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Abstract

Background: Microbial communities play a crucial role in our environment and may influence human health
tremendously. Despite being the place where human interaction is most abundant we still know little about
the urban microbiome. This is highlighted by the large amount of unclassified DNA reads found in urban metagenome
samples. The only in silico approach that allows us to find unknown species, is the assembly and classification of draft
genomes from a metagenomic dataset. In this study we (1) investigate the applicability of an assembly and binning
approach for urban metagenome datasets, and (2) develop a new method for the generation of in silico gold standards
to better understand the specific challenges of such datasets and provide a guide in the selection of available software.

Results: We applied combinations of three assembly (Megahit, SPAdes and MetaSPAdes) and three binning
tools (MaxBin, MetaBAT and CONCOCT) to whole genome shotgun datasets from the CAMDA 2017 Challenge.
Complex in silico gold standards with a simulated bacterial fraction were generated for representative samples
of each surface type and city. Using these gold standards, we found the combination of SPAdes and MetaBAT
to be optimal for urban metagenome datasets by providing the best trade-off between the number of high-
quality genome draft bins (MIMAG standards) retrieved, the least amount of misassemblies and contamination.
The assembled draft genomes included known species like Propionibacterium acnes but also novel species
according to respective ANI values.

Conclusions: In our work, we showed that, even for datasets with high diversity and low sequencing depth
from urban environments, assembly and binning-based methods can provide high-quality genome drafts. Of
vital importance to retrieve high-quality genome drafts is sequence depth but even more so a high proportion
of the bacterial sequence fraction too achieve high coverage for bacterial genomes. In contrast to read-based
methods relying on database knowledge, genome-centric methods as applied in this study can provide valuable
information about unknown species and strains as well as functional contributions of single community members
within a sample. Furthermore, we present a method for the generation of sample-specific highly complex in silico
gold standards.
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Background
Microbes influence the way we live in ways far beyond
anything we imagined just a decade ago. The results of
the human microbiome project (HMP) showed an intri-
cate interaction between the microbial communities
within our body and our wellbeing [1, 2]. Even our mood
is influenced by our microbiome [3, 4]. It is therefore no
surprise that the research on the human microbiome
has gained considerable momentum in the years follow-
ing the HMP. In urban environments, millions of people
interact with each other and the microbial communities
that surround them (surface, air and water). The field of
urban metagenomics analyses these communities and their
influence on the wellbeing and health of citizens [5, 6]. For
instance, studies have shown that the development and
spread of antibiotics resistances is crucially influenced by
the microbial environment [7, 8]. While some urban meta-
genome studies are already published [9, 10], more data
and work is needed to be able to profile the metagenome of
cities worldwide. To ensure reproducibility and transpar-
ency of urban metagenome research, the MetaSUB Inter-
national Consortium [11] was formed.
Results from the first urban metagenome studies show

that a large proportion of the DNA found in these samples
is still not present in public databases and is therefore
missing in any reference-based method. Additionally,
urban microbiomes differ from other known microbiomes
in their comparatively high population dynamics, espe-
cially considering areas where large numbers of people
interact [9, 10].
To detect novel species and to enable a detailed ana-

lysis of microbe-microbe communities or host-microbe
interactions (e.g., pathogenic and commensal), metage-
nomic reads have to be assembled into, ideally, complete
genomes as read-to-database comparison methods
would introduce biases. However, to our current know-
ledge, no other study tried to accomplish assemblies of
urban microbiomes so far.
Many assemblers and genome binners, using a variety of

approaches, are available for the purpose of metagenome
assembly and classification. The computational perform-
ance and the quality of the resulting genome bins is in turn
influenced by a multitude of sample and sequencing pa-
rameters. To help scientists dealing with this plethora of as-
sembly tools, it is essential to provide clear assessment
parameters and quality measures. The Critical Assessment
of Metagenome Interpretation (CAMI) challenge provides
a framework for developers to benchmark their programs
on highly complex simulated datasets as well as an evalu-
ation of present methods [12]. They reported very different
assembly tool performance, depending on the features of
the metagenome sample. These features include population
diversity, sequencing quality and sequencing depth. High
community diversity, especially the presence of closely

related microbial strains, can decrease assembly perform-
ance dramatically and is one of the main challenges in
metagenomics analysis. Recent benchmarks show that as-
semblers using multiple k-kmers for assembly substantially
outperform single k-mer assemblers [12, 13]. Simulated
data are essential for benchmarking as they are easily
created for a multitude of experimental setups, but still
represent only an approximation of reality and cannot
replace a well-designed gold standard, as Mangul et al.
[14] showed in their assessment of benchmarking ap-
proaches for omics tools.
To investigate the potential of de-novo assemblies and

to detect unknown microorganisms in urban metagen-
ome samples we performed metagenome assemblies and
subsequent binning for the whole genome datasets of
the cities Boston, Sacramento and New York provided in
the CAMDA 2017 MetaSUB challenge [15]. The dataset
consisted of 24 WGS samples from Boston and 18 meta-
genomic samples from Sacramento, as well as 24 ran-
domly selected samples (of total 1572) from New York.
As the taxonomic composition of urban metagenome

samples from CAMDA is unknown, we introduce
sample-specific in silico gold standards to further assess
tool performance with known-truths. Such ground truth is
needed to not only compare results between samples of un-
known origin but to assess recovery rates of genomes of
known origin as well. Such benchmarking data sets mimic
multiple parameters, such as microbial diversity on a large
scale by using varying diversity of bacterial species, as well
as varying diversity on a strain level of a single species [12].
These benchmarking sets consist purely of sampled or se-
quenced data from known genomes, creating synthetic
communities which give full control on complexity of a
community but do not replicate biological conditions of ac-
tual environmental samples.
A major difference of such benchmarking sets to

real environmental data is the fraction of unknown se-
quences originating from yet unknown species, mak-
ing it difficult to replicate similar conditions in
synthetic data. Depending on sample origin, the frac-
tion of unknown sequences can easily constitute half
of all data as observed for urban metagenomes in New
York [10]. To increase the representation of original
conditions in our in silico gold standards, we took an
alternative approach. We incorporate the unknown
fraction of sequences in a sample while replacing all
bacterial sequences we were able to classify with
corresponding simulated sequences from reference
genomes, creating a gold standard with a bacterial
fraction of known-truths while still maintaining the
original complexity of a sample as close as possible.
These in silico gold standards are then used to further

assess assembly and binning performance specific to
urban metagenomes.
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Methods
Data description
The datasets were provided in the MetaSUB Challenge
of the CAMDA 2017 [15] and we selected only WGS
datasets from the three cities. The Boston dataset con-
sisted of 24 samples with a sequencing depth between
0.2 Gbp and 11.8 Gbp per sample, the Sacramento data-
set contained 18 samples with a sequencing depth be-
tween 5.1 Gbp and 6.4 Gbp per sample. The New York
dataset consisted of 1572 samples, of which most were
of low sequencing depth (1 Mbp to 19 Gbp with an aver-
age of 0.8 and a median of 0.6 Gbp). We randomly
selected 24 samples from New York based on the distri-
bution of the sequencing depth. Sequencing for all sam-
ples was done using an Illumina paired end protocol.
The original read length was 101 bp for Boston, 126 bp
for Sacramento, and 101–301 bp for New York. The
Sacramento dataset consists of samples taken from
benches (6), ticket machines (6) and platform railings (6)
in stations, for the Boston dataset grips (6), poles (2),
seats (5) and seat backs (2) in train cars, as well as
touchscreens (9) at stations were swabbed. New York
samples are only reported with surface type, with the se-
lected samples originating from metal (14), wood (6)
and metal/plastic (4) surfaces.

Preprocessing
The sequence files were quality checked using FastQC
version 0.11.5, and low quality reads were removed
with Trimmomatic version 0.36 (filtering reads below
a Phread-Score of 20 and a read length below 70 bp)
[16]. Adapter sequences were removed by Cutadapt
version 1.12 [17]. To filter all human reads, sequence
files were aligned to the human reference genome
hg38 by Bowtie2 version 2.3.0 [18] followed by extrac-
tion of all non-mapping reads by Samtools version
0.1.19 [19] and conversion back to FASTQ-Files using
BEDtools bamtofastq version 2.21.0 [20].

Assembly, binning and phylotyping
The tools were selected based on their performance in
the CAMI challenge and additional benchmarking stud-
ies [12, 13, 21] as well as preliminary tests with a subset
of samples. For all samples we compared the assemblies
of MetaSPAdes and SPAdes version 3.11.1 [22, 23], and
Megahit version v1.1.1–2-g02102e1 [24] in combination
with three different binners, namely MaxBin version
2.2.2 [25], MetaBAT version 2.12.1 [26] and CONCOCT
version 0.4.0 [27]. Assemblies were filtered for a minimum
contig length of 500 bp, while binning was applied with
default values (1000, 2500 and 1000 bp for minimum
contig length for MaxBin, MetaBAT and CONCOCT
respectively). All three binning methods use tetranucleo-
tide frequencies and abundance information. Abundance

information is obtained by helper scripts of CONCOCT
and MetaBAT (Additional file 1), calculating the coverage
per contig from mapped reads against their respective as-
sembly as well as for pooled samples by mapping the sin-
gle samples separately back to the assembly of the pool.
Completeness and contamination of the resulting bins
was analysed with CheckM version 1.0.7 [28] and phyloge-
nomic inference of the bins was performed with
AMPHORA version 2.0 [29].
The presence of 5S, 16S and 23S rRNA was predicted

by barrnap version 0.9-dev [30] and tRNAs were pre-
dicted with tRNAscan-SE version 2.0 [31]. The presence
of ribosomal clusters as well as tRNA content were both
used as a criterion for high-quality genome drafts ac-
cording to the MIMAG standards (Table 1) [32].
To check the taxonomic identity of high-quality bins,

genes were predicted with Prodigal [33] and the result-
ing Proteins were BLAST [34] searched against a local
bacterial database (NCBI RefSeq - Jan. 2018). Average
nucleotide identity (ANI) values were calculated with
ANIcalculator [35] and average amino acid identity
(AAI) values were calculated using a one to one BLAST
search against the best Hit Organism from the previ-
ous search with an E-value cut-off of 0.05. Microbial
phenotypes of high-quality genome drafts were pre-
dicted using the PICA framework [36] and PhenDB
(https://phendb.csb.univie.ac.at/).
In silico bacterial replication measurements were per-

formed using iRep version 1.1.14 [37]. iRep requires a
minimum coverage of 5, less than 175 fragments/Mbp,
less than 2% contamination and more than 75% com-
pleteness within the genome for calculation for a single
genome draft bin. Additional mapping quality filters are
applied during iRep calculation such as removing high-
and low coverage windows and evaluation of coverage
distribution by linear regression.
The resulting iRep value indicates the average propor-

tion of respective species replicating in a sample of inter-
est, such as an iRep value of 2 represents an average
replication of every bacterium from the respective

Table 1 MIMAG Standards

Quality level Criteria

High-quality draft Presence of 5S, 16S and
23S rRNAPresence of at
least 18 tRNAs
Completion > 90%
Contamination < 5%

Medium-quality draft Completion ≥50%
Contamination < 10%

Low-quality draft Completion < 50%
Contamination < 10%

Selected set of criteria for low, medium and high-quality draft-genomes
according to the Minimum Information about a Metagenome-Assembled
Genome (MIMAG) standards [32]
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species or an iRep value of 1.34 an average replication of
every third member in average.

