 years is acceptable; we can reliably conclude that
this is a low-risk patient who won’t require intensive treat-
ment. However, a clinically high-risk patient may have a
predicted survival time of 5 years or less, in which case an
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Fig. 2 Performance measures for event-free survival. Each of the 18 models are assessed using the testing dataset. Four measures of performance
are considered: the adjusted root mean squared prediction error (RMSE); the logrank test statistic from using the predicted survival time as a classifier
on high-risk patients, thresholded at 2 years (LPS2) and 5 years (LPS5); and Harrell’s c-index. 95% confidence intervals are obtained by bootstraping
on the testing dataset. This is done by resampling observations with replacement and recomputing each measure. The process is repeated for
B = 1000 times, and the middle 95% of measures are used for the confidence interval. Note, the upper limit of RMSE for T-2 is not visible in the plot

RMSE of 1-2 years is troublesome; it is unclear whether or
not an agressive course of treatment should be used.
A reviewer suggested the use of Harrell’s c-index as

an alternative measure to RMSE. This measure consid-
ers the relative ordering of predicted survival times with
the observed times [21]. We find that models provide pre-
dicted times that are strongly concordant with observed
times (Figs. 1 and 2), which indicates an accurate rela-
tive ordering of patients. These results suggests that the
models may be useful as a classifier.

Classification of high-risk patients
These models can be used as a classifier by compar-
ing the predicted survival times to a chosen threshold.
Since the clinically high-risk group is notorious for hav-
ing poor prognosis, our goal is focused on subclassifying
these patients. A threshold of 2 years is used. If a patient
has a predicted survival time less than 2 years, they are
labeled as LPS (low predicted survival). Otherwise, they
are non-LPS. A classifier is considered successful if the
two resulting groups (LPS versus non-LPS) have distinct
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survival curves. The Kaplan-Meier estimates [22] of these
curves for each RNA-seq model are shown in Figs. 3, 4,
5 and 6, and the null model and ensemble are shown in
Fig. 7.
Using OS as the outcome, almost every RNA-seq model

is able to partition high-risk patients into two distinct
groups, providing a substantial improvement over the null
model. The TI-4 model produces groups with the largest
difference in 2-year OS rates: 0.40±0.11 versus 0.80±0.05
(Table 1).With EFS as the outcome, there is less separation

between LPS and non-LPS groups than is found with OS
(Figs. 3, 4, 5 and 6). The T-1 model provides the largest
distinction in 2-year EFS rates: 0.29 ± 0.06 versus 0.56 ±
0.10 (Table 1).
In general, subclassification is more successful with OS

than with EFS. The ensemble approach (Fig. 7) reflects the
overall performance in both cases: the LPS and non-LPS
groups are well separated by the ensemble in OS (0.42 ±
0.10 versus 0.82±0.05) but not for EFS (0.36±0.06 versus
0.39 ± 0.09) (Table 1).

Fig. 3 Kaplan-Meier estimates for HR and LPS2. Kaplan-Meier estimates for overall survival (left column) and event-free survival (right column) of
clinically high risk patients using the gene annotation from the RNA-seq data. Rows 1-4 correspond to PLS, SPLS, lasso, and elnet fitting procedures.
The orange line corresponds to patients labeled as LPS2 (predicted survival time less than 2 years), and blue lines are non-LPS2. The p-values are for
the logrank test
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Fig. 4 Kaplan-Meier estimates for HR and LPS2. Kaplan-Meier estimates for overall survival (left column) and event-free survival (right column) of
clinically high risk patients using the transcripts annotation from the RNA-seq data. Rows 1-4 correspond to PLS, SPLS, lasso, and elnet fitting
procedures. The orange line corresponds to patients labeled as LPS2 (predicted survival time less than 2 years), and blue lines are non-LPS2. The
p-values are for the logrank test

Pathway analysis
Pathway enrichment analysis provides a biological sum-
mary of the genes selected by the AFT model. Gene sets
are constructed by collecting the predictors with nonzero
coefficients in the fitted G-4, T-4 and TI-4 models. The I-
4 model with introns only is not considered, since introns
cannot easily be interpreted in the pathway analysis. The
PLS and SPLS methods gave each predictor some weight
in the AFT model, while the predictors selected by lasso
are a subset of those selected by elnet. Hence, only models

fit using elnet are considered, as these contain an amount
of sparsity that is appropriate for pathway analysis. Two
gene sets are constructed, one associated with OS and the
other with EFS. Pathway enrichment analysis (on KEGG
pathways) is performed using DAVID 6.8 [23] and sum-
marized in Tables 2 and 3.
When predicting OS, a total of 354 unique genes are

