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Abstract

Background: One of the main current challenges in computational biology is to make sense of the huge amounts of
multidimensional experimental data that are being produced. For instance, large cohorts of patients are often
screened using different high-throughput technologies, effectively producing multiple patient-specific molecular
profiles for hundreds or thousands of patients.

Results: We propose and implement a network-based method that integrates such patient omics data into Patient
Similarity Networks. Topological features derived from these networks were then used to predict relevant clinical
features. As part of the 2017 CAMDA challenge, we have successfully applied this strategy to a neuroblastoma dataset,
consisting of genomic and transcriptomic data. In particular, we observe that models built on our network-based
approach perform at least as well as state of the art models. We furthermore explore the effectiveness of various
topological features and observe, for instance, that redundant centrality metrics can be combined to build more
powerful models.

Conclusion: We demonstrate that the networks inferred from omics data contain clinically relevant information and
that patient clinical outcomes can be predicted using only network topological data.
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Background
In the last decade, high-throughput technologies have
been massively used to study various diseases in order
to decipher the underlying biological mechanisms and
to propose novel therapeutic strategies. Initiatives such
as The Cancer Genome Atlas have produced and made
publicly available a huge amount of omics data from thou-
sands of human samples. These data often correspond to
measurements of different biological entities (e.g., tran-
scripts, proteins), represent various views on the same
entity (e.g., genetic, epigenetic) and are obtained through
different technologies (e.g., microarray, RNA-sequencing).
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This diversity has motivated the use of integrative strate-
gies that can make sense of these complementary and
sometimes contradictory data. Such integrative strategies
have, for instance, been used to define distinct molecu-
lar classes of lower-grade gliomas, which exhibit similar
pathway perturbations [1].
Biological data are often represented as networks,

where nodes represent biologically relevant entities (typ-
ically genes or proteins) and edges represent relation-
ships between these entities (e.g., regulation, interaction).
Network-based methods can then be used, for instance,
to define smaller modules within a larger network, or to
understand how a biological signal is processed by a net-
work, or to identify key nodes with respect to a biological
process of interest. As an example, such network-based
approaches have been used to build brain region-specific
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networks from patient expression profiles and to prior-
itize genes and gene sets with respect to Alzheimer’s
disease traits [2]. It is also possible to obtain relevant
predictive models by relying on the network topological
information, instead of the raw data. An example of such
method isMashup, an approach that summarizes topolog-
ical information from protein-protein networks to predict
functional annotations or genetic interactions, yielding
comparable or often even better performance than other
state of the art methods [3].
Although most biological networks represent gene or

protein networks, it is often relevant to represent the data
as Patient Similarity Networks (PSN). In these networks,
nodes represent patients and edges represent similari-
ties between the patients’ profiles. These networks can be
used to group patients and to associate these groups with
distinct clinical features. It was observed for instance that,
within a network obtained by integrating multiple omics
data, cancer patient clusters had different clinical out-
comes, including different overall survival [4]. Similarly, a
network topology-based analysis of diabetes patient geno-
types revealed that patients can be clustered into three
groups and that these groups have distinct clinical fea-
tures, including different comorbidities [5].
In the current study, we hypothesize that clinically rele-

vant information is encoded within PSN built from omics
data. To investigate whether we can use this topologi-
cal information to predict patient clinical outcome, we
analyze a neuroblastoma dataset in the context of the
CAMDA 2017 conference [6]. This dataset contains gene
expression data, genotype data and clinical descriptors.
In a previous analysis, patient classifiers were built from
the gene expression data and were used to predict several
clinical outcomes [7].
Our approach is however different since we transform

the omics data into networks and then train patient classi-
fiers with network topological data, instead of training the
classifiers directly with omics data. Our results indicate
that the performance of classifiers trained with topolog-
ical data is at least comparable to the performance of
the models built on the omics data directly and in some
cases better. Altogether, our network-based approach rep-
resents therefore a novel and complementary strategy to
analyze and integrate large collections of omics data.

Results
We propose a network-based method to integrate omics
data, which relies on the topological properties of net-
works generated from the omics data (see Fig. 1 and
“Methods”). More precisely, relevant features are first
identified from the omics data and then used to create
patient similarity networks. Second, four sets of network
topological features are extracted, including (i) central-
ity metrics, (ii) node2vec features, (iii) diffusion features

and (iv) modularity features. These topological features
are then integrated into patient classification models (see
“Methods”). The classes are defined using binary clini-
cal descriptors and the models, trained on half of the
samples, are used to predict the values of these clini-
cal descriptors for the other half of the samples. In the
context of one of the CAMDA 2017 challenges, we have
applied our strategy to a neuroblastoma dataset that com-
bines genomic, transcriptomic and clinical data from 498
patients. In the following sections, we describe the classifi-
cation performance under different settings to investigate
the effectiveness of the proposed strategy on two cohorts
of respectively 498 and 142 patients (Table 1).
We have first compared the performance of the classifi-

cation models when inputted with omics data (hereinafter
classical) or with the network derived features (here-
inafter topological), regardless of the other parameters.
Our results indicate that both strategies behave similarly
across the three clinical endpoints considered (Fig. 2a-b
and Additional file 1: Figure S1) with ‘Disease progres-
sion’ and ‘Death from disease’ being more difficult to
predict than ‘High-risk’. The topological strategy however
performs significantly better than the classical strategy
for five of the six comparisons (three endpoints and two
cohorts - Additional file 1: Table S1), and the average gain
in balanced accuracy ranges from 5% to 12% (excluding
the non-significant comparison).
We then defined a global classification model that com-