In silico gold standards
Sample-specific in silico gold standards, i.e. gold stan-
dards based on the taxonomic profile of a real sample,
are created in a multi-step process. The first step is the
taxonomic classification of all sequences within a sample
to obtain read counts for single taxa from Centrifuge
version 1.0.3-beta [38] with an index for prokaryotes,
human and Viruses/Archaea (p + h + v). The p + h + v
index is based on the NCBI RefSeq database (build on
November 3rd, 2017). The p + h + v classification was
used to extract all sequences classified as bacterial. To
estimate the potentially unknown (unclassified) read
content the Centrifuge nt index provided by the Centri-
fuge authors was used (index from June 12th, 2016).
In a second step, the output of Centrifuge is converted

into a format used by Kraken [39] using the script
centrifuge-kreport. All classified sequences on species or
strain level are then matched to a reference genome in
RefSeq. The exact number of reads classified by Centri-
fuge is sampled from the selected reference genomes
using ART version 2.5.8. [40] applying matching error
profiles, fragment and read lengths observed in the ori-
ginal sample.
In the last step, all sequences classified as bacterial

are then removed from the original sample and
replaced with the created in silico reads. The resulting
in silico gold standard still constitutes only an approxi-
mation of the original sample, as classification of all
bacterial sequences is dependent on databases, thereby
not classifying all real bacterial sequences as such or to
a close related species if the strain or species is not
present in the database.

The whole workflow is schematically depicted in
Additional file 2: Figure S1 together with the composition
of an in silico gold standard created by the described
approach (Fig. 1).
Assembly, binning and phylotyping is executed using

the same approach as described for real samples. Assess-
ment of misassemblies is achieved by MetaQUAST ver-
sion 4.5 15ca3b9 [41] using high-quality genome drafts
resulting from in silico gold standards compared to ref-
erence genomes sampled by at least 10,000 read pairs
for the respective gold standard with matching phylo-
types by AMPHORA of the respective genome draft
(Additional file 3: Table S4).
To estimate the required sequence depth using a

redundancy-based approach, the tool Nonpareil [42] is
applied to all samples of interest. Nonpareil provides a
projection of the required sequence depth to cover
95% of the sampled biological diversity. This estima-
tion gives valuable insight for sufficient coverage per
sample and the proportion of the original diversity
which can be expected to be obtained when analyzing
respective samples.

Results
This study assesses the potential of assembly-based
methods for analyzing urban metagenome datasets by
investigating the performance of different combinations
of assembly and binning software. Furthermore, to in-
crease our understanding of these types of datasets and
to be able to make better informed decisions regarding
the tool selection, we simulated the taxonomic compos-
ition based on real sample features and assessed the per-
formance of the selected assembly and binning software.
After quality trimming and removal of human reads,

10–46% (Ø 31%) or 0.04–4.5 (Ø 1.2) Gbp were kept for
the Boston samples, 35–82% (Ø 75%) or 1.9–5.2 (Ø4.2)

Fig. 1 Composition of an in silico gold standard. The process of replacing classified bacterial reads with in silico reads obtained from known reference
genomes is depicted. The resulting gold standard contains all unclassified sequences together with any non-bacterial sequences, while sequences
classified as bacterial are replaced by in silico reads or, in case no reference genome could be assigned, are dropped
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Gbp for the Sacramento samples, and 63–91% (Ø 80%)
or 0.05–1.93 (Ø 0.63) Gbp for the New York samples.
The low number of remaining reads in the Boston sam-
ples was mainly due to the high content of human DNA
(up to 84.64%) within those samples. Additionally, up to
55% of the reads in Boston samples still contained
adapter sequences, which were also removed in the qual-
ity control process. Additional file 4: Table S3 shows the
numbers of raw reads and quality-trimmed reads in each
processing step.
The remaining reads were taxonomically profiled with

Centrifuge [38], using the NCBI nt database as a refer-
ence. The Sacramento dataset contained on average 63%
unclassified reads, a value that was uniform for all sta-
tions and all surfaces (SD 1.68). Additionally, about one
fifth of the data was classified as eukaryotic and only
about 15% of the quality filtered reads were classified as
bacterial. For the Boston dataset the average value of un-
classified reads was lower (Ø 52%), but also more vari-
able between samples (SD 11.87) with the lowest
number of unclassified reads found in grip samples
(27%). The Boston dataset showed also a lower content
of eukaryotic and a higher percentage of bacterial reads
(Ø 38%). The New York samples had the highest bacter-
ial content with 74% on average together with the smal-
lest fraction of unclassified reads (Ø 23%).

Assembly
All quality-controlled samples were subjected to assembly.
Assembly of Sacramento samples resulted in a total
assembly length of 18 to 88 million bp with an average
length of 46 million bp for all assemblers. Overall, Megahit
resulted in the longest assemblies followed closely by
SPAdes, whereas MetaSPAdes created considerably smaller
assemblies in total length. Average contig length as well as
N50 (minimum contig length to cover 50% of the genome)
values were highest in SPAdes assemblies, indicating a
more complete assembly with only minor losses in total as-
sembly length compared to Megahit in the majority of the
samples (Additional file 5: Table S1). The percentage of
quality-controlled reads mapping back to an assembly
ranged from 7.7 to 38.2% (Ø 18.8%).
Assembly of Boston samples showed substantially

more variability in the assembly statistics, as was ex-
pected due to the broad range of sequencing depth
(0.04–4.2 Gbp after quality control). In contrast to the
assemblies from the Sacramento samples, all three
assemblers produced assemblies of comparable, albeit
short (< 1 mio bp), total assembly length for low-
sequencing depth samples. Nevertheless, especially sam-
ples from touchscreen surfaces resulted in assemblies
with up to 24 million bp of total length. As shown in
Fig. 2, SPAdes outperformed the other assemblers for
the Boston samples. The ratio of reads mapping back to

all assemblies ranged from only 1.56% for samples from
seats with very low sequencing depth to up to 57.46% in
one grip sample (Ø 17.51%).
New York samples, albeit with similar low-sequencing

depth as some Boston samples (0.05–1.93 Gbp), resulted
in considerably larger assemblies overall. This is likely due
to the much higher bacterial content (Ø 74%) and lower
unknown as well as eukaryotic read fraction as deter-
mined by classification, resulting in higher sequence
coverage of respective bacterial genomes within the com-
munity (Additional file 4: Table S3). Total assembly length
ranged from 4 million bp to 70 million bp (Ø 22 Mio bp)
with SPAdes outperforming the other assemblers again re-
garding assembly statistics.
A possibility to increase assembly performance of very

low abundant species is pooling samples with similar mi-
crobial composition to increase coverage of such low
abundant species for better assembly results. The disad-
vantage of pooling samples for assemblies is the poten-
tial increase of strain diversity, which in turn severely
hampers the performance of assemblies [12]. Due to the
substantial higher RAM usage of SPAdes and our limit-
ing computational resources, only pools using Megahit
were performed. Samples for Sacramento were pooled
according to surface type (A: Bench, B: Ticket machine,
C: Platform railing). Pooled assemblies of the three
Sacramento surfaces resulted in assemblies of 509, 460
and 473 million bp total length respectively. The total
length of pooled assemblies surpassed the sum of all
respective single sample assemblies by 169, 130 and 136
million bp for surface types A, B and C, indicating that
indeed some additional sequences could be assembled
by pooling samples.

Binning
Assembly of metagenomic sequences results in large num-
bers of individual contigs that need to be grouped into a
genome context. Binning algorithms sort assembled con-
tigs into distinct genome bins by using information like
coverage per contig or tetranucleotide frequencies. Ideally
these genome bins represent almost complete draft
genomes that can represent a pan-genome of a species or
a single strain, depending on the quality of the provided
assembly. As mentioned in the introduction, high strain
diversity is known to decrease the completeness of result-
ing genome bins [12].
Three different binning methods with promising re-

sults in the CAMI Challenge were applied to the re-
spective assemblies of Sacramento, Boston and New
York samples, namely CONCOCT [27], MaxBin [25]
and MetaBAT [26]. All resulting bins were classified into
high, medium and low-quality drafts according to the
Minimum Information of a Metagenome-Assembled
Genome (MIMAG; Table 1) [32]. The applied metrics
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are genome completeness and contamination, measured
by the presence of single copy marker genes, the pres-
ence of rRNA clusters, as well as the presence of tRNAs.
Only medium and high-quality draft bins were consid-

ered for further analysis, low-quality draft genome bins
were excluded. SPAdes assemblies led to a higher number
of high-quality bins compared to the other tested assem-
blers, with 27, 29 and 30 high-quality bins achieved by
MetaBAT, CONCOCT and MaxBin respectively. Addition-
ally, SPAdes assemblies produced 68, 40 and 57
medium-quality bins respectively. The total number of at
least medium-quality bins were similar when binning
MetaSPAdes and Megahit assemblies, but with a consider-
ably lower fraction of high-quality bins, with only MetaS-
PAdes/MaxBin achieving 26 high-quality bins, while all
other combinations yielded a substantially lower number
(Additional file 6: Table S2). CONCOCT and MaxBin
tended to bin more rRNA clusters to the same bin with 25/
55 and 28/74 high-quality bins from all assemblies holding
more than one rRNA cluster for CONCOCT and MaxBin
respectively. All high-quality bins resulting from SPAdes/
MetaBAT in contrast did not contain multiple copies of 5S,
16S and 23S rRNA clusters, although in some bins more
than one 5S rRNA was present (Additional file 2: Table S2).

