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Models of cell signaling uncover molecular
mechanisms of high-risk neuroblastoma
and predict disease outcome
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Abstract

Background: Despite the progress in neuroblastoma therapies the mortality of high-risk patients is still high (40–50%)
and the molecular basis of the disease remains poorly known. Recently, a mathematical model was used to
demonstrate that the network regulating stress signaling by the c-Jun N-terminal kinase pathway played a crucial role
in survival of patients with neuroblastoma irrespective of their MYCN amplification status. This demonstrates the
enormous potential of computational models of biological modules for the discovery of underlying molecular
mechanisms of diseases.

Results: Since signaling is known to be highly relevant in cancer, we have used a computational model of the whole
cell signaling network to understand the molecular determinants of bad prognostic in neuroblastoma. Our model
produced a comprehensive view of the molecular mechanisms of neuroblastoma tumorigenesis and progression.

Conclusion: We have also shown how the activity of signaling circuits can be considered a reliable model-based
prognostic biomarker.

Reviewers: This article was reviewed by Tim Beissbarth, Wenzhong Xiao and Joanna Polanska. For the full reviews,
please go to the Reviewers’ comments section.

Background
Neuroblastoma is a tumor derived from primitive cells of
the sympathetic nervous system that, despite advances in
its treatment still has a poor survival for high-risk patients
[1]. Risk groups are defined according to disease stage,
patient age, and MYCN amplification status [2]. Although
the use of biomarkers has demonstrated clinical utility,
they represent statistical associations to clinical parame-
ters and frequently lack any mechanistic relationship with
the molecular mechanisms responsible for tumorigenesis
or therapeutic response. On the contrary, signaling path-
ways control cell behavior and constitute the mechanisms
that ultimately determine the fate of cancer cells. In fact,
in a recent study, a mathematical model of the JNK signal-
ing dynamics has demonstrated that this pathway plays a

major role in neuroblastoma [3]. Moreover, the study
demonstrated that the activity of the JNK signaling path-
way showed a more significant correlation with patient
survival than those shown by any of their constituent
genes. Therefore, these results revealed how JNK signaling
dynamics represents an innovative type of model-based
biomarker that efficiently predicts neuroblastoma patient
prognostic across different individual molecular back-
grounds defined by conventional single gene biomarkers.
This concept has been recently extended to other cancers
where computational models demonstrated that the activ-
ity of specific circuits of signaling pathways related to
diverse cancer hallmarks [4] provided a robust prediction
of patient survival [5]. Moreover, the accuracy of the pre-
diction obtained using the activity of the signaling circuit
surpassed the conventional predictions based solely on
the activities of their constituent proteins, clearly demon-
strating that not only the levels of signaling individual
nodes but also the network topology of the signaling
circuit and thus the nonlinear properties of a signal re-
sponse should ideally be captured in a biomarker in order
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to produce a robust prediction of patient outcome [5].
Furthermore, this type of models have proven to be super-
ior to other pathway-based models [6].
Here, we have used generalized computational models

covering all the signaling activity related with cancer
hallmarks and other cancer-related signaling pathways.
Such computational models use gene expression data to
produce a realistic estimation of signaling circuit activity
within pathways [5], which can subsequently be used to
discover the molecular mechanisms behind the differ-
ences between patients with and without MYCN amplifi-
cation as well as to uncover the determinants of survival
in neuroblastoma patients.

Results
Data processing
A gene expression matrix with expression values quanti-
fied as log2(1 + FPKM) were downloaded from the GEO
database. In order to correct batch effect the COMBAT
[7] method was used. The expression values were further
normalized between 0 and 1 to run the software imple-
menting the models.

Molecular mechanisms behind the MYCN amplification
biomarker
Since MYCN amplification is a known biomarker of bad
prognostic [2] we were interested in understanding the mo-
lecular basis of such pathological phenotype. To achieve so,
we carried out a differential signaling activity test compar-
ing patients withMYCN amplification to those ones lacking
this biomarker. Overall, our results document extensive dif-
ferences at the level of signaling activity between patients
with different MYCN amplification status. Specifically, pa-
tients with MYCN amplification seem to inhibit the JNK
pathway, necessary for cell apoptosis, confirming in this
way previous observations [3]. The mechanism for JNK in-
hibition seems complex and involves the participation of
several important pathways such as Ras pathway, Apop-
tosis, MAPK signaling pathway and NF-kappa B signaling
pathways, among others (see Table 1). In particular, the