bines the topological and classical approaches to investi-
gate their complementary (hereinafter integrated). More
precisely, their individual predictions are integrated using
a weighted voting scheme (see “Methods”). The results
indicate that the integrated models perform significantly
better than the classical models (in four out of six com-
parisons). However, they are most often associated with
smaller accuracy gains (between 3% and 8%, excluding the
two non-significant comparisons). We do not observe any
signficiant difference between topological and integrated
models and the accuracy gain is always lower than 5%
(Fig. 2a-b and Additional file 1: Table S1).
Upon a closer investigation, we can also observe differ-

ences between the four topological feature sets when used
individually (Fig. 2c). In particular, the best models are
the ones using centrality metrics and diffusion features,
whereas the node2vec features are associated with lower
accuracies in general.
We also performed a comparison of the individual cen-

trality metrics. We first observe that using all twelve
metrics give better models than using any metric in iso-
lation, which was observed for all clinical endpoints on
the large cohort (�bACC between 7% and 12%, Fig. 2d,
and Additional file 1: Table S1). For the small cohort,
we observe a similar trend although it is not signifi-
cant. A closer look at the performance of the models
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Fig. 1Workflow of our network-based method. The raw omics data are first processed into data matrices by applying dimensionality reduction. The
selected omics features are then used to infer Patient Similarity Networks (PSN), from which topological features are extracted. These network
topological features are then used to build classification models, with classes defined according to the binary clinical descriptors

based on a single centrality metric reveals differences,
with metrics associated with high average performance
(e.g., eigenvector centrality, hits) or low average perfor-
mance respectively (e.g., load, current-flow betweenness)
(see Additional file 1: Figure S2). Another key observation
is that the iterative versions of weighted degree and local
clustering coefficient are associated with lower average
performance than their non-iterative counterparts.
We then investigated the power of individual data

sources among the three at our disposal (one genomic and
two transcriptomic, microarray and RNA-seq). Regardless
of the cohort, we can observe very similar performance
between models using either only the microarray data,
only the RNA-seq data or both (Additional file 1: Table
S2, Fig. 3a-b for topological models and Additional file 1:
Figure S3 for classical models). In order to measure the
influence of having genomic data, we compared models

including and excluding the aCGH data using only the 142
samples associated with genomic data. Using topological
models, we observe a surprising decrease in performance
when including genomic data, which was observed for
two of the three clinical endpoints (Fig. 3b and Additional
file 1: Table S2). We observe a similar trend for classical
models although none of the comparisons are significant
(Additional file 1: Table S2 and Figure S3). This obser-
vation was further confirmed by the significantly lower
accuracy of topological models built solely on genomic
data with respect to topological models using the other
data sources (Additional file 1: Table S2, �bACC between
12% and 23%).
In our approach, multiple networks are derived in paral-

lel and their topological features are then combined at the
modeling stage (late integration scheme). An alternative
strategy is to integrate the data at the network level

Table 1 Summary of the experiments described in the manuscript together with their global settings

Tag Cohort Model integrationa Feature sets Data sources

Classicalb Both No - Allc

Topologicalb Both Yes All Allc

Integratedb Both Yes All Allc

Centrality Both No Centralities (all) Allc

Single centrality Both No Centralities (one) Allc

node2vec Both No node2vec Allc

Diffusion Both No Diffusion Allc

Modularity Both No Modularities Allc

Transcriptomic (microarray) Both No All Transcriptomic (microarray)

Transcriptomic (RNA-seq) Both No All Transcriptomic (RNA-seq)

Transcriptomic (both) Smalld No All Transcriptomic (both)

Genomic (aCGH) Small No All Genomic

Fused Both Yes All Allc

For the parameters that are not mentioned (e.g., dimension reduction strategy, network inference method, classification algorithm), the experiments are repeated for all
possible values. a Integration with weighted voting scheme. bAn equivalent tag for these models on the small cohort is All three sources. cThis means two on the large cohort
and three on the small cohort. dOn the large cohort, it is equivalent to the topological model
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Fig. 2 Performance of the network-based method and its components. The performance (i.e., balanced accuracy) of classification models in various
settings, and for the three clinical endpoints of interest. a Performance of classical, topological and integrated models on the large cohort (498
samples). b Performance of classical, topological and integrated models on the small cohort (142 samples). c Performance of models using only one
of the four feature sets at once (Centrality, node2vec, diffusion and modularity) or all of them (topological, as in a). Results were obtained on the
large cohort. d Performance of models using a single centrality metric or all centrality metrics at once. Results were obtained on the large cohort

(intermediate integration scheme) and build models from
the fused network features (“Methods”). We observe that
these two strategies are associated with similar perfor-
mance (Additional file 1: Table S1 and Figure S4) across
the three endpoints and two cohorts (�bACC ≤ 3%).
Similarly, we observe no impact on the performance

of the data processing parameters (dimensionality reduc-
tion and network inference strategies), and neither of the
various classification algorithms and their optimization
(Additional file 1: Figure S5).

Discussion
Wepropose a novel method to analyze omics data through
the generation of patient similarity networks and their
associated topological features. We have analyzed omics
data from neuroblastoma patients and integrated the
derived topological features into classificationmodels that
can be used to predict patient clinical outcomes. This
strategy is novel since it does not use the omics data
directly but rather features derived from such datasets.