To determine if multiple rRNA clusters originate
from closely related species or represent wrongly
binned sequences, we blasted all 16S rRNAs of bins
with multiple copies against the 16S ribosomal RNA
sequences for Bacteria and Archaea from NCBI. In-
deed, additional rRNA copies within a bin originated
from distinct taxa. 16S rRNA genes from MetaBAT
were assigned to the same taxa as determined by phy-
lotyping by AMPHORA, while the observed multiple
16S rRNA copies by CONCOCT and MaxBin repre-
sented wrongly binned sequences (Additional file 3:
Table S4).
Binning of pooled Sacramento assemblies provided

one more medium (29) and one less high-quality gen-
ome draft bin compared to single sample assemblies.
Although the number of at least medium-quality gen-
ome drafts did not show any considerate increase, the
number of bins with high contamination values (> 30%
contamination) increased substantially, which was es-
pecially true for CONCOCT and less so for MaxBin.
As no increase in at least medium-quality bins origin-
ating from low coverage genomes was observed, and
resulting bins instead showed higher contamination
values, we did not further consider this approach.

Fig. 2 Assembly Statistics for Sacramento, Boston and New York. Assembly statistics for Megahit, MetaSPAdes and SPAdes of all Sacramento,
Boston and selected New York samples are shown. Extreme outliers of i.e. a N50 value of over 65,000 for one grip sample from Boston are
computed but not shown. Statistics are computed from all contigs above 500 bp in length
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Only one single sample from Sacramento provided a
high-quality draft bin by four different assembler/binner
combinations (Sample 4C, platform railing), while all
other 18 bins from all assembler/binner combinations of
Sacramento samples with sufficient completeness values
above 90% and contamination below 5% did lack at least
one of the three required rRNAs to be classified as a
high-quality draft bin. For these 18 bins, at least 18
tRNAs were predicted. The same could be observed in
all genome bins with proper completeness and contam-
ination from Boston and New York samples. The lack of
at least one rRNA was predominantly the reason to fail
the criteria for high quality genome drafts while a mini-
mum of 18 tRNAs were present.

Phylotyping
To infer the phylotypes of all high and medium quality
bins, AMPHORA2 [29] was applied to every bin. AM-
PHORA2 uses a phylogenetic marker database of 104 ar-
chaeal and 31 bacterial marker sequences to infer
phylogeny of metagenomic bins. AMPHORA2 reports a
confidence level for each taxonomic level and marker se-
quence with a successful alignment and therefore assign-
ment. Only assignments with confidence levels above 0.8
(from 0 to 1) were considered and for every bin the low-
est taxonomic level with all marker sequences sharing
the same assignment is considered. If a bin showed both
the presence of archaeal and bacterial sequences, the bin
is assigned to the level ‘None’.
While all three binning methods achieved similar

numbers of high-quality bins from SPAdes assemblies
(Fig. 3a), AMPHORA2 reported more bins from Meta-
BAT with a consensus of all marker genes down to spe-
cies level than MaxBin and CONCOCT, with 13 bins
achieving consensus at species level for MetaBAT com-
pared to 8 and 7 bins for MaxBin and CONCONCT
respectively.
This agrees with the results from the 16S rRNA gene

analysis, where CONCOCT had the highest number of
wrongly assigned 16S rRNA sequences, followed by
MaxBin while no multiple 16S rRNAs copies of other
taxa from MetaBAT in high-quality genome bins were
detected. This indicates less contamination and as such
a better consensus of all marker genes at lower taxo-
nomic levels when binning with MetaBAT (Fig. 3b).
While the combination of SPAdes/MetaBAT provided

three high-quality bins less than the highest number of 30
bins from SPAdes/MaxBin, it achieved the highest number
of at least medium-quality with 95 bins. SPAdes/CON-
COCTand SPAdes/MaxBin resulted in 86 and 70 bins of at
least medium-quality. The lowest consensus taxonomic
level achieved by phylotyping medium-quality bins
matched the results of high-quality bins with 47/68

medium-quality bins from MetaBAT achieving consen-
sus at family level or lower, while this was only true
for 14/40 and 24/57 for MaxBin and CONCOCT
respectively (Fig. 3c).

Genome analysis of selected bins
We investigated the genome characteristics of bins
resulting from the best-performing combination of as-
sembly and binning method (SPAdes/MetaBAT). For the
prediction of potential microbial traits from medium to
high-quality genome drafts, we applied the PICA frame-
work [36]. PICA cannot only predict traits for complete
genomes but allows for most traits also incomplete and
contaminated genome sequences as input. We predicted
phenotypic traits using the PICA approach and PhenDB
[36]. Predicted traits for the Clostridium difficile bin
from a New York sample show expected traits from
Clostridia such as being anaerobe, gram-positive as well
as the possibility to form endospores [43] despite low
ANI values to the closest strain found by blast. All
Propionibacterium acne typed bins present expected
traits from P. acne strains. P. acnes is an aerotolerant an-
aerobic gram-positive bacterium reported in the human
skin microbiome [44] as predicted together with pheno-
typic traits such as recycling of organic phosphorus and
degradation of urea (Table 2).
Additionally, for high-quality genome drafts it is

possible to calculate in silico replication rates of
near-complete genome drafts applying iRep [37]. The
replication rate should not be confused with a dead or
alive measurement, as it only measures replication
rates based on the difference of coverage from the ori-
gin towards the terminus of replication in bacteria.
Nevertheless, replication rates might give valuable in-
formation about single community members, indicat-
ing active replication, while DNA originating from
dead bacteria likely fails to provide iRep values due to
non-uniform coverage of the genome as expected from
living organism.
For all the grip, pole, touchscreen and seat samples

from Boston, the majority of bins was assigned to spe-
cies Propionibacterium acnes with ANI values between
99.55 and 99.97. Table 2 shows the number of predicted
proteins and their average identity to P. acnes of each
of the 27 high-quality bins of the SPAdes/MetaBAT
combination.
Apart from P. acnes, the seatback samples contained

medium-quality bins (Additional file 6: Table S2) with
the closest homolog being Micrococcus luteus, Strepto-
coccus sanguinis, and a member of the Neisseria
genus, identified as Neisseria sicca with an ANI value
of 96.36. One high-quality genome bin (SPAdes/CON-
COCT) from the grip sample SRR3546361 was
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assigned to the genus Corynebacterium, but a BLAST
search on all predicted proteins revealed Lawsonella
clevelandensis as closest homolog with 78% AAI. The
assembled genome might therefore represent a species
from the order of Corynebacteriales that is not present
in our public databases yet.
For the New York samples high-quality draft genome

bins contained Pseudomonas stutzeri (ANI 98.03 and

98.09), a denitrifying soil bacterium; Leuconostoc mesen-
teroides (ANI 99.65), a species associated with fermenta-
tive conditions; and Enterobacter hormaechei (99.04), a
human gut bacterium. For other high-quality bins in
New York samples, the assigned classification (Table 2)
represents the closest homolog found in the NCBI nr
database, but not the species found in the sample (indi-
cated by the low ANI values).

Fig. 3 Medium and high-quality bins from assembler/binner combinations. a Comparison of medium and high-quality genome drafts obtained from
various assembler/binner combinations. b Lowest consensus of taxonomic level for all high-quality genome drafts obtained by AMPHORA2. c Lowest
consensus of taxonomic level for all medium-quality genome drafts obtained by AMPHORA2. MH=Megahit, SP=SPAdes, MSP =MetaSPAdes,
CC=CONCOCT, MB =MaxBin, MT =MetaBAT
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Targeted in silico gold standards
To represent each surface type in Boston, Sacramento
and selected New York samples, we picked one sample
of each surface type and city for the creation of in
silico gold standards with the exception of samples
taken from seats in Boston, as sequencing depth of
original seat samples was already very low for suffi-
cient assembly resulting in total assembly lengths of at
most 5 million bp.
The selected samples were 1A (bench), 1B (ticket

machine) and 6C (platform railing) for Sacramento,
SRR3546361 (grip), SRR3545898 (pole), SRR3545919
(seat back) and SRR5456367 (touchscreen) for Boston as

well as SRR1749044 (wood), SRR1749150 (metal) and
SRR1749832 (metal/plastic) for New York.
Between 80.3 and 98.9% (Ø 93.4%) of all classified bacter-

ial reads could be assigned to a reference genome. The
number of selected reference genomes ranged from 3067
to 3995 (Ø 3667). Of the remaining few percent, either no
reference genome could be assigned (Ø 2.8%) or bacterial
reads were only classified to a higher taxonomic level than
species level (Ø 3.8%). Resulting gold standards had in aver-
age a slight increase of 1% in total number of base pairs
compared to the quality-controlled real-life samples despite
the loss of about 6.6% non-assigned bacterial reads. This is
due to the shorter reads remaining after quality control

Table 2 27 high-quality genome drafts from SPAdes/MetaBAT

Sample/Bin Compl. Cont. Closest Species Phenotypic traits Predicted Proteins iRep AAI ANI

Grip5941 #1 100 0.11 Propionibacterium acnes 1, 2, 13, 15, 20, 23 2341 1.41 97.28 99.89

Grip6354 #1 100 0.55 Propionibacterium acnes 1, 2, 13, 15, 20, 23 2400 1.45 97.30 99.83

Grip6358 #1 98.9 1.23 Propionibacterium acnes 1, 2, 13, 15, 20, 23 2354 1.38 97.34 99.91

Grip6361 #3 98.93 2.34 Propionibacterium acnes 1, 2, 13, 15, 20, 23 2507 n/d 96.05 99.97

Pole5898 #1 99.34 0.55 Propionibacterium acnes 1, 2, 13, 15, 20, 23 2357 1.42 96.67 99.75