NF-kappa B signaling pathway significantly deactivates
three signalling circuits ending in the proteins CCL19,
CCL21 and GADD45B, as depicted in Fig. 1. Also, the
MAPK signaling pathway, together with the circuits that
transduce signal to MAPK8 within Ras, Fc epsilon RI and
cAMP signaling pathways, seems to play an important role
as mechanisms for the inactivation of the JNK pathway.
Another well-defined mechanism characteristic of

patients with MYCN amplification seems to be defective
DNA repair. Again, the mechanism seems complex and
mediated by many different pathways, which is not
surprising, given that DNA repair must be a robust
mechanism. A total of 5 circuits belonging to the path-
ways Jak-STAT, MAPK, ErbB, Wnt and Hippo signaling
pathways present a highly significant deactivation in
patients with MYCN amplification (see Table 2). As an
example, Fig. 2 shows the inhibition in the JACK-STAT
pathway. Remarkably, the effector of all these circuits is
the MYC protein, which seems to be the counterpart of
MYCN in patients with MYCN-nonamplified neuroblas-
tomas. In fact, BMI1 expression, a gene, whose suppres-
sion resulted in significantly greater inhibition of cell
growth, correlated with MYCN levels in MYCN-ampli-
fied neuroblastoma cells, and with MYC levels in the
MYCN-nonamplified group [8].
The rest of processes that can be considered as cancer

hallmarks [4] have an inconclusive distribution between
the two groups of neuroblastomas. For example, angio-
genesis seem to be activated in MYCN-amplified pa-
tients through circuits in Apoptosis, cGMP-PKG and
PI3K-Akt signaling pathways but other circuits in other
pathways (HIF-1, NF-kappa B and P53) seem to deacti-
vate it (see Table 3).
These results documents that while patients with

MYCN amplification have characteristic signaling activ-
ities that trigger processes which contribute to bad prog-
nostic, such as the inhibition of the JNK pathway or
potentially defective DNA repair, much of the cancer
hallmarks are not exclusive of this group. Therefore we
investigate what are the mechanisms behind patient

Table 1 Circuits that deactivate the JNK cascade in patients with MYCN amplification

Circuit (Pathway and effector protein) Status FDR p-value GO ID GO Definition

Ras signaling pathway: MAPK8 DOWN 4.31E-29 GO:0007254 JNK cascade

Fc epsilon RI signaling pathway: MAPK8 DOWN 1.23E-15 GO:0007254 JNK cascade

cAMP signaling pathway: MAPK8 DOWN 4.72E-08 GO:0007254 JNK cascade

Apoptosis: GADD45G DOWN 1.07E-29 GO:0046330 positive regulation of JNK cascade

MAPK signaling pathway: MAP 4 K2 DOWN 1.68E-24 GO:0046330 positive regulation of JNK cascade

NF-kappa B signaling pathway: CCL19 DOWN 2.36E-22 GO:0046330 positive regulation of JNK cascade

NF-kappa B signaling pathway: GADD45B DOWN 3.83E-21 GO:0046330 positive regulation of JNK cascade

NF-kappa B signaling pathway: CCL21 DOWN 8.43E-16 GO:0046330 positive regulation of JNK cascade

p53 signaling pathway: GADD45G UP 1.70E-07 GO:0046330 positive regulation of JNK cascade
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Fig. 1 Three signaling circuits ending in the proteins CCL19, CCL21 and GADD45B highlighted within the whole NF-kappa B signaling pathway.
The circuits are significantly deactivated in patients with MYCN amplification when compared to patients without such biomarker. The results and
the representation have been obtained with the program HiPathia [5]. Blue and red nodes indicate genes downregulated and upregulated,
respectively. Blue arrows depict the circuits in which signal transduction is inhibited

Table 2 Circuits that deactivate DNA repair and related cell functions

Circuit (Pathway and effector protein) Status FDR p-value GO ID GO Definition

Jak-STAT signaling pathway: MYC DOWN 1.94E-32 GO:2001022 positive regulation of response to DNA damage stimulus

MAPK signaling pathway: MYC DOWN 1.39E-26 GO:2001022 positive regulation of response to DNA damage stimulus

ErbB signaling pathway: MYC DOWN 7.15E-24 GO:2001022 positive regulation of response to DNA damage stimulus

Wnt signaling pathway: MYC DOWN 7.78E-22 GO:2001022 positive regulation of response to DNA damage stimulus

Hippo signaling pathway: MYC DOWN 7.12E-13 GO:2001022 positive regulation of response to DNA damage stimulus

Jak-STAT signaling pathway: MYC DOWN 1.94E-32 GO:0006338 chromatin remodeling

MAPK signaling pathway: MYC DOWN 1.39E-26 GO:0006338 chromatin remodeling

ErbB signaling pathway: MYC DOWN 7.15E-24 GO:0006338 chromatin remodeling

Wnt signaling pathway: MYC DOWN 7.78E-22 GO:0006338 chromatin remodeling

Hippo signaling pathway: MYC DOWN 7.12E-13 GO:0006338 chromatin remodeling
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mortality irrespective of MYCN amplification status in
the following section.