given nonzero coefficients by one of the three models.
Of these genes, 186 are annotated in KEGG pathways.
DAVID uses a modified fisher exact test to compute
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Fig. 5 Kaplan-Meier estimates for HR and LPS2. Kaplan-Meier estimates for overall survival (left column) and event-free survival (right column) of
clinically high risk patients using the introns annotation from the RNA-seq data. Rows 1-4 correspond to PLS, SPLS, lasso, and elnet fitting
procedures. The orange line corresponds to patients labeled as LPS2 (predicted survival time less than 2 years), and blue lines are non-LPS2. The
p-values are for the logrank test

p-values for enrichment, and the Benjamini-Hochberg
correction is applied to account for multiple testing [24].
Two pathways are found to be significantly enriched: Path-
ways in Cancer and ErbB signaling pathway (Table 2).
For EFS, 246 unique genes have nonzero coefficients, of
which 135 are annoted in KEGG pathways. However, no
pathways are enriched for EFS at the 0.05 significance
level.
The preceeding enrichment analysis uses the entire

human genome as a background, which contains 6910

genes annoted in KEGG pathways. However, the RNA-seq
data used in this study are filtered based on theGeneCards
database. Hence, the pathway enrichment may be more
appropriately conducted using those GeneCard genes
as the background. The GeneCards database contained
3512 genes related to neuroblastoma, of which 2044
are annoted in KEGG pathways. Relative to this back-
ground, three pathways are enriched for OS: ErbB sig-
naling pathway, Salivary secretion, and Inflammatory
mediator regulation of TRP channels (Table 3). Five
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Fig. 6 Kaplan-Meier estimates for HR and LPS2. Kaplan-Meier estimates for overall survival (left column) and event-free survival (right column) of
clinically high risk patients using both the transcript and intron annotations from the RNA-seq data. Rows 1-4 correspond to PLS, SPLS, lasso, and
elnet fitting procedures. The orange line corresponds to patients labeled as LPS2 (predicted survival time less than 2 years), and blue lines are
non-LPS2. The p-values are for the logrank test

pathways are enriched for EFS: Terpenoid backbone
biosynthesis; Metabolic pathways; Valine, leucine and
isoleucine degradation; Biosynthesis of antibiotics; and
Fatty acid metabolism (Table 3). These pathways have p-
values below the 0.05 significance level, but are nonsignif-
icant after applying the Benjamini-Hochberg correction.

Discussion
In this study we used the AFT model, fit using various
dimension reduction techniques and a dataset imputation

procedure, to predict overall survival (OS) and event-free
survival (EFS) times of neuroblastoma patients. Three fea-
ture levels of an RNA-seq dataset were considered, includ-
ing genes, transcripts, and introns. Models were fit using
the three features independently and with transcripts and
introns together.
In terms of RMSE, the predictive performance of OS

is greatly improved in the RNA-seq models over the null
model, but this improvement is curtailed when predict-
ing EFS. The high rate of censoring that is found in this
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Fig. 7 Kaplan-Meier estimates for HR and LPS2. Kaplan-Meier estimates for overall survival (left column) and event-free survival (right column) of
clinically high risk patients using the null model (first row) and the ensemble approach (second row). The orange line corresponds to patients
labeled as LPS2 (predicted survival time less than 2 years), and blue lines are non-LPS2. The p-values are for the logrank test

data will be a hinderance for any nonparametric model.
Alternative approaches can be considered: One possibil-
ity is to switch to semiparametric estimation, but this
approach will be computationally intensive in this high-
dimensional setting. A more practical solution may be to
employ a boosting algorithm (see [25] for example). These
alternatives were not explored in detail in this paper.
The second goal is to subclassify clinically high-risk