Pole6380 #1 99.12 4.23 Propionibacterium acnes 1, 2, 13, 15, 20, 23 2595 n/d 97.07 99.55

Sb5919 #4 99.01 0.66 Propionibacterium acnes 1, 2, 13, 15, 20, 23 2349 1.40 97.46 99.81

Sb5948#2 100 0.13 Propionibacterium acnes 1, 2, 13, 15, 20, 23 2380 1.48 97.03 99.56

Ts5934#1 99.78 1.75 Propionibacterium acnes 1, 2, 13, 15, 20, 23 2441 n/d 96.85 99.76

Ts5963 #1 99.56 0 Propionibacterium acnes 1, 2, 13, 20, 23 2366 1.38 97.39 99.89

Ts6363 #1 100 0.11 Propionibacterium acnes 1, 2, 13, 15, 20, 23 2390 1.34 96.88 99.75

Ts6367 #1 100 0 Propionibacterium acnes 1, 2, 13, 15, 20, 23 2351 1.42 97.12 99.83

Ts6375 #2 99.34 1.86 Propionibacterium acnes 1, 2, 13, 20, 23 2382 1.39 96.92 99.93

Ts5059 #2 100 0 Propionibacterium acnes 1, 2, 13, 15, 20, 23 2313 1.36 97.47 99.86

Metal8994 #2 99.36 0.14 Pseudomonas stutzeri 1, 2, 6, 8–12, 14–18, 21, 23 4151 n/d 95.88 98.03

Metal8994 #5 99.07 0.63 Enterobacter cloacae 1–3, 6, 7, 9–12, 15, 16, 19, 20, 23, 24 4405 n/d 93.51 92.02

Metal9078 #4 98.77 2.9 Pseudomonas stutzeri 1, 2, 4, 6, 8–12, 14–16, 23 4160 n/d 84.17 84.88

Metal9087 #2 100 0.65 Pseudomonas xanthomarina 1, 6, 8–12, 14–16, 23 4048 n/d 86.97 84.58

Metal9150 #4 99.3 1.4 Clostridium difficile 2, 9, 11, 13–16, 22, 23, 2818 n/d 78.26 77.02

Metal9150 #5 99.57 0.42 Stenotrophomonas rhizophila 1, 4, 5, 7, 9, 10, 12, 14, 15, 19, 20, 23 3937 n/d 86.37 84.58

Metal9150 #7 100 0.26 Leoconostoc mesenteroides 1–3, 13, 23 1785 n/d 97.24 99.65

Metal9957 #3 94.52 0.27 Pseudomonas stutzeri n/d 3954 1.51 96.68 98.09

Metal0032 #2 99.83 0.16 Stenotrophomonas maltophilia 1, 5–10, 14, 15, 19, 20, 23 4069 n/d 76.15 90.47

MePl9373 #2 99.59 0.2 Pseudomonas stutzeri 1, 2, 4, 6, 8–12, 14–16, 18, 23 4157 n/d 84.25 85.30

MePl9832 #7 98.59 3.76 Gottschalkia acidurici 2, 9, 12–16, 23 4227 n/d 74.76 85.30

Wood9044 #4 99.47 0.33 Enterobacter hormaechei 1–3, 6, 9–12, 15, 16, 19, 20, 24 4352 n/d 97.63 99.04

Wood9200 #3 100 0 Weeksella virosa 1, 9, 14, 19, 20, 23 3323 n/d 72.79 74.08

All high-quality genome draft bins from SPAdes/MetaBAT are listed. Sample names are abbreviations of surface names (Sb = Seat backs, Ts = Touchscreen, MePl =
Metal/Plastic) and the last four digits of respective SRR ID’s (Additional file 3: Table S2). n/d = values could not be determined as one or more filters failed for
calculation. Present number for phenotypic trains indicates a trait being predicted as present (1: aerobe; 2: anaerobe; 3: facultative anaerobe; 4: Type III secretion
system; 5: Type IV secretion system; 6: Type VI secretion system; 7: alkane degradation; 8: benzoate degradation via hydroxylation; 9: butyrate producing; 10:
chitine degradation; 11: CO assimilation; 12: trimethylamine production via choline; 13: stains gram-positive; 14: bile acid degradation; 15: H2 gas production; 16:
self-propelled motion; 17: N2 fixation; 18: fatty acid degradation; 19: hydrolyzing phosphonate; 20: recycles organic phosphorus; 21: oxidizes thiosulfate; 22:
produces endospores for persistence; 23: urea degradation; 24: reduces various alpha,beta-unsaturated and nitro compounds)
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(minimum read length 70 bp) in real life samples which are
counted as a full read. All simulated reads are created with
the full read length as observed in respective real samples.
Classification of all reads showed distinct profiles be-

tween cities. The total number of different genomes se-
lected for each sample was in the same range in
Sacramento (3889 to 3995) and Boston (3434 to 3986),
while for New York the numbers were lower (3067 to
3488). A major difference in the composition of selected
genomes in all gold standards could be observed in the
highest genome coverage of single reference genomes.
Using the number of reads attributed to a reference gen-
ome and the selected read length, the coverage of each
reference genome in a gold standard could be obtained.
The maximum coverage of classified reads per selected
genome, i.e. the most abundant species classified, was
considerable lower in Sacramento with a maximum
coverage of a single reference genome between 1.5× and
5.9× compared to Boston with values between 12.8× and
100.5× as well as New York with the highest coverage
values of classified bacteria between 24.2× and 196.6×.
Only very few classified bacterial genomes were covered
above 1× in respective gold standards, with at most 3 to
30 genomes in all gold standards while these genomes
often represented multiple strains of the same highly
abundant species.
An additional approach to estimate the average cover-

age of sequences in a metagenomic sample and the cor-
responding required sequencing effort is the redundancy
based approach by Nonpareil [42]. For Sacramento sam-
ples, the estimated average coverage was between 0.2×
and 0.4× except for sample 4C which was well above
0.5× (Additional file 7: Figure S2). Indeed, sample 4C
was also the only Sacramento sample of which a
high-quality genome draft bin was obtained.
The same estimates for Boston and New York samples

show a consistently higher estimated average coverage
per sample compared to Sacramento with nearly all
samples reaching values above 0.5× as well as multiple
samples from New York reaching saturation with more
than 0.95×. (Additional file 8: Figure S3, Additional file
9: Figure S4, Additional file 10: Figure S5, Additional file
11: Figure S6).
To reach an average coverage of 0.95, Nonpareil esti-

mates a required sequencing effort of about 100 Gbp per
sample for Sacramento, while only about 10 Gbp were
estimated to be sufficient in Boston and even less than 1
Gbp per sample for New York. These estimates can be
partly attributed to the highly varying amount of
eukaryotic sequences in respective samples, where Sacra-
mento had the highest proportion of sequences classified
to plants (using the NCBI nt with Centrifuge), Boston
had the highest amount of human sequences and New
York the least amount of eukaryotic and unclassified

sequences and thereby the highest relative amount of
bacterial sequences. These differences likely originate
from differing sampling procedures as well as locations,
as Sacramento sites were exposed to open air in contrast
to underground subway stations.
Following the creation of in silico gold standards, all

gold standards are assembled and binned using the exact
same workflow as their real sample counterparts. Total
assembly length in Sacramento gold standards was re-
duced by 15% on average (− 39% to + 7%). In contrast,
Boston gold standards showed an increase of total as-
sembly length by 31% on average (+ 4% to + 65%) while
New York gold standards only showed a slight increase
total assembly length on average of 2% (− 17% to + 22%)
(Additional file 12: Figure S7). Different assembly statis-
tics are to be expected, as reads classified to a reference
strain do not necessarily need to represent this exact
strain in the real sample, such as that only parts of the
actual strain in the real sample share exact sequences
with strains of RefSeq genomes thereby leading to a dif-
ferent assembly performance.
Assembled gold standards provided 12 high-quality

and 134 medium-quality genome drafts after binning,
while binning of the same original samples resulted in
44 high-quality and 180 medium-quality genome drafts.
5 out of 12 high-quality bins originated from the com-
bination of SPAdes/MetaBAT, with another 3 coming
from SPAdes/CONCOCT and the remaining high-
quality bins from MetaSPAdes/MetaBAT and MetaS-
PAdes/CONCOCT providing 2 bins each (Additional file
6: Table S2).
Our assembled and binned gold standards enabled us to

investigate misassemblies within our retrieved high-quality
genome drafts, as reference genomes sampled with high
coverages are expected to be retrieved as a genome draft
bin as well. Of these 12 high-quality bins, only a
high-quality genome draft for Leuconostoc mesenteroides
was retrieved by MetaBAT and CONCOCT from SPAdes
as well as MetaSPAdes assemblies to be able to compare
misassembly values across all four combinations. We se-
lected the reference genome with the highest aligned gen-
ome fraction to compare the number of misassemblies,
the length of all contigs containing misassemblies as well
as the total number of unaligned base pairs as reported by
MetaQUAST. Both CONCOCT and MetaBAT bins had a
matching best aligned reference genome, namely Leuco-
nostoc mesenteroides subsp. mesenteroides J18 for SPAdes
assemblies and Leuconostoc mesenteroides subsp. Dextra-
nicum for MetaSPAdes assemblies, both being part of the
gold standard for the New York sample SRR1749150. The
number of misassemblies were lower for bins using
SPAdes assemblies with 12 and 20 misassemblies as well
as 97,193 and 196,151 unaligned base pairs for MetaBAT
and CONCOCT respectively. MetaSPAdes based bins for
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the exact same reference genome resulted in 17 misas-
semblies for both and 106,178 and 180,553 unaligned base
pairs for MetaBAT and CONCOCT respectively, although
this reference genome was only 3rd best according the
genome fraction aligned of all references. The reference
genome with the highest alignment fraction for MetaS-
PAdes even had more than 30 misassemblies and above 1
mio unaligned base pairs for both binning methods.
Again, the SPAdes based assembly showed lower misas-
sembly numbers from MetaBAT for the best aligning ref-
erence of MetaSPAdes based bins, except CONCOCT
performed slightly worse in this comparison again
(Additional file 3: Table S4). Overall, the combination
SPAdes/MetaBAT showed the least amount of misassem-
blies compared to both reference genomes with an align-
ment fraction of 65.4% to 68.7% and the lowest number of
unaligned base pairs.