We have demonstrated that our approach outperforms the
state of the art method on a neuroblastoma dataset, for all
clinical endpoints (Fig. 2a-b).
In agreement with previous studies, we observe that

clinical features such as ‘Death from disease’ and ‘Disease
progression’ are more difficult to predict than ‘Gender’ and
‘High-risk’ [7]. Unfortunately, these more complex clin-
ical outcomes are the ones that are directly of interest
for clinicians. Similarly to previous analyses of these data,
we present models whose performance for these com-
plex outcomes is still ameliorable (bACC 69-75% - MCC
0.38-0.55). This was expected since our omics-based
models are directly inspired by the previously described
models [7].
One difference between the topological and classical

approaches is the number of features used for classifi-
cation. In general topological models tend to have less
features (1,301 on average per dataset when combin-
ing all four feature sets) when compared to the clas-
sical models (2,164 and 2,191 for the transcriptomic
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Fig. 3 Impact of the data sources on the performance. The performance (i.e., balanced accuracy) of classification models in various settings, and for
the three clinical endpoints of interest. a Performance of the topological models relying only on a single transcriptomic data source (greens), or on
both sources (red, equivalent to the topological model presented in Fig. 2a). Results were obtained on the large cohort. b Same as a but on the
small cohort. Performance of topological models using one (greens and maroon), two (dark green, only transcriptomic) or three data sources (red,
equivalent to the topological model presented in Fig. 2a)

datasets and 1,933 for the genomic dataset after dimen-
sion reduction). In that respect, it is therefore inter-
esting to notice that there is no major difference in
terms of performance (Additional file 1: Table S1, accu-
racy gain < 2%) between models using centrality metrics
only (12 features per transcriptomic dataset) and models
using the transcriptomic data (at least 2,164 features per
dataset).
Another interesting observation is that the node2vec

feature set sometimes produces less powerful models for
all three clinical endpoints considered, even though the
tool was run with two distinct configurations, with the
objective of building feature vectors that would repre-
sent two complementary random walk explorations (local
versus global) [8]. A preliminary analysis revealed that
the feature vectors built by node2vec are not very stable
when one parameter is slightly modified (see Additional
file 2). This has potentially a significant impact on the
effectiveness of the feature vectors. However, these obser-
vations are only preliminary and more detailed analyses
are required to fully understand howwe can best make use
of these features.
With a similar objective, we also investigated the pre-

dictive power of individual centrality metrics. We first
observed that using all centrality metrics gives better
results than using any single centrality alone (Fig. 2d).
In addition, we observe differences among the central-
ity metrics. For instance, metrics such as eigenvector
centrality and local clustering coefficient are associated
with average performance values among the highest. At
the other end of the spectrum, load centrality seems to
be completely useless in our case, and the current-flow
betweenness only does a little bit better. Interestingly,

the iterative versions of weighted degree and local clus-
tering coefficient give significantly worse results than
the corresponding non-iterative metrics. This is some-
how in disagreement with the recent observation that
computing centralities iteratively can produce a more use-
ful metric [9]. This observation is however preliminary
since we have only implemented and tested two iterative
metrics.
Genomic data have been produced recently to comple-

ment the already available transcriptomic data, but only
for a subset of patients (145 out of 498). One of the main
targets of the CAMDA challenge was to build models that
would take advantage of these genomic data. Unfortu-
nately, we were not able to improve the models by using
aCGH data. On the contrary, we observe a decrease in
performance. We noticed that similar observations have
been made by other CAMDA participants when using the
raw genomic data [10, 11]. We can hypothesize that the
significant reduction in sample size is making the classifi-
cation task harder, in particular because we only have 70
samples left for training. Another possible explanation is
that the subset of patients for which genomic data have
been generated has not been selected randomly but rather
to target specifically patients associated with unknown
mechanisms or unforeseen outcomes. This is compatible
with the observation that the drop in performance is also
observed when only transcriptomic data are used (for two
of the three endpoints). Lastly, we can also not rule out
that the rather complex design of the aCGH experiment
(different laboratories, different techniques, annotation
errors) is impacting our analysis [12]. However, larger
genomic datasets would be needed to investigate this issue
further.
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Our attempts to integrate the predictions of both clas-
sical and topological models through a weighted vot-
ing scheme did not result in higher performance in
general (Fig. 2a-b). This lack of improvement can be
explained by the fact that the individual predictions are
most of the time highly correlated; thus any combina-
tion can only result in a modest improvement. How-
ever, on the large cohort, we can observe that there
is less variation in performance when different clas-
sification models are combined. This is because our
voting scheme is still efficient when the poorly perform-
ing models are in minority. When there is no a pri-
ori knowledge about which model might be the best,
it might therefore be relevant to integrate several fea-
tures (both omics and topological) in order to identify a
consensus.
The dimensionality reduction strategy seems to have a

rathermodest impact on the performance (Additional file 1:
Figure S5). Surprisingly, specific features (i.e., features that
were selected specifically to discriminate classes, using for
instance a Wilcoxon test) do not exhibit a better median
performance when building models for the correspond-
ing classes. Altogether, this reveals that although specific
features should be the preferred option, when computing
power is limited or when aiming for generic models (that
can be used to predict yet unknown clinical outcomes),
other strategies might be almost equally powerful.
The network-based and classical models also differ by

their interpretation. Per definition, the features of the
topological models do not represent static biological enti-
ties (genes / transcripts) but rather the structure and the
dynamics of the entire patient network. Therefore, a pre-
dictive feature is not a classical biomarker (i.e., a gene) but
rather a metric representing how one sample of interest
correlates with other samples. As such, we believe that a
network-based representation offers the user an alterna-
tive interpretation of predictions based on the analysis or
the visualization of related diagnostic cases. In the end,
we do not consider the proposed strategy as a substitute
of existing methods but rather as a way to augment and
complement them.