Molecular mechanisms that determine patient survival
For each circuit, patients irrespective of its MYCN amp-
lification status were divided into two groups: 10% high-
est circuit activity patients and the rest and K-M curves
were plotted and tests were applied to detect significant
differences in survival. The same procedure was re-
peated with the 10% lowest circuit activity patients (see
Methods).
We were able to detect numerous processes activated

and deactivated with a strong significant association to
survival that could easily be associated to known cancer
hallmarks (Table 4). Inhibition of apoptosis is a recog-
nized cancer hallmark, whose mechanism of deactivation
is disclosed here. Negative regulation of apoptosis is in-
duced in patients with activated signaling circuits in the
PI3K-Akt signaling pathway (PI3K-Akt signaling path-
way: BCL2L1). Apoptosis is massively inhibited through
the inhibition of several circuits in the following

pathways: Apoptosis (see Fig. 3a for an example), ErbB,
Hippo, Jak-STAT, MAPK, mTOR, NF-kappa B,
NOD-like receptor, PI3K-Akt, Ras, T cell receptor, Tight
junction, Toll-like receptor and Wnt (Table 4). Interest-
ingly, 5 circuits belonging to pathways Apoptosis, Fc ep-
silon RI, NF-kappa B, MAPK and Ras (see Table 4) are
inhibiting apoptosis via JNK inhibition, which provide a
mechanism for this observation [3]. Patients with the
corresponding activations or deactivations of these cir-
cuits that ultimately deactivate apoptosis have a signifi-
cantly higher mortality (see Table 4).
The patients with activation in circuit of the p53 sig-

naling pathway ending in the THBS1 protein, related
with metastasis in gastric cancers [9], show a signifi-
cantly higher mortality (FDR-adj. p-val = 3.03 × 10− 7)
prognostic (see Fig. 3b). The prognostic is similar for pa-
tients with high activity of the circuit of the Wnt signal-
ing pathway ending in the transcription factor NFATc1
(FDR-adj. p-val = 1.99 × 10− 6), also related to tumorigen-
esis [10]. Both circuits seem to trigger metastasis-related
cell responses.

Fig. 2 JACK-STAT signaling pathway with the circuit ending in MYC protein. That triggers response to DNA damage. Significantly (FDR-adj.
p-value = 1.94 × 10− 32) deactivated in patients with MYCN amplification. The results and the representation have been obtained with the program
HiPathia [5]. Blue and red nodes indicate genes downregulated and upregulated, respectively, in patients with MYCN amplification. The
deactivations of nodes that transmit the signal concomitantly with the activation of signal repressor genes strongly suggest the actuation of a
regulatory program to inhibit the signal

Table 3 Circuits with different effects on angiogenesis

Circuit (Pathway and effector protein) Status FDR p-value GO ID GO Definition

Apoptosis: FASLG DOWN 1.44E-22 GO:0016525 negative regulation of angiogenesis

PI3K-Akt signaling pathway: FASLG DOWN 1.18E-21 GO:0016525 negative regulation of angiogenesis

p53 signaling pathway: THBS1 UP 4.43E-09 GO:0016525 negative regulation of angiogenesis

cGMP-PKG signaling pathway: GTF2I DOWN 3.40E-06 GO:0016525 negative regulation of angiogenesis

HIF-1 signaling pathway: TEK DOWN 8.85E-27 GO:0045766 positive regulation of angiogenesis

HIF-1 signaling pathway: VEGFA DOWN 2.20E-25 GO:0045766 positive regulation of angiogenesis

NF-kappa B signaling pathway: PLCG1 DOWN 3.62E-17 GO:0045766 positive regulation of angiogenesis
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Table 4 Circuits significantly associated to bad prognostic

Circuit (Pathway and effector
protein)

Status FDR p-val GO ID GO definition Cancer hallmark

PI3K-Akt signaling pathway:
BCL2L1

UP 5.13E-07 GO:1900118 negative regulation of execution phase of apoptosis Apoptosis
inhibition