Discussion
Even though estimates of Nonpareil [42] show an aver-
age sequence coverage of only 0.4 to 0.6× for Boston,
Sacramento and partially New York, indicating that a
major part of the microbial community was not se-
quenced with sufficient coverage, genome drafts with
high-quality draft status could still be assembled and
binned from all three cities. Although some of the
high-quality drafts were identified by Centrifuge as the
most abundant species, like in the case of P. acnes in
Boston, this was not true for all medium and
high-quality draft genome bins. Considering the high
amount of human sequences in Boston samples, this
finding is not surprising, although we would have ex-
pected to see different skin associated bacteria.
Samples having a high proportion of classified reads of

a single reference genome, still showed a substantial
number of unknown reads when mapping the reads back
to the resulting genome draft bin. One pole sample
(SRR3545898) provided a high-quality genome draft bin
with taxonomic inference of P. acnes down to species
level in both the original sample (ANI 99.75 to P. acnes
strain PA_15_2_L1) as well as in the in silico gold stand-
ard (both SPAdes/MetaBAT, bin #1 each). This species
was highly abundant in the sample, with 13.9% of all
reads in the original sample and 15.33% in the gold
standard mapping to the genome draft bin. Investigating
the bin originating from the gold standard, all sampled
reads of the most abundant P. acnes strain classified
mapped to the genome draft bin but so did ten times
the number of unclassified reads from the real-life sam-
ple which were kept in the gold standard as they were
unclassified. Contamination of the genome draft bin was
estimated to be 4.18% with a strain heterogeneity of
84.62%, likely originating from the difference of the ac-
tual strain within the sample to the reference genome

and duplicated single copy genes thereof which could
not be separated by binning.
Overall samples from Sacramento, Boston and New York

displayed various substantial differences. Sequencing depth
was in average nearly four times higher in Sacramento sam-
ples together with less than 4% human sequences detected
in all samples except Sample 5B and 6C containing 38%
and 55% human sequences respectively. In contrast, all
Boston samples contained at least 18% (Ø 42%) human se-
quences while New York samples showed less than 1%.
Very high proportions of human sequences might originate
from the sampling process, which could also explain the
very high abundance of P. acnes strains, a prominent mem-
ber of the skin microbiome [44], in these samples. The high
amount of human sequences might thereby lead to
the dominating presence of skin microbiome associ-
ated bacteria, enabling high-quality genome drafts due
to their high abundance.
Higher sequencing depth together with less human se-

quences in Sacramento samples did not immediately
lead to higher average coverage of single bacterial spe-
cies. In fact, estimated average coverage according to
Nonpareil estimates was even lower. This could origin-
ate from a substantial part of low abundant microbial
species being heavily underrepresented as well as a
higher diversity of sequences with eukaryotic origin such
as plants which would require substantially more se-
quencing depth to be covered multiple times compared
to bacteria. As New York samples had the highest rela-
tive proportion of bacterial sequences, estimated re-
quired sequence depth was one to two magnitudes lower
as in Boston and Sacramento, also represented by the
higher number of obtained high-quality genome bins
from these samples.
In all samples, we observed the presence of required

5S, 16S and 23S rRNAs to be a major eliminating factor
for bins to achieve the level of high-quality genome
drafts. We believe this to be caused by the presence of
multiple closely related strains hampering assembly and
binning. A large number of different strains from e.g.
skin microbes present in urban environmental samples
can be expected from a high number of different people
introducing different strains to the microbial communi-
ties of the sampled surfaces. Nevertheless, all three bin-
ning methods behaved differently when binning rRNA
regions. None of the high-quality genome draft bins ori-
ginating from MetaBAT contained more than one copy
of all three 5S, 16S and 23S rRNA, while in rare cases
one of the three rRNAs was duplicated. In contrast,
high-quality genome drafts originating from CONCOCT
and less so from MaxBin tended to contain multiple
copies for each of the three rRNAs, of which additional
16S rRNA copies predominantly originated from other
species when aligning them against the 16S ribosomal
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RNA sequences (Bacteria and Archaea) from NCBI
(Additional file 3: Table S4).
SPAdes produced the largest assemblies as well as the

highest number of resulting bins. As already reported by
van der Walt et al. [21], MetaSPAdes seems to have
more difficulties assembling very low coverage genomes
compared to SPAdes and Megahit, while SPAdes is re-
ported to produce more misassemblies When analyzing
our resulting bins from urban metagenomes, we did in-
deed detect misassemblies in genome bins of in silico
gold standards based on SPAdes assemblies, though we
did also detect an even greater amount of misassemblies
and unaligned base pairs in MetaSPAdes based bins
(Additional file 3: Table S4), especially when comparing
a high-quality draft from the same sample for which all
combinations of SPAdes and MetaSPAdes as well as
MetaBAT and CONCOCT provided high-quality gen-
ome drafts for Leuconostoc mesenteroides. Although
MetaSPAdes/CONCOCT created the only high-quality
genome draft bin for Stenotrophomonas maltophilia from
the New York sample SRR1749832 without any misassem-
bly, analysis by MetaQUAST also showed 212,908 un-
aligned base pairs (Additional file 3: Table S4). The overall
presence of misassemblies is not surprising, as multiple
strains from the same species were ultimately binned into
the same genome-draft, as the binning methods were not
able to separate strains from the same species with similar
abundances. The differences between the strains together
with potential assembly errors lead to the reported misas-
semblies as well as unaligned base pairs likely originate
from sequences of other strains of the same species.
Multiple strains for highly-abundant species such as
P. acnes are to be expected in urban metagenomes as
they likely originate from multiple humans interacting
with respective surfaces.
MetaSPAdes resulted in the highest number of

medium-quality bins closely followed by SPAdes based
on gold standards while in real samples SPAdes had
slightly more medium-quality bins than MetaSPAdes.
Megahit provided bin numbers within the same range,
although substantially less high-quality bins were re-
trieved in both real samples and gold standards.
Pooling the samples to increase sequence coverage of

rare species within the metagenomic community did not
result in an increase of obtained bins of such species
compared to single samples. One of the reasons for the
lack of improvement, could be that the surface type is
not a determining factor for species composition, and
that the diversity of the sample is increased by pooling,
leading to the detrimental effect of increased diversity
overpowering the increase of sequence coverage for cer-
tain species for assembly and binning efficacy. This
would explain the massive increase of contamination
within resulting bins, where binning methods struggle to

separate closely related species and merge them into sin-
gle bins. These high contamination values prohibited
many resulting bins to achieve at least medium-quality
draft status.
By obtaining high-quality genome drafts from the best

performing combination of SPAdes/MetaBAT we could
provide genome drafts from various species. While Bos-
ton samples resulted in bins originating mainly from
Propionibacterium acnes strains, New York samples
showed a higher diversity of bacterial species of which
high-quality genome drafts could be obtained (Table 2).
Samples from Sacramento did not result in a large
number of high quality bins, but a higher number of dif-
ferent species could be identified in medium-quality bins
(Additional file 6: Table S2). Some of these species are
also associated with human skin as well as oral or re-
spiratory tract microbiome, while others are more
ubiquitous such as the only high-quality bin resulted
from a ticket machine sample (4C) identified as a
species of the Halomonadaceae family. This family is
made up of extremophile organisms being able to
withstand high salt concentrations.
Such genome drafts enable detailed analysis of single

community members up to comparative genomics,
which go beyond the scope of this study. However, we
want to showcase additional analysis steps of genome
draft bins regarding urban metagenomics.
For environmental samples such as urban metage-

nomics, it is not only interesting to know who is there
and what they do, but also who is still living, and which
species might just be transferred to certain surfaces and
die off subsequently. Consistently positive iRep values of
the same species such as obtained from P. acnes strains
in Boston samples indicate that these strains still can
replicate on respective surfaces and thereby likely at
least survive for a short time. Absence of iRep values
nevertheless cannot be used to conclude that respective
strains were dead as failure of multiple filters for iRep
calculation can have various origins such as too low
coverage or interference of DNA from dead cells while
some bacteria are still alive leading to non-uniform
coverage patterns.
Beside replication rates of single community members,

phenotypic traits of identified, assembled and binned
species can help us to understand the role and activity
of certain species within a sample or environment such
as the presence of anaerobe strains closest to Clostridia
with the potential to form endospores.
During the creation of in silico gold standards, only

classified reads are considered. As classification is data-
base dependent, it is likely that a number of unclassified
sequences still belong to a close relative of strains within
the database and are subsequently not simulated. On the
other hand, if a reference strain is assigned a very high
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number of classified reads, it is also possible that not all
reads originate from the exact same strain but another
unknown strain of said species is so close to the refer-
ence strain, that a high number of reads are classified to
said reference. This would reduce the actual strain diver-
sity in the gold standard of said species and therefore in-
crease assembly performance.
Nevertheless, investigating high-quality genome-drafts

derived from reference sequences in in silico gold stan-
dards together with the unclassified sequence part of the
original sample allowed us to determine a large propor-
tion of unclassified reads to originate from known spe-
cies, but representing unknown strains.