Conclusions
In this study, we explore the hypothesis that clinically
networks encode clinically relevant information through
their structure. In the context of the CAMDA 2017 chal-
lenge, we analyze omics data from neuroblastoma patients
by representing the data as Patient Similarity Networks.
Topological features extracted from these networks are
then used to build models that classify patients into clin-
ically relevant categories. Our results indicate that our
network-basedmodels outperform state of the art models.
We observe however that the gain in accuracy is moder-
ate and that the proposed models can still be improved.

It would be interesting for instance to investigate the use-
fulness of other dimension reduction, network inference,
and data integration techniques, as well as the inclusion
of other topological features. In addition, we are planing
on investigating the usefulness of the proposedmethod on
different datasets, covering different disease types.

Methods
Data preparation
The transcriptomic datasets were collected on the 28th
of February 2017 from GEO [13] using the following
identifiers: GSE49710 (microarray) and GSE62564 (RNA-
seq). The aCGH data were collected on the same day
from the Boku website [14] as specified in the CAMDA
guidelines [6].
The clinical descriptors were extracted from the above

mentioned datasets and uniformized manually to keep
only three clinical descriptors (death from disease, high-
risk and disease progression). All clinical descriptors are
binary and are available for all 498 patients. The original
data have been described previously [7, 15–18]. The two
expression datasets contain pre-processed profiles for 498
samples, corresponding to 498 patients.
For aCGH, we extracted the 185 samples, correspond-

ing to 145 patients for which we also had expression
data. To account for the fact that the aCGH data were
produced using different technologies, the profiles were
filtered to keep only the genomic features that are shared
by all platforms. In addition, the signal for 30 samples
was inverted to correct potential annotation errors (see
Additional file 3). Since the aCGH data were produced by
different laboratories and using different arrays, the data
was further normalized to correct for the potential lab,
platform and batch effects. After this processing, we kept
181 samples for 142 patients, replicates were averaged.
More details about the genomic data preprocessing can be
found in Additional file 3.
Because not all patients were associated with genomic

data, we defined two patient cohorts, tagged large and
small, and corresponding respectively to all patients with
transcriptomic data available (498) and to all patients with
both data type available (142).
For all datasets, features with at least one missing point

were dropped prior to the network inference step. We
then applied two dimension reduction strategies. Our first
strategy is based on aWilcoxon analysis that identifies the
features that behave differently between sample groups
that are defined using the binary clinical endpoints. The
selected features are therefore specific for each clinical
endpoint. Briefly, for each clinical endpoint of interest,
we either kept all significant features (with p<0.05), or
the top 10% features, regardless of their significance. Our
second strategy aims at identifying the features that vary
the most. Contrary to the first strategy, the features are
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thus selected independently of the clinical endpoints. In
this case, we either kept the 10% most varying features,
or the PCA based pseudo-features that explained more
than 90% of the variance. In addition, all analyses were
also performed with the complete dataset, i.e., without
dimensionality reduction.

Network inference
After dimensionality reduction, each data matrix was then
used independently to infer Patient Similarity Networks
(PSN). First, the Pearson correlation coefficients between
all patient pairs were computed. Then, these correlation
coefficients were normalized and rescaled to represent
positive edge weights using Weighted Correlation Net-
work Analysis (WGCNA), which enforces scale-freeness
of the associated network [19]. The approach is summa-
rized by

wa,b =
(

ca,b − min(C)

max(C) − min(C)

)β

, (1)

with wa,b the edge weight between the nodes represent-
ing the patients a and b, ca,b the correlation between the
molecular profiles of patients a and b, C the set of all cor-
relations (between all pairs) and β the parameter that con-
trols the scale-freeness of the network. As recommended
previously, we used the smallest β that gives a truncated
scale-free index of at least 90% (for our networks, β ∈
{2, 4, 6, 8, 10, 12}, tag =WGCNA) [2]. Alternatively, and as
a control, the normalized coefficients (β = 1) were also
used to infer additional networks (tag = correl).
Network fusion was achieved using SNF [4] with the

number of neighbours K and the number of iterations
T set to 10 and 50 respectively, after preliminary testing
using a grid search (K ∈[ 10; 30] and T ∈[ 10; 100], data
not shown).

Network topology
For each network, we then computed twelve cen-
trality metrics: weighted degree, closeness centrality,
current-flow closeness centrality, current-flow between-
ness centrality, eigen vector centrality, Katz centrality, hit
centrality, page-rank centrality, load centrality, local clus-
tering coefficient, iterative weighted degree and iterative
local clustering coefficient. Iterative metrics were com-
puted according to a previous definition [9]. Briefly, at
each iteration, only the value for the most central node is
kept (highest centrality), this node is then removed from
the network and the procedure is repeated until all nodes
have been removed. All centrality features were then indi-
vidually standardized to a zero mean and a unit standard
deviation. Each node is then represented by twelve cen-
trality features.