Axon guidance: PAK4 UP 1.47E-05 GO:2001271 negative regulation of cysteine-type endopeptidase activity
involved in execution phase of apoptosis

Apoptosis
inhibition

PI3K-Akt signaling pathway:
BCL2L1

UP 0.000159 GO:1900118 negative regulation of execution phase of apoptosis Apoptosis
inhibition

Adherens junction: LEF1
CTNNB1

DOWN 7.35E-07 GO:0043065 positive regulation of apoptotic process Apoptosis
inhibition

Apoptosis: BCL2L11 DOWN 2.28E-11 GO:2000271 positive regulation of fibroblast apoptotic process Apoptosis
inhibition

Apoptosis: FAS DOWN 3.43E-06 GO:0043065 positive regulation of apoptotic process Apoptosis
inhibition

Apoptosis: FASLG DOWN 9.88E-11 GO:2000353 positive regulation of endothelial cell apoptotic process Apoptosis
inhibition

Apoptosis: GADD45G DOWN 5.11E-11 GO:0043065 positive regulation of apoptotic process Apoptosis
inhibition

Apoptosis: TP53 DOWN 2.07E-06 GO:0090200 positive regulation of release of cytochrome c from
mitochondria

Apoptosis
inhibition

Axon guidance: NCK1 PAK4 DOWN 0.0003919 GO:1902237 positive regulation of endoplasmic reticulum stress-induced
intrinsic apoptotic signaling pathway

Apoptosis
inhibition

ErbB signaling pathway: MYC DOWN 6.05E-07 GO:0043280 positive regulation of cysteine-type endopeptidase activity in-
volved in apoptotic process

Apoptosis
inhibition

Hippo signaling pathway: MYC DOWN 0.0006402 GO:0043280 positive regulation of cysteine-type endopeptidase activity in-
volved in apoptotic process

Apoptosis
inhibition

Jak-STAT signaling pathway:
MYC

DOWN 2.38E-14 GO:0043280 positive regulation of cysteine-type endopeptidase activity in-
volved in apoptotic process

Apoptosis
inhibition

MAPK signaling pathway: MYC DOWN 1.46E-10 GO:0043280 positive regulation of cysteine-type endopeptidase activity in-
volved in apoptotic process

Apoptosis
inhibition

MAPK signaling pathway: STK3 DOWN 2.47E-07 GO:0043065 positive regulation of apoptotic process Apoptosis
inhibition

mTOR signaling pathway: RPS6 DOWN 2.77E-11 GO:0043065 positive regulation of apoptotic process Apoptosis
inhibition

NF-kappa B signaling pathway:
GADD45B

DOWN 5.23E-07 GO:0043065 positive regulation of apoptotic process Apoptosis
inhibition

NOD-like receptor signaling
pathway: PYCARD CASP1

DOWN 7.86E-05 GO:0043280 positive regulation of cysteine-type endopeptidase activity in-
volved in apoptotic process

Apoptosis
inhibition

PI3K-Akt signaling pathway:
BCL2L11

DOWN 0.0003220 GO:2000271 positive regulation of fibroblast apoptotic process Apoptosis
inhibition

PI3K-Akt signaling pathway:
FASLG

DOWN 2.56E-12 GO:2000353 positive regulation of endothelial cell apoptotic process Apoptosis
inhibition

PI3K-Akt signaling pathway:
RPS6

DOWN 3.43E-06 GO:0043065 positive regulation of apoptotic process Apoptosis
inhibition

Ras signaling pathway: STK4
STK4

DOWN 0.0001864 GO:0043065 positive regulation of apoptotic process Apoptosis
inhibition

T cell receptor signaling
pathway: CD40LG

DOWN 0.0002348 GO:2000353 positive regulation of endothelial cell apoptotic process Apoptosis
inhibition

Tight junction: TJP1 CTNNB1
CTNNA1

DOWN 0.0004428 GO:0043065 positive regulation of apoptotic process Apoptosis
inhibition

Toll-like receptor signaling
pathway: CCL5

DOWN 1.89E-08 GO:0070234 positive regulation of T cell apoptotic process Apoptosis
inhibition

Wnt signaling pathway: MYC DOWN 5.12E-05 GO:0043280 positive regulation of cysteine-type endopeptidase activity in-
volved in apoptotic process

Apoptosis
inhibition

Apoptosis
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There are three circuits that activate angiogenesis via
the inhibition of the pro-apoptotic factor Fas ligand (that
is inversely correlated with angiogenesis) [11] and the
angiogenesis modulator ANGPT1 [12] which appear
downregulated, and consequently promoting angiogenesis,
in patients with significantly high mortality (see Table 4).
An example is the inhibition FASLG via the corresponding
circuit in the PI3K-Atk signaling pathway (see Fig. 3c).