Conclusions
In this study we show that, even for datasets with low
sequencing depth and high diversity, assembly-based
methods can provide valuable results that complement
read-based or marker gene-based approaches and allow
the community to gain additional insight into the dataset
as well as critically assess taxonomic profiles for these
types of datasets. Assembled genomes allow a much
more detailed level of functional analysis, phenotypic
trait prediction of single community members and a
clear link between specific markers and the species as
well as integration of sequences into the analysis which
are not represented in databases for read-based methods.
In the investigated datasets we were able to create
high-quality genome drafts predominantly from Propi-
onibacterium acnes for Boston samples, as well as
additional taxa such as Pseudomonas stutzeri, Stenotro-
phomonas maltophilia from New York. Sacramento
samples, despite providing more sequence depth than
most New York samples, provided inferior results,
mainly due to substantial higher eukaryotic and lower
bacterial sequence fractions, also leading to very high es-
timates for required sequence depth by Nonpareil. For
many species, coverage was not sufficient for proper as-
sembly and binning, nevertheless many medium-quality
genome drafts could still be obtained for these taxa.
Using an assembly approach allowed us to predict genes
for all our genome bins as well as investigate the traits
they contain. Additionally, high-quality genome drafts
can be used to calculate the replication activity of re-
spective species within the microbial community.
Considering the number of high-quality draft ge-

nomes, correct rRNA cluster assignments, consensus of
phylogenic marker genes and misassemblies, the com-
bination of SPAdes and MetaBAT provided the best re-
sults for the presented urban metagenomic datasets. We
could demonstrate the use of sample-specific in silico
gold standards to select appropriate methods for assem-
bly and binning of metagenomic data, with matching

tool performance in real samples compared to the as-
sessment performed with gold standards.
In case of limiting computational resources, assembly

by Megahit is a viable option, due to considerable lower
computational resource requirements [13, 21]. Using
Megahit assemblies, MaxBin and CONCOCT provided
more high-quality bins than MetaBAT, although Meta-
BAT still provided the highest number of overall bins in-
cluding medium-quality.
Methods were to some part complementary as well, with

one binning method providing bins for a species in
high-quality, where another method only achieved
medium-quality for the same taxa, again demonstrating the
difficult choice of an optimal tool setup for each analysis.
The use of in silico gold standards helps to uncover

the properties of specific datasets and could be used to
model differences between datasets as well as enabling
further investigations into specific biases of methods fo-
cused on the sample composition of interest.
However, to fully unlock the potential of assembly-based

methods for urban metagenome studies in order to uncover
the yet hidden part of the urban metagenome, we clearly
need to improve the sequencing depth, so that we may
understand the complexity and dynamics of the microbial
communities in this environment.

Reviewers’ comments
Reviewer’s report 1
Craig Herbold, University of Vienna
The manuscript by Gerner et al. outlines an effort to

identify currently available tools that are suitable for recon-
structing metagenome-assembled genomes (MAGs) from
urban microbiome metagenomes. These datasets are typi-
fied by high diversity and low sequence coverage, which
complicate assembly and genome binning. To identify suit-
able tools, the authors used combinations of three assembly
tools and three genome binning tools and evaluated which
combinations of assembly and binning tools produced the
highest number of high- and medium-quality MAGs that
could be confidently classified. The authors used two sets
of data for evaluation: 1) Urban microbiome metagenomes
generated as part of the 2017 CAMDA challenge and 2) in-
novative in-silico mock metagenomes that closely mimic
the urban microbiomes. From their results, the authors
identified SPAdes as the best assembly tool and superficially
similar performance from Metabat and CONCOCT as the
best binning tool. Bins reconstructed using Metabat how-
ever outperformed CONCOCT in terms of phylogenetic
consistency based on single-copy marker genes and the
presence of homogenous rRNA sequences. With their
mock communities, the authors show that binned genomes
probably contain unique sequence, as compared to ge-
nomes present in current databases and the use of these
bins can result in additional taxonomic and/or functional
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assignment of raw sequence data. I found the study to
be an interesting addition to the literature on assembly
and binning practices, particularly for researchers inter-
ested in studying the microbiome of highly diverse,
low-biomass environments.
Reviewer comment: I found it quite interesting and

counter-intuitive that the SPAdes assembler run in
single-genome mode outperformed assembly tools spe-
cifically designed for metagenomic datasets. The van der
Walt, 2017 study cited by the authors observed some-
thing similar, however that manuscript specifically noted
that SPAdes tends to produce misassemblies when used
on complex metagenomic datasets. In the current manu-
script, the authors do not address this seeming contradic-
tion. How can an assembler be the best assembler for
complex, low coverage datasets if it is also expected to pro-
duce misassemblies? What evidence do the authors have
for or against co-assembly of closely related strains? Do the
genomes reconstructed represent a clonal population? I
would urge the authors to directly confront these questions
and report to the interested reader why misassemblies may
be expected from highly complex datasets and more im-
portantly why the existence of misassemblies might either
be ameliorated through binning and/or represents an ac-
ceptable trade-off in the current use case. A thorough dis-
cussion on this particular aspect of the study would go far
in providing useful advice to researchers choosing appropri-
ate tools for their own urban microbiome studies.
Author’s response: We thank the reviewer for the sugges-

tions. We extended the analysis of high-quality genome
drafts from gold standards with known genomes to incorp-
orate misassemblies as well. For our presented data, the
combination of SPAdes and MetaBAT provided genome
draft bins with the least number of misassemblies and un-
aligned base pairs, strengthening our former conclusion.
We address misassemblies in the discussion as well,
explaining why they are expected in the current use case.
Applying co-assembly of multiple samples from the

same surface origin did not improve the quality of re-
trieved bins but resulted in considerably higher contam-
ination within resulting bins. We strengthened this
statement in the manuscript and did not continue this
approach due to this result. We believe the separate sam-
ples to be too different to benefit from co-assembly.
Reviewer comment: The innovative use of the

mock-communities by the authors is extremely interest-
ing and warranted, however the presentation comes
across as overly complex. I urge the authors to revise all
sections that deal with this aspect to be clear and suc-
cinct. It is innovative in its acknowledgment that the
background of non-bacterial sequence can complicate
the assembly of Bacteria and that the inclusion of this
background places simulated bacterial reads in a natural
setting. Furthermore, the mock-community analysis

illustrates that de novo assembled bins of Propionibac-
terium acnes, for example, provide specific genomic in-
formation beyond what exists in the collection of
Propionibacterium acnes genomes available in
pre-existing (mapping) databases. This highlights a key
disadvantage of non-assembly based metagenomic ana-
lysis that is overcome through the inclusion of
sample-specific MAGs. If presented more clearly, these
findings would be more efficiently communicated.
Authors response: We have revised the respective sec-

tions and updated the Supplementary Figure 1 for a bet-
ter representation of the applied workflow to explain
more clearly our approach and the key advantages of
assembly-based methods.
Reviewer comment: Lines 562-603: discuss general

biological aspects of taxa for which MAGs are generated
but I am not sure why it is relevant. The information
provided does not seem to be specific to the MAGs in
this study and could have been deduced without any as-
sembly or binning. Cases in which the authors have
identified an unexpected function assigned to MAGs be-
longing to a particular taxonomic lineage should be
clearly described, but there is no reason to list features
identified in the MAG that are identical to functions in
reference organisms. Furthermore, it would be quite in-
teresting if the authors explored the portion of the as-
sembled genome that had been assigned to P. acnes
MAGs, for instance, but which are not represented by
existing database entries, the existence of which can be
inferred by the mapping to the MAGs by ~1.4% of reads
that were not classified as bacterial reads (line 511).
These genomic regions are the new data that the authors
assigned to P. acnes, and it is this portion of the genome
that should be explored explicitly to infer novel func-
tions for this taxon. This sort of analysis would identify
a clear and tangible advantage of assembly/binning over
standard mapping approaches.
Authors response: We shortened sections discussing

general biological aspects as they are indeed not the
main focus of this study. Nevertheless, we believe that the
provided, albeit limited, biological aspects of our result-
ing bins to be helpful to place our results into the context
of urban metagenomes. A detailed analysis of novel func-
tions for separate bins and unknown genome regions of
resulting bins would indeed be very interesting, although
goes beyond the scope of this study, aiming to assess
current assembly and binning methods for urban meta-
genomes while giving an outlook into further possible
analysis.
Reviewer comment: Generally, I would disagree with

the use of AMPHORA classification as sufficient for as-
signment of a MAG to a particular species. Given the
AAI values reported in Supplementary Table 2, it is
likely that the species have been accurately identified,
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particularly for P. acnes. AAI values have not been thor-
oughly evaluated for species demarcation however and
the authors should report ANI values as well. I would
strongly urge the authors to follow the recommenda-
tions by Konstantinidis et al., 2017 (doi:10.1038/
ismej.2017.113) for the taxonomic evaluation of MAGs
to known species and genera.
Authors response: We thank the reviewer for the sug-

gestion. We added respective ANI values for the closest
relative identified by BLAST as recommended by Kon-
stantinidis et al. For completeness and contamination
criteria, we chose to apply the MIMAG standards in-
stead being part of the Minimum Information Standards
framework.
Reviewer comment: Based on the science, my impres-

sion of the manuscript was positive, however the presen-
tation of the manuscript was generally unfocused. The
manuscript should go through at least one round of ser-
ious revision and each section should be streamlined to
focus only on the main messages of this study. The
introduction does not highlight the aspects of the
CAMI challenge which directly influenced the choice
of assemblers and binners tested in the current manu-
script and does not introduce and explore the way that
read-mapping approaches differ from assembly/bin-
ning approaches. These differences however are key to
the argument that assembly and binning can identify
novel features of genomes that would be lost through
mapping techniques.
Authors response: We extended the introduction re-

garding the CAMI Challenge and advantages of assem-
bly over read-bases methods. The whole manuscript was
streamlined to convey the key messages more clearly.
Reviewer comment: It would be helpful to report pre-

processing statistics in a separate supplementary table,
apart from Supplementary Table 1. As is, Supplementary
Table 1 is very confusing.
Authors response: We thank the reviewer for the

suggestions, preprocessing statistics are now split out
of Supplementary Table 1 and moved to Supplemen-
tary Table 3.
Reviewer comment: Lines 27-30 are confusing. The

comparison of 14 high quality bins on one hand with
36 medium quality bins doesn't tell me much It would
be more clear to report the number of high-quality and
medium-quality bins under each combination. 14/18
High/Medium-quality bins for SPAdes and MetaBAT
compared to 13/27 High/Medium-quality bins for
SPAdes and Concoct.
Authors response: The result section was revised to

communicate key results more clearly. The ratio of High/
medium quality bins for respective combinations can be
seen in Figure 3A. Reported numbers changed, as we were
able to include additional data.