Modularity features were extracted using two net-
work clustering algorithms. First, spectral clustering and
Stochastic Block Models (SBM) algorithms were used to
split networks into modules. In both cases, the optimal
number of modules was defined using dedicated meth-
ods from the respective packages. In most cases, several
module partitions were identified as optimal and were
therefore kept to build the features. Module membership
was then transformed into binary features. Each node
is then represented by

∑
s∈S ks features, with S the set

of optimal module repartitions, and ks the number of
modules for repartition s.
Each network was also inputted into the tool node2vec

to produce a feature vector for each node. These vectors
are accurate representations of the behaviour of a random
walk on the network. In theory, they can be used to recon-
struct random walks [8] but in practice, we used them as
features for our classification problem. The tool node2vec
was run twice with different settings, to take advantage of
the ability of the tool to favor either local or distant explo-
ration. The default parameters were used (including d =
128 for the size of the outputted feature vector), except for
the return parameter p and the inout parameter q (which
control respectively the probability to return to the pre-
vious node and to move to distant node when exploring
the networks) that are respectively set to 1 and 4 for the
first run; and 4 and 1 for the second run. The final vec-
tor was then obtained by concatenating the results of the
two runs. Each node is then represented by 256 node2vec
features.
Last, a diffusion strategy was used to build another fea-

ture vector for each node [20]. Each feature was derived
from a single diffusion process and 1,000 features were
computed in total. For each diffusion, 10% of the nodes
were randomly selected and associated with a positive
signal (value set to 1), while the remaining nodes were
associated with a null signal (value set to 0). The signal
for all nodes after diffusion was used to build the feature
vector corresponding to that diffusion. As a results, each
node is associated with 1,000 diffusion features.
These four feature sets (centrality, modularity, node2vec,

diffusion) were then considered as features that can be
used for classification.

Classification algorithms
Class definitions have been extracted from the binary
clinical descriptors. To facilitate comparisons with pre-
vious or alternative approaches, we have used the same
train and test stratified split that was previously used
[7]. Several classification algorithms were investigated,
including Linear Discriminant Analysis (LDA), Random
Forest (RF) and Support Vector Machine (SVM). Simi-
larly to the original study, we performed a ten times five
fold cross-validation on the training set to get an unbiased
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estimate of performance. Unless otherwise indicated, the
default parameters of the algorithms have been used. For
SVM optimization, the parameters α and γ were opti-
mized via a grid search (α = 22p and γ = 22p with
p ∈[−4,−2,−1, 0, 1, 2, 4]).
In addition, we considered several classification scenar-

ios by varying the number of data sources, networks and
feature sets used. As a control, we also built classifiers
using the original omics data (without any network infer-
ence). The performance of the classifiers on the test data
was estimated using the classification accuracy (ACC),
balanced accuracy (bACC) and the Matthews Correla-
tion Coefficient (MCC), similarly to a previous analysis of
these data [7].
Predictions extracted from several classification models

were then combined using a weighted voting scheme. For
instance, each topological model was obtained by combin-
ing four classification models (one per feature set). Using
the same strategy, each integrated model was obtained
by combining a classical model with the corresponding
topological model. In both cases, the weights were pro-
portional to the performance of the respective models and
were normalized as to sum up to one. A score for each
patient was produced by combining the predictions of the
individual models. This score was further refined into a
binary prediction (using 0.5 as a threshold).
We have employed t-tests for pairwise comparisons and

one way ANOVA followed by post-hoc Tukey tests when
comparing more than two groups. We only consider the
difference as statistically significant when the p-value is
below 0.01. In addition to p-values, we also report the
accuracy gain, computed as the difference between the
averages of the two groups and labeled �bACC .

Implementation
We developed C++, R and python scripts for the data
preparation, network inference, network topology compu-
tation and classification analyses. In particular, the batch
effect correction was performed using the R package sva.
The network inference and centrality computation was
based on the python packages networkx and scipy and
on the C library igraph. The modularity analysis was per-
formed using the python package graph-tool and the R
package SNFtool. The latter was also used for network
fusion. The diffusion was performed using the R packages
diffuStats and igraph. The classification process relied on
R packages randomForest and e1071 and python package
sklearn. Statistical tests were run in R.

Reviewers’ comments
Reviewer’s report 1: Yang-Yu Liu
Reviewer comment: Since the topology-based classifi-
cation does NOT drastically outperform the classical
omics-based classification, what’s the strong motivation

of doing topology-based classification? In particular, they
can briefly compare and discuss the interpretability of the
two classification models.
Author’s response: The nature of the model features

is different between topology-based and omics-based
approaches. Per definition, the features of the topological-
based models do not represent static biological entities
(genes / transcripts) but rather represent the structure and
the dynamics of the entire patient network. This means
that the interpretation will be different as well. For a new
sample, the prediction could either be based on a set of
potential biomarkers (omics-basedmethods), or on the cor-
relation of the entire sample with other samples (network-
based methods). As such, we believe that a network-based
representation offers the user an alternative interpretation
of predictions based on the analysis or the visualization of
related diagnostic cases. In the end, we do not consider our
strategy as a substitute of existing methods but rather as a
way to augment and complement them. We have updated
the text to highlight these differences. In addition, the topo-
logical approach now outperforms the classical approach
(owing to the implementation of the suggestions from the
three reviewers).
Reviewer comment:The authors construct the PSN for

each data type. But in Ref. [4], an interest method has been
proposed to aggregate (or fuse) PSNs from different data
types. Will the aggregated PSN offer better topological
features for the classification purpose?
Author’s response:We thank the reviewer for the sugges-

tion. We have extended our analysis to fused networks and
have updated the text accordingly. As suggested, fused net-
works have been created using SNF (as described in [4]),
and by fusing either two or three networks (corresponding
to either two and three data sources). Briefly, the results
indicate that the fused networks offer useful topological
features. However, we can also observe that these mod-
els do not outperform the models based on the features
extracted from individual networks. The manuscript has
been updated to include details about the fusion method
and to describe and discuss the results obtained on fused
networks.
Reviewer comment: In Fig. 3B and Figure S4, the