Interestingly, we found specific apoptosis induction of B
cells mediated by the known apoptotic protein BAX [13]
through the Neurotrophin signaling pathway. The activa-
tion of this circuit, which seems to be a strategy to evade
immune response, is significantly associated to higher mor-
tality in patients (FDR-adj. p-val = 3.02 × 10− 5; see Fig. 3d).
We also tried to find the molecular drivers of bad prog-

nostic specific of patients with MYCN amplifications.

Table 4 Circuits significantly associated to bad prognostic (Continued)

Circuit (Pathway and effector
protein)

Status FDR p-val GO ID GO definition Cancer hallmark

inhibition

Apoptosis: GADD45G DOWN 5.11E-11 GO:0046330 positive regulation of JNK cascade Apoptosis
inhibition via
JNK

Fc epsilon RI signaling pathway:
MAPK8

DOWN 1.78E-07 GO:0007254 JNK cascade Apoptosis
inhibition via
JNK

NF-kappa B signaling pathway:
GADD45B

DOWN 5.23E-07 GO:0046330 positive regulation of JNK cascade Apoptosis
inhibition via
JNK

MAPK signaling pathway: MAP
4 K2

DOWN 9.26E-05 GO:0046330 positive regulation of JNK cascade Apoptosis
inhibition via
JNK

NF-kappa B signaling pathway:
CCL21

DOWN 0.0001040 GO:0046330 positive regulation of JNK cascade Apoptosis
inhibition via
JNK

Ras signaling pathway: MAPK8 DOWN 0.0003003 GO:0007254 JNK cascade Apoptosis
inhibition via
JNK

Neurotrophin signaling pathway:
BAX

UP 3.02E-05 GO:1990117 B cell receptor apoptotic signaling pathway Reduced
immune
response

Neurotrophin signaling pathway:
BAX

UP 3.02E-05 GO:0001783 B cell apoptotic process Reduced
immune
response

p53 signaling pathway: THBS1 UP 3.04E-07 GO:0030335 positive regulation of cell migration Metastasis

Wnt signaling pathway: NFATC1 UP 1.99E-06 GO:0016477 cell migration Metastasis

PI3K-Akt signaling pathway:
TP53

UP 1.17E-06 GO:0045944 positive regulation of transcription from RNA polymerase II
promoter

Proliferation

Ras signaling pathway: ELK1 UP 1.38E-06 GO:0045944 positive regulation of transcription from RNA polymerase II
promoter

Proliferation

Wnt signaling pathway: NFATC1 UP 1.99E-06 GO:0045944 positive regulation of transcription from RNA polymerase II
promoter

Proliferation

AMPK signaling pathway:
EIF4EBP1

UP 0.0001405 GO:0045947 negative regulation of translational initiation Proliferation

ErbB signaling pathway: ELK1 UP 0.0004442 GO:0045944 positive regulation of transcription from RNA polymerase II
promoter

Proliferation

Apoptosis: FASLG DOWN 9.88E-11 GO:0000122 negative regulation of transcription from RNA polymerase II
promoter

Proliferation

PI3K-Akt signaling pathway:
FASLG

DOWN 2.56E-12 GO:0016525 negative regulation of angiogenesis Angiogenesis

HIF-1 signaling pathway:
ANGPT1

DOWN 1.41E-11 GO:0016525 negative regulation of angiogenesis Angiogenesis

Apoptosis: FASLG DOWN 9.88E-11 GO:0016525 negative regulation of angiogenesis Angiogenesis
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Only two circuits, Adipocytokine: PTPN11 and cAMP:
AFDN are significantly associated to bad prognostic
(FDR-adj. p-values of 0.027 and 0.008, respectively; see
Fig. 4). One of the effector proteins, PTPN11 has been im-
plicated in mitogenic activation, metabolic control, tran-
scription regulation, and cell migration [14]. The other
effector protein, AFDN, is the fusion partner of acute

lymphoblastic leukemia (ALL-1) gen involved in acute
myeloid leukemias with t(6;11)(q27;q23) translocation,
with a known role in cell adhesion [15].