(HR) patients. In this venture the AFT model produces
very promising results. High-risk patients with low sur-
vival times are more sensitive to the amount of error
remaining in predicted times, but the estimates tend to
be in the right direction. That is, the relative ordering
of the patients by their predicted survival times is accu-
rate. A reviewer suggested the use of Harrell’s c-index
[21] to measure this effect. The c-index is above 0.8 for
each model when predicting OS, indicating strong con-
cordance between predicted OS time and true OS times
(Fig. 1). The concordance is less strong when predicting
EFS (Fig. 2).
Using a cutoff of 2 years, each model is converted to a

classifier. The TI-4 model provides the best results for OS.
For EFS, the I-4 model appears to be the best. A classi-
fier using 5 years as a cutoff is also considered, but the
performance is not as good; setting the threshold to a
value below 5 years seems to be necessary in order to iden-
tify those patients who are at the highest risk in the HR
group.
A pathway analysis of the gene sets selected by the elas-

tic net when predicting OS and EFS is performed. With

OS, two cancer-related pathways are enriched. This anal-
ysis may be biased, however, since the RNA-seq data are
initially filtered using the GeneCards database. If the back-
ground is altered to reflect this filtering, we find that
one of the two cancer-related pathways remains relatively
enriched. This alteration also reveals additional enriched
pathways for the OS and EFS gene sets, but their relevance
to neuroblastoma is questionable. Since the prediction
of EFS had limited success, it is no surprise that the
genes selected for EFS appear to have limited biological
relevance.
The predictive accuracy and pathway enrichment forOS

suggests that the AFTmodel with elastic net is able to pick
out biologically meaningful genes. A future study pursu-
ing this kind of interpretation will need to consider the
stochastic nature of the fitting procedure and determine a
stable set of genes selected by themodel. As suggested by a
reviewer, we can also explore relationships between these
genes and those excluded by the initial filtering process.
Such an investigation may produce biological insights into
the subgroups of high-risk patients.
An ensemble of models was considered, which incorpo-

rates bagging with rank aggregation of three performance
measures. The performance of the ensemble method is
comparable to that of the best individual model. This
suggests that the ensemble method is able to effectively
combine models fit on separate datasets. If additional
datasets are incorporated, such as copy number varia-
tion or other -omics data, the AFT model can be fit
by simply concatenating the datasets together, but the
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Table 1 Summary of Kaplan-Meier estimates for 2-year OS and 2-year EFS for clinically high-risk patients using each of the 18 proposed
models