authors showed a very surprising result that by including
genomic data, both topological and classical classification
models perform worse. They can offer an explanation.
Author’s response: This observation was discussed in the

previous version (page 6, line 33 and page 7, lines 1-6).
We hypothesized that the rather low number of samples
made the classification task harder, an hypothesis that
other CAMDA participants have also made (Francescatto
et al., reference [10] in the revised version). In addition,
we also hypothesize that the genomic data was only pro-
duced for a non random selection of patients, namely the
ones with unexpected disease developments, which would
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likely make the problem harder when working only on this
subset. Last, we can also not rule out that the rather com-
plex design of the aCGH experiment poses a hurdle, given
the heavy pre-processing that was required prior to model-
ing (fully described in Additional file 2). This problem was
also reported by other CAMDA participants (Suo et al.,
reference [12] in the revised version). We have updated the
manuscript to mention that other CAMDA participants
also reported surprisingly low performance when using the
genomic data ([10, 11]). We also observed that most par-
ticipants did not actually use the genomic data at all but it
is unknown whether this decision was based on the lack of
added value of these data.
Reviewer comment: In Figs. 2, and 3, when the authors

compare the performances of the different classification
models, they can show the p-value to indicate any signifi-
cant difference.
Author’s response: We have employed ANOVA followed

by a post-hoc Tukey test to determine significant differ-
ences. However, we do not only rely on these tests to discuss
the performance and also report the effect size (i.e., differ-
ence in average balanced accuracy that we termed accu-
racy gain). Our motivation is that given the large numbers
of models, it is possible to observe a significant difference
between two groups (with say a p-value below 1e-7) though
the gain in accuracy is unlikely to represent a significant
improvement (say 1% or 2%).
Reviewer comment: All the topological features con-

sidered here are node-based. How about edge-based
centrality metrics (e.g., edge betweenness), and global
topological feature (e.g., global clustering coefficient,
modularity, etc.)?
Author’s response: We thank the reviewer for the sug-

gestion. The extracted topological features are then used
to classify nodes and therefore node-based features are
required. In order to test edge-based metrics, we summa-
rized edge-based metrics (e.g., edge betweenness) at the
node level (e.g., by taking the average). We then observed
that such features were redundant with existing node-
based metrics. For instance, summarized edge betweenness
is perfectly correlated with node betweenness, as expected
intuitively. We therefore decided to discard them prior
to model building. Some global topological features (e.g.,
global clustering coefficient) are network-based metrics.
Therefore, they cannot be used for node classification since
all nodes would be associated with the same value. Other
global features are however very relevant. We have there-
fore extended our analysis by including an extra feature
set that represents the modularity of the nodes (based on
network clustering). More precisely, each modularity fea-
ture contains binary values and corresponds to a network
module (either a node belongs to a module or it does not).
Briefly, the main conclusion is that modularity features
are also suitable on their own to build predictive models.

They have therefore been integrated with the other topo-
logical feature sets and we have updated the manuscript
accordingly.
Reviewer comment: Page 5, Line 22, ‘than’ → ‘as’.
Author’s response: Thank you. This has been corrected.

Reviewer’s report 2: Tomislav Smuc
Reviewer comment: Focus on one dataset/problem: The
work is focused on computational methodology, rather
than on biological problem. In that respect having results
from studying only one problem (dataset) somewhat lim-
its interpretation, insights gained and impact made, in
general.
Author’s response: We focused on a single dataset

because we wanted to describe our solution to one of
the CAMDA 2017 challenges, which was about a single
neuroblastoma dataset. However, we also agree that addi-
tional studies are necessary in order to investigate the
usefulness of such strategies on other problems. We have
therefore updated the text accordingly.
Reviewer comment: General structure and settings for

the computational experiments are clear, but there seem
to be a number of unclear or missing information when
going into details, which are detailed in my recommenda-
tions. I endorse the publication - but I strongly suggest the
authors to first try to improve their manuscript along the
recommendations.
Author’s response: We thank the reviewer for high-

lighting the sections with unclear or missing information.
Detailed replies are available below. We hope that our
revised manuscript reads better.
Reviewer comment:Comparison with previous results:

There is no explicit comparison between the authors’
results, and those obtained by other groups (or best
results) - with some other methodology, obtained at
CAMDA 2017 challenge. What is the reason for this?
Author’s response: We have revised the discussion to

include more details about the comparison to the state of
the art methods (previous analysis of the same dataset [7]).
It is important to bear in mind that our omics-based mod-
els were inspired by this study and it is therefore not sur-
prising that the performance of our omics-based models is
very much in agreement with the performance of the mod-
els described in the original study. We have nowmentioned
the work by other CAMDA participants when discussing
the poor performance associated with genomic data. To
our knowledge, no other research group has developed sim-
ilar predictive models that ours could be compared to
(most papers in the proceedings describe Cox models and
Kaplan-Meyer curves, which cannot readily be used for
comparison to our classification models).
Reviewer comment: Clinical data and confounding:

What other clinical data besides clinical outcomes used
in this study are available within CAMDA 2017 dataset?
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There is a mention of ‘gender’ in Discussion, related to
getting predictions for gender and high risk easier than
for other two outcomes. In that respect - did authors
checked for possible confounding between other clinical
data and clinical outcomes (e.g. gender and high-risk or
other outcomes) ?
Author’s response: The clinical descriptors available are

gender, age at diagnosis, MYCNmutation status and INSS
tumor stage (besides progression, death from disease and
high-risk). We have performed Chi-squared tests to assess
the independence of these factors (see results in Table 2
below). Most of the descriptors are indeed not indepen-
dent but all relationships make sense clinically and have
been investigated before. For instance, late diagnosis and
larger tumors are associated with poorer clinical outcomes
in many cancers. This stands as well in this neuroblastoma
dataset. A specificity of neuroblastoma is the influence
of the mutation status of MYCN. We are indeed able to
confirm that in this cohort, MYCN mutated samples are
associated with poorer prognosis. To our knowledge, gender
is the only descriptor that is expected to be independent.
Our analysis indeed confirms that this is the case.
Reviewer comment: Size of data and comparison of

results: From the text I conclude that combined dataset
(based on transcriptomics and aCGH data) is of the size
142 (due to mismatch in availability of both types of mea-
surement over patients), while transcriptomics (2 express.
Datasets) data is available for 498 patients (Discussed
in Classification algorithms section). Figure 3B compares
models from 2 sources (transcriptomics) and 3 sources
(including aCGH data). According to the authors the
number of patients used in these experiments is largely
different? The conclusion in the text is that adding aCGH
- lowers predictive power of classifier models. If there are
different number of samples used in these two models -
this conclusion seems flawed?
Author’s response: We have rephrased several sentences

to clarify that all comparisons were made using the same
cohort (i.e., either the large cohort with 498 samples when
using only transcriptomic data or the small cohort with 142

samples otherwise). In particular, the decrease in classifi-
cation performance when adding genomic data is indeed
observed when using only the 142 samples with genomic
data.
Reviewer comment: Majority voting: Authors use

majority voting to combine classification models based on
different genomic data or topological models. The use of
majority voting in combining models is most probably not
a good choice: it does not give the best results in combin-
ing models of different performances (something authors
comment themselves in the text!), and it does not exploit
complementarity between models. Simple weighted vot-
ing or scoring combination schemes should be a notable
improvement over majority voting.
Author’s response: Following this suggestion, we have

implemented a weighted voting scheme. The weights are
proportional to the performance of the respective models
and have been normalized to sum up to one. The text
has been updated accordingly. We thank the reviewer for
this suggestion that has improved our method and the
associated results.
Reviewer comment: Complementarity of approaches:

With improved model combination schemes authors
should be able to give better answer whether different
data sources (3) and representations combined together
are really complementary, something that was not shown
through experiments in this work. Authors also did not
try to combine all representations (network and original)
together to see possible complementarity.
Author’s response: We did combine the networks and

original representations together. Results were presented
under the tag ‘Integrated’. We have nonetheless rephrased
several sentences describing the experiments to clarify (a
summary table was also introduced). In the revised ver-
sion, the performance of the ‘Integrated’ models is still very
much in the same range than the performance of ‘Topo-
logical’ models. They however both performed better than
‘Classical’ models. Similarly, the integration of raw
genomic data (aCGH) does not result in more accurate
models - a problem that was also reported by other

Table 2 Results of the Chi-squared tests on the clinical descriptors of the CAMDA 2017 neuroblastoma dataset

Gender Age MYCN Risk Stage Prog Death

Gender 1 1 1 1 1 1

Age 0.61 5.3e-4 8.8e-28 1.6e-19 3.6e-7 4.8e-11

MYCN 0.50 2.5e-5 3.2e-44 7.4e-11 2.3e-8 8.2e-17

Risk 0.09 4.2e-29 1.5e-45 1.7e-57 3.4e-25 1.6e-34

Stage 0.43 7.7e-21 3.5e-12 8.2e-59 4.2e-21 1.9e-21

Prog 0.58 1.7e-8 1.1e-9 1.6e-26 2.0e-22 1.2e-49

Death 0.37 2.3e-12 3.9e-18 7.5e-36 9.0e-23 5.5e-51

Results are presented for all pairwise comparisons with Bonferroni corrected P values in the upper triangle, and uncorrected P values in the lower triangle. Notes: Age: age at
diagnosis, MYCN: MYCN mutation status, Risk: high-risk, Stage: INSS tumor stage, Prog: progression, Death: death from disease
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CAMDA participants, which we now discussed more
extensively (references [10, 11]).
Reviewer comment: In the text (classification

algorithms) mention using LDA, RF, SVM in their
experiments. But, what classifier is used (and with what
parameters - or how are parameters optimized?) in exper-
iments which results are presented in Figs. 2 and 3 (also
in Figures S1-S5)
Author’s response: The objective of our study is to com-

pare the effectiveness of the topological features regardless
of the machine learning strategy. It is inspired by the orig-
inal analysis of the transcriptomic data (reference [7]),
in which different algorithms and strategies were used to
compare the effectiveness of the microarray and RNA-seq
datasets. This means that we considered the classifica-
tion algorithm as a parameter, with three possible values:
LDA, RF and SVM. In particular, we never selected the
best models based on their performance. As a consequence,
this means that the results in figures 2, 3, S1-S5 have been
obtained by all algorithms (except for panels C and D of
Figure S5 in which the influence of the algorithms and their
parameters is reported). One group, represented as a box-
plot, will always contain the three kinds of models (LDA,
RF and SVM), while each point used to represent a single
model (so either LDA or RF or SVM). However, points have
been removed from the figures in the current version (for
clarity). Similarly to the reference study ([7]), we repeated
5-fold cross-validation 10 times on the training set to get
an unbiased estimate of the real performance. Regarding
the parameter optimization, only the SVM parameters c
(linear and radial) and gamma (radial) were optimized. In
addition, SVM models were trained with default parame-
ters for comparison purposes. We observe that parameter
optimization has little to no effect. For LDA and RF, we
did not identify parameters that would require to be opti-
mized. Let us stress once again that our objective is not
to identify the âĂIJbest modelâĂİ but rather to investi-
gate the usefulness of topological features, regardless of the
other modeling settings. We have adapted the manuscript
to highlight these points.
Reviewer comment: RNA-Seq part of the CAMDA