Conclusions
It has recently been demonstrated that model-based bio-
marker based on the activity of the JNK pathway

Fig. 3 K-M plots of patients with a) inhibition of apoptosis via inhibition of a circuit of the Apoptosis pathway ending in the TP53 gene; b)
activation of metastatic activity by activation of a circuit of the p53 signaling pathway ending in the THBS1 gene; c) activation of angiogenesis via
the inhibition FASLG through the corresponding circuit in the PI3K-Atk signaling pathway; d) apparent inhibition of the immune response by
specific apoptosis induction of B cells via the circuit in the Neutrophin pathway that activates the known apoptotic protein BAX
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robustly stratified neuroblastoma patients across differ-
ent molecular backgrounds [3]. Computational models
have already been used to provide an understanding of
the dynamics of one or a few specific signaling pathways
[16–18], however, the availability of comprehensive
pathway-wide models [5] that transform decontextua-
lized transcriptomics gene expression data into signaling
activities, which in turn trigger cell functions that can be
linked to cancer hallmarks, provide a quantitative frame-
work to identify neuroblastoma functional drivers. Thus,
we were not only able to reproduce the results of previ-
ous modeling studies that linked the inability of activat-
ing the JNK pathway to neuroblastoma bad prognostic
but also to discover the pathways upstream responsible
of its inhibition. Moreover, we were able to find the in-
volvement of numerous pathways in the activation or
deactivation of numerous cell functionalities responsible
of proliferation, angiogenesis, metastasis and apoptosis
inhibition, four well-known cancer hallmarks. Interest-
ingly, some of these functionalities are coordinately trig-
gered in a way that results in a neoplastic phenotype.
Although further research needs to be done to elucidate
what the ultimate regulatory drivers behind such func-
tional changes are, the widespread deregulation observed
in cancer [19] acting over the wiring constrictions of the
human signaling pathways must play an important role.
The use of models that quantify cell behavioral outcomes

provides a unique opportunity to understand the molecular
mechanisms of cancer development and progression [20],
and ultimately pave the way to suggest highly specific, indi-
vidualized therapeutic interventions [21, 22].

Methods
Data source and data preprocessing
The matrix GSE49711_SEQC_NB_TUC_G_log2.txt,
with gene expression levels estimated by Cufflinks [23]

and quantified as log2(1 + FPKM), was downloaded from
the GEO database. Batch effect was corrected with
COMBAT [7]. Finally, the values were normalized be-
tween 0 and 1.

Signaling circuit activity model
Circuit activities are modelled from gene expression
values as described in [5]. Briefly, KEGG pathways [24]
are used to define circuits connecting receptor proteins
to effector proteins. Specifically, we are using effector
circuits that connect effector proteins to all the receptor
proteins that can transduce the signal to them (see Add-
itional file 1). A total of 98 KEGG pathways involving a
total of 3057 genes that compose 4726 nodes were used
to define a total of 1287 signaling circuits. Normalized
gene expression values are used as proxies of protein ac-
tivity [25–27]. The signal transmission is estimated by
starting with an initial signal of 1, which is propagated
along the nodes of the signaling circuits according to the
following recursive rule:

Sn ¼ υn∙ 1−
Y

sa∈A

1−sað Þ
 !

�
Y

si∈I

1−sið Þ ð1Þ

Where Sn is the signal intensity for the current node n,
vn is its normalized gene expression value, A is the set of
activation signals (sa), arriving to the current node from
activation edges, I is the set of inhibitory signals (si)
arriving to the node from inhibition edges [5]. In
addition to circuit activities, the signal received by spe-
cific cell functions (according to either Gene Ontology
[28] or Uniprot [29] definitions), triggered by more than
one circuit, can also be estimated (See Additional file 2).
This approach has proven to be superior to other types
of pathway-based models [6].

Fig. 4 K-M plots of survival of patients with MYCN amplification which have downregulated Adipocytokine: PTPN11 (left) and cAMP: AFDN (right)
signaling circuits
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Statistical significance of circuit activities
Similarly to normalized gene expression values, circuit
activities are measurements that do not make sense
alone but rather in the context of a comparison. Thus,
circuit activities can be used to compare conditions in
the same way than gene expression values are used in a
differential gene expression test. A Wilcoxon test is ap-
plied to assess the significance of the observed differ-
ences in circuit activities when two conditions are
compared (e.g. MYCN amplification status). In order
to correct for multiple testing effects, the False Dis-
covery Rate (FDR) method [30] is used for the adjust-
ment of p-values.

Software implementation
The model has been implemented in a web server freely
available at: http://hipathia.babelomics.org/.
Additionally, an R/Bioconductor script implementing

the method is available at http://bioconductor.org/pack-
ages/devel/bioc/html/hipathia.html.