LPS non-LPS

Outcome Prob SE N Prob SE N Data Model P-value

OS 0.57 0.09 31 0.79 0.05 59 Null model 0.574

OS 0.60 0.07 57 0.91 0.05 33 G 1 0.081

OS 0.60 0.06 60 0.93 0.05 30 G 2 0.082

OS 0.55 0.09 29 0.79 0.05 61 G 3 0.166

OS 0.50 0.10 24 0.79 0.05 66 G 4 0.164

OS 0.57 0.07 55 0.94 0.04 35 T 1 0.128

OS 0.56 0.07 47 0.88 0.05 43 T 2 0.002

OS 0.41 0.12 17 0.78 0.05 73 T 3 0.048

OS 0.57 0.09 33 0.79 0.05 57 T 4 0.081

OS 0.61 0.07 56 0.88 0.06 34 I 1 0.124

OS 0.51 0.08 36 0.85 0.05 54 I 2 0.027

OS 0.47 0.10 25 0.81 0.05 65 I 3 0.137

OS 0.43 0.10 25 0.82 0.05 65 I 4 0.017

OS 0.57 0.07 56 0.94 0.04 34 TI 1 0.092

OS 0.54 0.07 49 0.90 0.05 41 TI 2 0.001

OS 0.40 0.11 21 0.81 0.05 69 TI 3 0.036

OS 0.40 0.11 22 0.80 0.05 68 TI 4 0.009

OS 0.42 0.10 25 0.82 0.05 65 Ensemble 0.016

EFS 0.39 0.08 37 0.36 0.07 53 Null model 0.616

EFS 0.35 0.07 53 0.39 0.08 37 G 1 0.299

EFS 0.34 0.07 52 0.41 0.08 38 G 2 0.266

EFS 0.30 0.06 58 0.50 0.09 32 G 3 0.125

EFS 0.31 0.06 59 0.48 0.09 31 G 4 0.125

EFS 0.29 0.06 62 0.56 0.10 28 T 1 0.036

EFS 0.35 0.07 51 0.40 0.08 39 T 2 0.946

EFS 0.29 0.07 38 0.43 0.07 52 T 3 0.065

EFS 0.31 0.07 47 0.43 0.08 43 T 4 0.150

EFS 0.35 0.06 66 0.43 0.10 24 I 1 0.256

EFS 0.35 0.06 66 0.43 0.10 24 I 2 0.256

EFS 0.29 0.07 43 0.45 0.07 47 I 3 0.052

EFS 0.29 0.07 42 0.44 0.07 48 I 4 0.082

EFS 0.31 0.06 57 0.47 0.09 33 TI 1 0.084

EFS 0.33 0.06 68 0.50 0.11 22 TI 2 0.183

EFS 0.29 0.07 42 0.45 0.07 48 TI 3 0.062

EFS 0.30 0.07 44 0.44 0.08 46 TI 4 0.085

EFS 0.36 0.06 58 0.39 0.09 32 Ensemble 0.599

Patients with predicted survival of less than 2 years are labeled as Low Predicted Survival (LPS), and otherwise are non-LPS. Columns labeled “Prob.”, “SE”, and “N” correspond
to the estimated probability of 2-year survival, the standard error of the estimate, and the number of patients in the given cohort. The P-values are for the logrank test
comparing LPS to non-LPS survival. The “Data” column refers to the type of RNA-seq data used, and the “Model” column refers to the dimension reduction technique used

computational requirement quickly becomes too bur-
densome. The ensemble approach may provide a useful
heuristic for combining several datasets. We have shown

that this heuristic works well in combining different anno-
tations of RNA-seq data, but further investigation is
needed to verify the performance with disparate datasets.
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Table 2 Pathway enrichment analysis of genes selected by the
G-4, T-4, and TI-4 models when predicting OS (no pathways were
significantly enriched for EFS)

Outcome Pathway Count Size P-value BH

OS Pathways in cancer 26 393 < 0.001 0.010

OS ErbB signaling pathway 11 87 < 0.001 0.012

The columns include KEGG pathway name, the number of genes in the gene set
that are in the pathway, the total number of genes annotated for the pathway, the
p-value from a modified fisher’s exact test, and the Benjamini-Hochberg corrected
p-value

Conclusion
In this study, we explored the performance of the AFT
model in predicting survival times for neuroblastoma
patients. A classifier was constructed by comparing pre-
dicted survival times to a 2-year threshold. Using both
transcript and intron annotations in the model gave the
best performance. We are able to subclassify clinically
high-risk patients into two distinct groups, one with a 40%
2-year overall survival rate and the other at 80%. This
suggests that the AFT model is useful in subclassifying
high-risk patients, which can help clinicians in choosing
effective treatment plans. Only RNA-seq data was con-
sidered in this study, but other types of data can be used
as well. The ensemble method is a useful heuristic for
combining several high-dimensional datasets under this
framework, and it has been shown capable of maintaining
optimal performance.

Reviewers’ comments
Reviewer’s report 1: Subharup Guha, University of Florida,
Gainesville, USA
The authors explore the performance of the AFTmodel in
predicting survival times for neuroblastoma patients. This

Table 3 Pathway enrichment analysis of genes selected by the
G-4, T-4, and TI-4 models

Outcome Pathway Count Size P-value BH

OS ErbB signaling pathway 11 60 0.029 0.999

OS Salivary secretion 6 23 0.042 0.995

OS Inflammatory mediator
regulation of TRP
channels

9 48 0.049 0.983

EFS Terpenoid backbone
biosynthesis

4 8 0.010 0.906

EFS Metabolic pathways 29 304 0.016 0.847

EFS Valine, leucine and
isoleucine degradation

5 20 0.032 0.911

EFS Biosynthesis of
antibiotics

12 98 0.037 0.882

EFS Fatty acid metabolism 5 21 0.037 0.820

In this analysis, the GeneCards genes are used at the background. The columns
include survival outcome (OS or EFS), KEGG pathway name, the number of genes in
the gene set that are in the pathway, the total number of genes annotated for the
pathway, the p-value from a modified fisher’s exact test, and the
Benjamini-Hochberg corrected p-value

is a very well-written paper. Overall, the analysis is scien-
tifically compelling and relies on creative applications of
sound statistical techniques. The classifier comparing the
predicted survival times to a 2-year threshold is success-
ful when it is based on transcript and intron annotations.
The ensemble method and its potential application to fit-
ting disparate datasets holds much promise for future
work.
Reviewer comment: As a suggestion for future

research, but entirely unrelated to the current paper which
is more than satisfactory, I have the following suggestion.
From the second paragraph of the Discussion, it appears
that it may be helpful to explore Harrell’s C-index as an
alternativemeasure of accuracy. Thismay be a bettermea-
sure than RMSE for the parametric models, especially
because they appear to get the relative ordering of the
survival times right rather than the actual magnitudes.
Author’s response: We thank Dr. Guha for this sug-

gestion. The performance of each model using Harrell’s
c-index has been added to the revised manuscript.
Reviewer comment: On Line 7 of page 2, should the

comma following INSS be deleted? 2. On Line 7 of page 6,
what is K?
Author’s response: Grammatical corrections have been

made to the manuscript. For the latter point, there are K =
3 performance measures in this study. This is now clarified
in the text.