dataset (one of the two transcriptomics measurements) is
first mentioned in a supplementary material (?) - which is
kind of confusing. I would suggest proper and complete
description of the datasets used, in the article.
Author’s response:The two transcriptomic datasets were

both introduced in the ‘Methods’ section (page 8, lines 13-
15). We have nonetheless rephrased this sentence to clarify.
Reviewer comment: Figure 1 is missing one step in the

process - feature selection!?
Author’s response: The legend of Figure 1 explicitly men-

tions that the first step is to apply dimension reduction. We
have altered the figure to explicitly illustrate that feature
selection takes place.

Reviewer comment: Scales for balanced accuracy in
figures should be made the same over all figures, in order
to make easier comparison between figures.
Author’s response: We thank the reviewer for this sug-

gestion. We now use the same scale over all main and
supplementary figures.
Reviewer comment: What are the points in Figures

showing performance of different models representing?
Author’s response: The points represented the perfor-

mance of the individual models and the boxplots repre-
sented the overall distributions among a group of models
that share some characteristics. We have removed the
points from the figure to ease reading (because we have
more models and there would therefore be too many points
on the figures).

Reviewer’s report 3: Isabel Nepomuceno
Reviewer comment: The analysis made by authors con-
siders several classification scenarios by varying the num-
ber of data sources, networks and feature sets. Authors
should add a table of strategies (or a paragraph in Results
section) where different scenarios and settings are sum-
marized together with the number of features that are
analysed in each scenario. Reading the results section and
observing Figs. 1 and 2 is a bit difficult to follow all the
options under study.
Author’s response:We thank the reviewer for this sugges-

tion.We have added a table that summarizes all configura-
tions (Table 1). We hope that it helps to better understand
the experiments and associated results.
Reviewer comment: In section Conclusions, authors

claim that the network-based model and state of the art
models are performing similarly, even when the network-
basedmodels are trained with far less features. However, it
could be interesting to analyse if this observation holds if a
feature selection algorithm is applied to the input dataset
in the classical models. If this is not implemented, at least
it should be mentioned as a future work in the paper.
Author’s response: Actually, feature selection was per-

formed first regardless of whether the selected features
would be used for the classical or network-based models.
We hope that the addition of Table 1 and the modification
of Figure 1 clarify this.
Reviewer comment: In the subsection network infer-

ence the weighted correlation network analysis (WCNA)
is used. Authors should discuss why they used this method
and not the classical Pearson correlation-based method.
I suppose that setting the cut-off of the correlation is
a difficult task and the WCNA is a ‘soft’ thresholding
method that resolves this problem. Finally, an extension of
this work could be to explore the hypothesis using other
methods to infer gene networks using full conditional
models as Markov networks or low-order conditional
models.
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Author’s response: We have clarified the text to men-
tion that two network inference methods are used concur-
rently, therefore creating two networks from a single data
matrix. The first method is purely based on correlation
and produces a fully connected network (i.e., no threshold-
ing takes place). The second one rescales these correlation
coefficients, using a soft thresholding method inspired by
WGCNA. Notice that we do not try to select the best
inference technique and therefore always include both net-
works are in all comparisons. We have also extended the
conclusion to mention several avenues for future work.
Reviewer comment: In the subsection Network topol-

ogy, authors set p and q to 1 and 4 respectively. The
meaning of the parameters p and q is not explained.
Author’s response: The text has been updated with the

full names and the effects of these two parameters.
Reviewer comment: The classification algorithms used

are LDA, RF and SVM. It would be interesting to
include a discussion about why these algorithms were
chosen and not others. For instance, one could think
of using other ensemble algorithm like gradient boost-
ing machine (XGBoost is the most known implemen-
tation). This is very popular because over half of the
winning solutions for the data science competition Kaggle
in 2015 contain XGBoost. Among the 29 challenge
winning solutions 17 solutions used XGBoost (1). I’m
not asking the authors to include a new experimen-
tation with this algorithm, but to discuss a little bit
about their choice. (1) Chen T, Guestrin C. XGBoost:
A Scalable Tree Boosting System. arXiv:160302754 [cs].
2016;785–94.
Author’s response: The algorithm selection was based

on the previous extensive analysis of this neuroblastoma
dataset (reference [7]). In particular, we selected the algo-
rithms producing most frequently the best results (as
described in the supplementary file of [7]).
Reviewer comment: In the legend of Suplemmentary

Figure 1 authors should explain that only transcriptomic
data are used instead of combine genomic data as in
Figure 5 is mentioned. I supposed it after reading the first
paragraph of section Results.
Author’s response: The legends of all figures have been

updated to clarify exactly which cohort has been used
(large when all 498 samples have been used - small when
only the 142 samples with genomic data have been used).
Table 1 also summarizes relevant information for all
experiments.
Reviewer comment: In second paragraph of section

Results, the performance of topological against full
ltopological model is compared, (Figures 2B and 3C is
explained). Authors should detail which of the three net-
work derived feature sets have been used.
Author’s response: All feature sets were used. This has

been clarified in the text.
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(PDF 1082 kb)
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of the aCGH dataset. (PDF 1773 kb)
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