Survival analysis
Kaplan-Meier (K-M) curves [31] are used to relate mod-
ule activity to patient survival in the different cancers.
The value of the activity estimated for each module in
each individual was used to assess its relationship with
individual patient survival. Specifically, the 10% patients
with higher (or lower) circuit activities are compared to
the rest of individuals to test whether high (low) circuit
activity is significantly associated to survival. Calcula-
tions were carried out using the function survdiff from
the survival R package (https://cran.r-project.org/web/
packages/survival/). This method provides a X2 statistic
[32] that is used to calculate a p-value. Similarly to the
case of two class comparison, multiple testing effects are
corrected by FDR [30].

Reviewers’ comments
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Reviewer comments
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Author’s response: We cannot agree more, but obtain-

ing clinically relevant results is outside the scope of this
manuscript, that deals with the analysis of the Neuro-
blastoma CAMDA dataset and focuses on the throwing
light on the molecular mechanisms of neuroblastoma.
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on an independent data-set - comparison with other
methods Critical points could also be discussed in the
conclusion (to avoid overinterpretation or results).
Author’s response: As mentioned above, we have added
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tail on the statistical validation of the values obtained.
Comparison with other methods has been addressed in a
separated paper and the result is that HiPathia outper-
forms the rest of pathway-based methods.
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Wenzhong Xiao

Reviewer comments
In this manuscript, Hidalgo etc. described their work
using modeling to study cell signaling mechanisms of
high-risk neuroblastoma and to predict disease out-
comes. The paper is well written. Using Hipathia, an ap-
proach developed by the authors previously, they
extracted comprehensively 1287 signaling circuits from
98 KEGG pathways and studied their activity in the
neuroblastoma data. They first examined the impact of
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MYCN amplification on signaling pathways in neuro-
blastoma and it was comforting to see that the algorithm
was able to identify well defined, reasonable signaling
pathways affected by the MYCN amplification.
In particular, the authors identified a set of circuits in

patients with MYCN amplification that inhibit the JNK
cascade. They then systematically studied each of the
signaling circuits and successfully identified those which
activities were significant associated with patient out-
comes. The study demonstrated the feasibility of using
modeling of signaling pathway activity in studying dis-
ease mechanism and developing prognostic biomarkers.
Recommendations: 1. Page 3, line 54–55. Signal from

RNA-seq data has a much wider distribution than that
from array data, and usually a few genes have much
higher expression than the rest. Can the authors clarify
how the expression values were normalized between 0
and 1? In particular, according to eq. 1 on page 7, would
the few highest expression genes skew the Vn toward
lower value for most of the genes?
Author’s response: As we specified in methods we

downloaded from the GEO database a matrix with gene
expression levels normalized by FPKM and transformed
as log2(1 + FPKM) values. FPKM is a well-known and
accepted normalization method for RNA-seq that ac-
counts for sequencing depth and gene length. Finally, we
re-scale the values between 0 and 1 because of HiPathia
method requirements. In principle we did not observed
biases due to lowly expressed genes in the gene expres-
sion values are properly normalized. Moreover, as com-
mented, a benchmarking carried out by us pointed to
HiPathia as the best performer of all the pathway based
analysis methods.
Minor issues:

1. The figures, for some reason, appeared to have very
low resolution. For example, in Fig. 1, the reviewer
was not able to identify the proteins CCL19, CCL21
and GADD45B, nor the deactivation of these signaling
circuits by NF-kappa B signaling as mentioned in text.

Author’s response: Fig. 1 depicts only the deactivated
circuits within the NF-kappa B signaling pathway. We
have reformulated the text and the figure because it was a
bit confusing before. We have clearly labeled the genes.

2. Page 4, line 34, and other places in the text. Jack-
STAT should be JAK-STAT.

Author’s response: fixed.

Reviewer’s report 3
Joanna Polanska.