Reviewer comment: Lines 30-32 indicates that novel
species were binned but the necessary ANI calculations
were not conducted to make this claim.
Authors response: Required ANI calculations have

been added to the respective sections.
Reviewer comment: Line 31: What does “good” refer

to here? Be more specific.
Authors response: We changed the wording to medium

and high-quality bins.
Reviewer comment: Lines 35-36 consider rephrasing

“parts of unclassified reads”. Is correlate the right word
here?
Authors response: We removed the sentence in ques-

tions from the abstract and described all mapped unclas-
sified reads more detailed within the manuscript.
Reviewer comment: Lines 39-42 Make the conclu-

sions clearer.
Authors response: The conclusions were rewritten for

better clarity.
Reviewer comment: Lines 51-59: This could be sum-

marized into one to two sentences and still communi-
cate the relevant background.
Authors response: Respective parts were shortened in

the introduction.
Reviewer comment: Lines 64-79: include additional

references to support statements made.
Authors response: We added references from the Meta-

SUB Consortium to respective statements and rewrote
the section.
Reviewer comment: Lines 123-128: Please specify

additional information: 1) what minimum contig length
was allowed for inclusion into metagenomic assemblies?
2) which minimum contig length was allowed into each
binning tool? 3) was binning performed using tetranu-
cleotide frequencies and abundance, and if abundance,
how many and which reads sets were mapped to assem-
blies to produce abundance profiles?
Authors response: All additional information was

added to respective method sections.
Reviewer comment: Lines 168-190: Direct readers to

the supplementary table that summarizes numbers of
raw reads and number of reads retained after each pre-
processing step. Consider separating this information
out of the current Supplementary Table 1 and create a
new table just to summarize filtering/mapping statistics.
Authors response: Filtering and mapping statistics

have been moved to separate tables with according refer-
ences in the manuscript.
Reviewer comment: Lines 194-201: This should be

part of the introduction, not part of the Results.
Authors response: The part was moved to the

introduction.
Reviewer comment: Lines 228-230: Are these sums

higher or lower than the sums of relevant individual
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assemblies? Did you get more data using the combined
assembly? This is intriguing and could be discussed
more.
Authors response: We added more detailed compari-

sons including the sums of all single individual assem-
blies compared to respective pools. In the result section
for Binning we report no increase in at least
medium-quality bins although contamination of resulting
bins increased substantially. Due to this observation, we
did not pursue pooled samples further.
Reviewer comment: Lines 272-274: Are the multiple

rRNA operons assigned to the same bin with CON-
COCT identical or near identical to one another? In
other words, does this result indicate good or poor
performance?
Authors response: We aligned multiple 16S rRNAs

from CONCOCT bins showing that they stem from differ-
ent species and thereby represent poor performance. Re-
sults have been added to Supplementary Table 4 and in
the manuscript.
Reviewer comment: Lines 335-346: I do not see what

iRep calculations add to the manuscript.
Authors response: We believe replication rates to be

an interesting aspect of urban metagenomes, as it is un-
known which species might still replicate on respective
urban surfaces. We changed our wording to convey this
more clearly.
Reviewer comment: Lines 348-349: Is this 16S

strain-based analysis reported somewhere in the
manuscript that I missed? I would agree that the bins
are P. acnes, but only because the predicted proteins
are >96% identical to the reference P. acnes, which is
a much stronger argument than the classification by
AMPHORA. Without showing the results of the
strain-level analysis, I would probably leave this state-
ment out.
Authors response: The respective section has been

shortened, removing the statements while adding 16S
rRNA analysis to respective gold standards which are
now added to the manuscript.
Reviewer comment: Line 354: These are percentages,

not the numbers of predicted proteins.
Authors response: We changed the word from numbers

to percentages.
Reviewer comment: Line 361: Lawsonella is a genus

in its own right. Not a member of the genus
Corynebacterium.
Authors response: We thank the reviewer for pointing

this out, the statements have been changed accordingly.
Reviewer comment: Line 363: It is highly unlikely

that the bins are Variovorax paradoxus with only 69%
amino acid identity.
Authors response: The statement has been removed

while shortening said section.

Reviewer comment: Line 368: This is a marginal case
in terms of claiming that this bin is from a species of
Moraxella or is specifically Moraxella osloensis.
Authors response: The statement has been removed

while shortening said section.
Reviewer comment: Lines 389-487 - parts of this sec-

tion should be moved to introduction or methods. It is a
disproportionate amount of space to spend on this as-
pect of the study.
Authors response: Respective sections have been moved

and shortened to introduction and methods.

Reviewer’s report 2
Serghei Mangul, University of California, Los Angeles
Reviewer comment: Definition of in-silico mock com-

munity is misleading. Mock community has a very spe-
cific definition. Due to the complexity of the biological
system, it is impossible to obtain the ground truth in
many applications. In these cases, instead of obtaining
the golden standard, one can design a mock community
(often referred as a synthetic mock community) by com-
bining in vitro titrated proportions of community ele-
ments. The most popular mock communities are
prepared as mixtures of known microbial organisms.
What is presented in this paper, is simulated gold stand-
ard. Please refer to MANGUL, SERGHEI, et al. “To-
wards Reproducible, Transparent, and Systematic
Benchmarking of Omics Computational Tools.” Open
Science Framework, 12 June 2018. Web. https://osf.io/
p8yd9 for definitions and types of gold standards.
Authors response: We thank the reviewer for pointing

this out. We changed all occurrences of mock communi-
ties to in silico gold standards and cited the respective
publication for the definition.
Reviewer comment: Line 94. Experimental mock

community data needs to be distinguished from simu-
lated microbial community (referred as mock commu-
nity on line 94)
Authors response: According sections were rewritten,

and the naming of gold standards clarified accordingly.
Reviewer comment: The already nice introduction

can be strengthened by mentioning the effect of blood
microbiome on the mental disorders: Loohuis, Loes M.
Olde, et al. “Transcriptome analysis in whole blood re-
veals increased microbial diversity in schizophrenia.”
Translational psychiatry 8.1 (2018): 96.
Authors response: We thank the reviewer for the sug-

gestion and added the reference to the introduction.
Reviewer comment: Authors do a nice work investi-

gating of de novo assembly to reveal the community
composition. NY samples were excluded due to a low
coverage. As a principle of concept, it would be nice to
show that indeed low coverage samples are not suitable
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for genome assembly. Author may consider selecting
several samples and run the proposed pipeline.
Authors response: We were able to analyse randomly se-

lected samples from New York and retrieve high-quality
draft genomes. We added all results to the manuscript and
discussed our findings in respect to sample composition
and coverage for successful assembly and binning.
Reviewer comment: Paper mentioned the recent

benchmarking paper published in Nature Methods by
Sczyrba et al.., which is purely based on simulated data.
It should be noted in the manuscript that simulated data
is not able to capture true experimental variability and
will always be less complex than real data. It is prefera-
ble such data to be used as a complementary to the real
experimental gold standard. Please refer to : MANGUL,
SERGHEI, et al. “Towards Reproducible, Transparent,
and Systematic Benchmarking of Omics Computational
Tools.” Open Science Framework, 12 June 2018. Web.
https://osf.io/p8yd9
Authors response: We thank the reviewer for the sugges-

tion and included the publication into the introduction
and rewrote according sections to clarify our approach. We
added explicit notes that our simulated data as other
benchmarking approaches are not a true representation of
experimental and the complexity of real data but an
approximation.
Reviewer comment: Line 104. Some Boston samples

have fewer reads that NY one. Were those samples
excluded?
Authors response: No Boston samples were excluded,

although very low coverage samples from Boston did not
provide sufficient assemblies for subsequent binning.
Values are reported in Supplementary tables and we
clarified according result sections. New York samples
were added to the analysis for comparison.
Reviewer comment: Line 143. Targeted mock com-

munity. The word targeted is misleading in this sen-
tence. Mock community is targeted by design. This
needs to be rephrased or explained.
Authors response: We rephrased and extended explan-

ation of according sections.
Reviewer comment: Line 186. Paper report portion of

reads classified as eukaryotes. Were those only cell cell
eukaryotes? Analysis of single cell needs to be distin-
guish from plants.
Authors response: Eukaryotic sequences were deter-

mined by classification of all sequences from a sample
against the NCBI nt with Centrifuge. Sacramento showed
a higher proportion of sequences originating from several
plants compared to Boston with a higher proportion of
human sequences, according statements have been modi-
fied in the result section. We did not investigate the
eukaryotic fraction further, as sequencing depth was far
too low for extensive eukaryotic analysis using

assembly-based methods and thereby going beyond the
scope of this study, instead we focused on the prokaryotic
fraction of urban metagenomes.
Reviewer comment: In the introduction authors men-

tion host-microbiome interactions, how this is different
from host-pathogens interaction (a more common term).
Context needs to be provided
Authors response: We added context to the corre-

sponding section, meaning many human-microbiome as-
sociated bacteria found in urban metagenomes represent
commensal bacteria and not necessarily pathogens.
Reviewer comment: Line 131. Citation is needed to

support criteria for high quality genomes.
Authors response: We added the required citation to

the respective sentence.

Reviewer’s report 3
Yana Bromberg, Rutgers University
The manuscript addresses an important problem of

properly selecting tools for the analysis of urban meta-
genomes. The authors had done a significant amount of
work in trying to assemble, pool, functionally and taxo-
nomically annotate, and otherwise evaluate the metagen-
ome data from the CAMDA 2017 (Boston and
Sacramento) experiment. Their report is relevant for
anyone attempting similar exercises on somehow similar
sequencing data. A key finding from the study is that
different combinations of tools greatly alter the possible
outcomes. Curiously, though, the authors also find that
functional/phenotypic annotations of even the different
bacterial species identified, are similar. To this reviewer,
this finding suggests that assembly may not be strictly
necessary in metagenome analysis... particularly if the
purpose of the analysis is to figure out the functional
abilities/biomarkers of the microbiome. To this end,
tools such as MG-RAST and mi-faser could be used with
significantly less effort. These tools could also do a good
job on low coverage samples (like NYC that was ex-
cluded in this case). Of note is also the authors' finding
that the mock communities that they had created were
less well assembled than the original communities. The
authors state in their discussion that this is likely due to
the limited nature of bacterial reference genome data-
bases. This is a very solid and sound finding, which I
would like to support with further suggestion that it is
hard to study the currently uncultrable bacteria (read
microbiome community members) using what we know
about the inherently different (although overlapping) set
of currently culturable bacteria.
Reviewer comment: It is unclear how the extensive

collection of microbiome analysis tools had been se-
lected for this study. It would be great if the authors
could summarize the complete state of this field and rea-
son for their selections.
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Authors response: We thank the reviewer for pointing
this out and extended our reasoning for tool selection,
which is primarily based on the extensive CAMI Chal-
lenge as well as additional Publications in the field. All
citations have been added to clarify our reasoning for
tool selection. A summary of the complete state of the
field goes beyond the scope of this study.
Reviewer comment: Please clarify if your findings can