Reviewer’s report 2: Isabel Nepomuceno, Universidad de
Sevilla, Seville, Spain
In this paper, authors used the accelerated failure time
(AFT) model with four dimension reduction techniques
and a dataset imputation scheme to predict overall sur-
vival and event-free survival times of neuroblastoma
patients. Three feature levels of and RNA-Seq dataset
were considered. Authors shown that the use of RNA-Seq
data improves accuracy in comparison to using clinical
data alone. In general the paper is appropriate to the
journal. The analysis presented in this paper is very inter-
esting. I have several suggestions and comments to be
revised:
Reviewer comment: The Method section is written

in a clear manner but is difficult to reproduce. Authors
mentioned the R package used but they don’t provide the
R code of the study.
Author’s response: We thank Dr. Nepomuceno for her

comments and suggestions. All R code and output is
available from GitHub at https://github.com/tgrimes/
CAMDA-2017-Neuroblastoma. The session info is also
reported, which includes the R version, computer specifica-
tions, and a list of the packages used during the analysis.
Reviewer comment: The Ensemble Method subsec-

tion, authors use bagging with rank aggregation over each
performance measure and set B to 20.Why this parameter

https://github.com/tgrimes/CAMDA-2017-Neuroblastoma.
https://github.com/tgrimes/CAMDA-2017-Neuroblastoma.
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is fixed to 20 should be explained. And authors should
explain why the use bagging instead of cross validation.
Author’s response: The choice of 20 iterations for bag-

ging is a compromise between computation time andmodel
performance. We also considered B = 50 but did not find a
substantial change in performance.
Reviewer comment: The description of the RNA-Seq

Data, authors reduce the "raw data" with 60776 genes
into 3401 using the 3681 genes related to neuroblastoma
obtained from the Gene Cards Suite. Have authors made
some analysis from the remaining genes? Could be genes
related with the problem and not related with the disease?
It could be interesting to do a cluster analysis to see if the
grouped genes using prior knowledge are also clustered
together in this analysis.
Author’s response: These are interesting suggestions that

deserve a separate analysis to be fully addressed. The
main purpose in using the Gene Cards database was to
provide an initial filtering to speed up computation. We
also re-ran the analysis without this step and found lit-
tle difference in predictive performance. We are careful
not to place too much emphasis on the interpretation of
the gene sets obtained in this analysis. As you’ve pointed
out, there are many new questions that have been uncov-
ered and deserve careful consideration. We’ve added some
comments regarding this in the discussion section of the
manuscript.
Reviewer comment: Furthermore, a reference about

the Cox proportional hazardsmodel or the R package used
should be added.
Author’s response: We thank the author for pointing

out this omission. The revised manuscript now contains
additional references.
Reviewer comment: Section Results, classification of

high-risk patients should be rewritten. The second and
third paragraph is confused and difficult to see which plot
corresponds with each sentence.
Author’s response: This section has been reworded to

clarify which table or figure each sentence is referring to.
The titles for each plot have been changed in concordance
to the labels used to identify each model within the
manuscript.
Reviewer comment: In section Pathway analysis,

authors claim that several genes are involved in several
pathways. That means, do genes appear in the pathways
or are the pathways enriched by the set of genes? If it is
the second case, authors should add a table with the list
of pathways, the number of entities in the pathways and
the number of genes from the set which appear in the
pathway.
Author’s response: We thank the reviewer for prompt-

ing this clarification. Previously, the interpretation was
that genes appear in the pathways. But this initial
approach seems uninformative, particularly since we use

the GeneCards database to subset on genes, which would
bias our selection to genes in cancer-related pathways. In
response, we have modified this section and now conduct
a pathway enrichment analysis. However, a question is
raised regarding the choice of background: should our gene
sets be compared to all genes in the genome (as is usu-
ally done) or to the GeneCards genes that we subset on?
With the former, there is a concern that the analysis may be
biased. Results for both of these scenarios have been added
to the manuscript.
Reviewer comment: Finally, as minor comments: - The

Bibliography Section must be revised, there are some
incomplete reference as for example number 14. - In
Table 1, one of themodels is named simple for the baseline
model. It should be names null model as authors explained
before.
Author’s response: The bibliography section has been

corrected, and the tables and figures have been relabeled
to be consistent with the text.
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