Reviewer comments
The manuscript is devoted to study the activities of gene
signaling pathways as triggers of neoplastic processes in
neuroblastoma. The authors use their own computational
algorithm, CCAA, previously published as [5], which en-
ables assigning to KEGG signaling pathways a value, which
describes its up or down regulation status. Activity states of
gene signaling pathways are estimated on the basis of gene
expression values obtained from the GEO data portal. The
authors are able to demonstrate remarkable results, pre-
sented in Fig. 3, showing highly statistically significant dif-
ferences between survivals of patients related to A) the
status of inhibition of apoptosis via inhibition of a circuit of
the Apoptosis pathway ending in the TP53 gene, B) the
mechanism of activation of metastatic activity by activation
of a circuit of the p53 signaling pathway ending in the
THBS1 gene, C) the mechanism of activation of angiogen-
esis via the inhibition FASLG through the corresponding
circuit in the PI3K-Atk signaling pathway, D) the mechan-
ism of inhibition of apoptosis of B cells in the Neutrophin
pathway that activates protein BAX. These mechanism are
highly specific and extend the existing knowledge on the
pathogenesis of neuroblastoma. In conclusion I recom-
mend publication of the submitted manuscript without
changes. Nevertheless, there are many interesting ques-
tions arising in regards to the manuscript, which the au-
thors may wish to consider. Some of them are given
below:

Are there correlations between neuroblastoma
patients concerning states of activation of their
gene signaling pathways?
Author’s response: This is a very good question although
including these results and commenting them is a bit away
from the scope of this manuscript. Certainly, some circuits
are correlated due to the dependence of some genes
shared, which is an obvious correlation, but others not
sharing genes are correlated as well, probably because they
are under the same regulatory program. We have included
a couple of sentences making reference to this comment at
the end of the first paragraph of the Conclusions section.

KM survival curves are quite asymmetric. Are
there differences between survivals still seen if
the group of patients is split into two equal size
subgroups rather than in proportions 90% versus
10%?
Author’s response: The idea was to discover these circuits
remarkable related to survival. Therefore we had to clearly
distinguish patients with high mortality rate from those
with a low mortality rate and we thus focused on the ex-
tremes of the distribution. Splitting into two groups would
reduce the detection sensitivity by including many pa-
tients with an intermediate survival in both groups.
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Is it possible to relate pathogenic status of gene
signaling pathways, discovered in the data, to
somatic mutations in certain genes?
Author’s response: Probably, but there is no much infor-
mation in TCGA regarding somatic mutations in neuro-
blastoma to reach solid conclussions.

Is the aspect of multiple testing addressed in the
computations?
Author’s response: Yes, actually FDR is used although
was not explicitly stated in the text because we referred
to the original publication. However, the referee is right
in noting this absence and we have explained the correc-
tion used (FDR) in a new subsection within the Methods
section.

How one can image the computed status of gene
signaling pathways in the context of cancer
progression? Should one expect that the status of
activation/inhibition changes during the
evolution of cancer? Is it possible to observe
some correlations with cancer pathogenic stages?
Author’s response: We are pretty sure that a time-series
circuit activity study would reveal very interesting
results. The only coarse grain approach to study time
progression of circuit activities in cancer we did is in the
original paper describing the method (Hidalgo et al.,
2017) where we show how circuits corresponding to dif-
ferent cell functionalities changed across cancer stages.
Some of them were initially activated in stage I and then
remain with a similar activity, and we attributed them to
cancer initiation functionalities, and some other increased
its activity along cancer stages, and we guessed they were
related to cancer progression cell functionalities.

Additional files

Additional file 1: Schema of signaling circuit definition. A) Different
types of circuits can be defined within the pathways as subpathways
that connect receptor proteins (those that receive the signal) to
effector proteins (those at the end of the pathways). and ultimately
to the functions behavioral outcomes triggered by the effector
proteins. B) Elementary signaling circuits are defined as subpathways
that connect a unique receptor to a unique effector protein; C)
Effector circuits are defined as subpathways that connect a unique
effector protein to all possible receptor protein that can start the
transduction of signal; D) functional circuits are defined as
subpathways that connect all the possible receptor proteins that can
transduce signal to all the possible effector proteins that trigger a
unique function. E) the concept of functional circuits is very
convenient to define subsets of domain-specific functional circuits of
relevance for the problem studied. For example, in cancer, the well-
known cancer hallmarks can be identified among the GO terms of
the functions triggered by the effector proteins. (JPG 250 kb)

Additional file 2: Schema of the model of signaling circuit dynamics.
A) The dynamics of the circuit is modeled taking the normalized gene
expression values as proxies of protein activation status (the more
expressed is a gene. The more likely the corresponding gene product will

be active); B) given that both activations and repression activities can
occur along the pathway, different scenarios are considered for the
transmission of the signal: only activation, simultaneous activation and
inhibition and only inhibition, which are coded in the formula; C) the
application of the formula provided estimations of the different fluxes of
signal across the circuit that finally arrive to the effector protein. In this
way, a gene expression profile can be transformed in the corresponding
signaling circuit activity profile (or functional profile). (JPG 149 kb)
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