be used to argue that the Minimum Information criteria
of the high-quality draft assembly can be loosened in
terms of rRNA presence, when other terms are satisfied.
Authors response: We believe the requirement for rRNA

presence provides a proper criterion for genome-drafts
above 90% completeness and below 5% contamination.
We did detect a tendency of falsely binned rRNA sequences
to occur, especially with too many rRNA clusters being
combined into one genome bin while still conforming the
high-quality criteria, the lack of respective rRNAs is
thereby an effective filter to retrieve bins of sufficient com-
pleteness. Without respective rRNAs, widely applied 16S
rRNA analysis with a massive amount of data available
for comparative analysis could not be performed for re-
spective genome drafts, being reason enough in our opinion
to classify such bins as medium-quality.
Reviewer comment: I am very curious if high quality

bins can be extracted from one combination of tools (as
described in Figure 2, for example), while medium qual-
ity bins from another? What effect on our ability to
identify species level organisms would that have?
Authors response: The total numbers of medium and

high-quality bins were roughly similar ranging between 69
and 95 where MetaSPAdes provided the lowest numbers to-
gether with respective binners (see Supplementary Table 2).
In general, we could observe an increase of medium-quality
bins if a very low number of high-quality bins were achieved
(as was the case for Megahit based assemblies), indicating
overall less bin quality in terms of the MIMAG criteria.
For species identification of respective bins, a low con-

tamination value is more important than completeness,
as contamination leads to ambiguous assignments which
are hard to resolve, hampering species level assignments.
Thereby, pure, but incomplete medium-quality draft ge-
nomes might still be phylotyped to species level while
complete but contaminated bins will result in a higher
level of taxonomic consensus assignments.
Reviewer comment: Also, how much overlap between

the species that were identified were there between dif-
ferent tool combinations?
Authors response: Species for which we could retrieve

high-quality genome drafts were detected by other tool com-
binations as well (e.g. P. acnes strains were found by all
combinations), although with varying bin quality, occasion-
ally resulting in only medium-quality bins due to more ex-
tensive contamination or less completeness such as was the

case for bins phylotyped to Enterobacteriaceae from the gold
standard based on the New York Sample SRR1749044, for
which only SPAdes/CONCOCTachieved a high-quality gen-
ome draft, while the other combinations failed high-quality
level due to lacking rRNA sequences. We did not perform
extensive analysis to identify the correct species for all
medium-quality bins but focused on high-quality draft ge-
nomes. Only for about 15% of resulting bins, species level as-
signments agreed (i.e. were present in all combinations of
one sample) over all tool combinations. In many cases al-
though, taxonomic inference (by AMPHORA) did not reach
species level but genus, family or higher levels of taxonomy
although the same species likely was present.
Reviewer comment: Page 4: “no other study tried to

accomplish assemblies of urban microbiomes so far” -
still true?
Authors response: This is still true to our knowledge,

there were several studies about urban microbiomes
(even as recent as July 31st, 2018 by Kang et al. [8]) as
provided in the CAMDA challenge which applied
read-centric methods and are partially cited in the intro-
duction. We are not aware of an assembly and binning
based study of urban metagenomes from the CAMDA
challenge or similar urban metagenomic data to date.
Reviewer comment: Page 4: Definitions/clarifications

for “purity of the resulting bins”, “microbial dark
matter”.
Authors response: Respective terms were either re-

moved or replaced to clarify the statements.
Reviewer comment: Page 5: Clarify: read length for

“Boston was 101bp” - do you mean the average length?
Authors response: Changed wording to original read

length, read length of real data samples from Boston was
meant as all reads had a length of 101bp before quality
control was applied.
Reviewer comment: It is unclear to me why figure 2

combines Sacramento and Boston data. Was there no
city specific signal to talk about?
Authors response: Former Figure 2, now Figure 3 shows

the general behaviour of assembler/binner combinations
focusing on method performance for tool selection. Spe-
cific city patterns are discussed in the condensed section
about biological features, like the dominating abundance
of P. acnes strains in Boston samples and a higher diver-
sity in New York.
Reviewer comment: In creating mock communities,

could one benefit from taking random organisms from
higher level taxa to represent those for a higher taxo-
nomic coverage?
Authors response: We thank the reviewer for the sug-

gestion, although we believe random sampling of higher
taxa would contrast our aim to mimic the original sam-
ple distribution as close as possible, deducing reference
genomes from the sample composition resulting from
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classification of all sequences. Introduction of random or-
ganism would additionally pose the problem to decide on
respective abundance distributions, number of closely re-
lated strains and so forth as these ratios do have a major
impact on binning and assembly performance as re-
ported in the CAMI challenge due to macro and micro
diversity of bacterial species and strains.
Reviewer comment: The Nonpareil estimates of

100Gbp per sample for "good" coverage of higher di-
versity microbiomes seems unreasonably large given
the authors' own experience (page 9) with assembly
compute resource limitations. What would be the
proposed plan of action in this scenario? Here, I'd
like the authors to once again consider that analyzing
reads can arguably give more detail (in a shorter and
less time/compute intensive frame) regarding micro-
biome function, if not provide the members “direc-
tory.” This is somehow different from one of the
paper's conclusions on benefits of assembly and I
believe the paper could be more complete with
comments on this topic.
Authors response: We extended our conclusions based

on Nonpareil estimates, as a high amount of eukaryotic
fraction immediately requires substantial more sequence
depth for decent coverage compared to the added New
York samples with a higher bacterial read fraction,
resulting in required sequence depth estimates about two
magnitudes lower.
A key difference between analysis of separate reads

and assembly-based method is the acquired informa-
tion about single community members and their
separate functions based on the genomic information
of a single member of the community as well as the
retrieval of (near) complete genomes for additional
comparative analysis. Although read-based centric
methods are significantly cheaper in terms of resource
cost for analysis, ultimately, they provide different
levels of results.
Reviewer comment: Please proofread the document.

While it reads ok, it would benefit from small changes
like the ones I highlight below (there are many more,
but I don’t want to continue focusing on language).
Page 7: “methods for urban metagenome datasets” -->

methods for ANALYZING urban
metagenome datasets; age 8: Please check your plurals

“A wide range of assembler” → “Many assemblers” “that
assemblerS” “Three different assemblerS”; “demonstrat-
ing a better performance” → better than what?; “were
selected for the shotgun metegnome datasets” → “were
selected for the assembly of the shotgun metegnome
datasets”.
Authors response: We thank the reviewer for the cor-

rections and have implemented them as far as according
sections have not been rewritten.

Additional files

Additional file 1: Textfile with commands of tools applied. (TXT 5 kb)

Additional file 2: Figure S1. Workflow for in silico gold standards. To
create targeted in silico gold standards, all reads from a metagenome
sample are classified. All reads classified to a taxonomic level or lower, i.e.
bacterial, are simulated in silico in the exact same read counts from
respective reference genomes. All simulated reads are then used to
replace all classified bacterial reads, creating a gold standard
maintaining composition of read errors, contamination and other
characteristics of a specific sample, while providing known truth
about a taxonomic domain of interest. All real samples together with
their gold standard counterparts are processed in parallel using the
same steps for assembly and binning of respective metagenomic
sequences. (TIF 112 kb)

Additional file 3: Table S4. Summary for all high-quality bins presented
in Table 2, analysis of multiple copies of 16S rRNAs detected in MaxBin
and CONCOCT derived bins as well as evaluation of misassemblies in
gold standards. (XLSX 28 kb)

Additional file 4: Table S3. Sample statistics for quality control, number
of reads selected and simulated for gold standards. (XLSX 25 kb)

Additional file 5: Table S1. Assembly Statistics of Megahit, MetaSPAdes
and SPAdes for Sacramento, Boston samples and their respective in silico
gold standards and pools. (XLSX 38 kb)

Additional file 6: Table S2. Bin Statistics of CheckM, barrnap (rRNAs)
and tRNAscan-SE (tRNAs) for Sacramento, Boston samples and their
respective in silico gold standards and pools. (XLSX 115 kb)

Additional file 7: Figure S2. Nonpareil Plot from Sacramento. A
redundancy based estimation of average coverage for each sample from
Sacramento is computed using Nonpareil [42]. Circles mark the actual
sequencing effort of respective samples while the light red dotted line
marks an estimated average coverage of 0.95. (TIFF 3164 kb)

Additional file 8: Figure S3. Nonpareil Plot from Boston grip, seats and
back of seats. A redundancy based estimation of average coverage for
selected samples from Boston is computed using Nonpareil [42]. Circles
mark the actual sequencing effort of respective samples while the light red
dotted line marks an estimated average coverage of 0.95. (TIFF 3164 kb)

Additional file 9: Figure S4. Nonpareil Plot from Boston poles and
touchscreens. A redundancy based estimation of average coverage for
selected samples from Boston is computed using Nonpareil [42]. Circles
mark the actual sequencing effort of respective samples while the light red
dotted line marks an estimated average coverage of 0.95. (TIFF 3164 kb)

Additional file 10: Figure S5. Nonpareil Plot from New York. A
redundancy based estimation of average coverage for selected samples
from New York is computed using Nonpareil [42]. Circles mark the actual
sequencing effort of respective samples while the light red dotted line
marks an estimated average coverage of 0.95. (TIFF 3164 kb)

Additional file 11: Figure S6. Nonpareil Plot from New York. A
redundancy based estimation of average coverage for selected samples
from New York is computed using Nonpareil [42]. Circles mark the actual
sequencing effort of respective samples while the light red dotted line
marks an estimated average coverage of 0.95. (TIFF 3164 kb)

Additional file 12: Figure S7. Assembly Statistics for in silico gold
standards from Sacramento, Boston and New York. Assembly statistics for
Megahit, MetaSPAdes and SPAdes from selected real and respective in silico
gold standards (gs) for each surface type and cities are shown. Statistics are
computed from all contigs above 500 bp in length. (TIFF 3164 kb)
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Assessment of Metagenome Interpretation; HMP: Human Microbiome
Project; MIMAG: Minimum Information about a Metagenome-Assembled
Genome
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