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Abstract

Background: Integrating the rich information from multi-omics data has been a popular approach to survival
prediction and bio-marker identification for several cancer studies. To facilitate the integrative analysis of multiple
genomic profiles, several studies have suggested utilizing pathway information rather than using individual
genomic profiles.

Methods: We have recently proposed an integrative directed random walk-based method utilizing pathway
information (iDRW) for more robust and effective genomic feature extraction. In this study, we applied iDRW
to multiple genomic profiles for two different cancers, and designed a directed gene-gene graph which
reflects the interaction between gene expression and copy number data. In the experiments, the performances of the
iDRW method and four state-of-the-art pathway-based methods were compared using a survival prediction model
which classifies samples into two survival groups.

Results: The results show that the integrative analysis guided by pathway information not only improves prediction
performance, but also provides better biological insights into the top pathways and genes prioritized by the model in
both the neuroblastoma and the breast cancer datasets. The pathways and genes selected by the iDRW method were
shown to be related to the corresponding cancers.

Conclusions: In this study, we demonstrated the effectiveness of a directed random walk-based multi-omics data
integration method applied to gene expression and copy number data for both breast cancer and neuroblastoma
datasets. We revamped a directed gene-gene graph considering the impact of copy number variation on gene
expression and redefined the weight initialization and gene-scoring method. The benchmark result for iDRW with four
pathway-based methods demonstrated that the iDRW method improved survival prediction performance and jointly
identified cancer-related pathways and genes for two different cancer datasets.

Reviewers: This article was reviewed by Helena Molina-Abril and Marta Hidalgo.

Keywords: Multi-omics, Integrative analysis, Random walk, Pathway-based analysis, Breast cancer, Neuroblastoma

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: kasohn@ajou.ac.kr
1Department of Computer Engineering, Ajou University, Suwon 16499, South
Korea
Full list of author information is available at the end of the article

Kim et al. Biology Direct            (2019) 14:8 
https://doi.org/10.1186/s13062-019-0239-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s13062-019-0239-8&domain=pdf
http://orcid.org/0000-0001-8941-1188
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:kasohn@ajou.ac.kr


Background
For a better understanding of the biological basis of cancer
and precise prediction of survival for cancer patients, inte-
grative analysis of multi-omics data has been addressed in
many studies [1–3]. Most integrative approaches used in
cancer studies have focused on integrating multiple types
of genomic data rather than using single omics profile.
The use of multi-omics data has been valuable in its appli-
cation to many different cancer types and it is necessary
to reveal the underlying complex nature of biological
mechanisms by analyzing human genomes at multiple
genomic levels. To effectively combine different levels of
omics data, several studies have led to the development of
novel multi-omics data integration algorithms in order to
predict phenotypic outcomes precisely and to discover
biologically meaningful information [4–11]. Among re-
cently proposed data integration methods, we focused pri-
marily on network-based methods which can incorporate
interactions between genes. Most network-based methods
have focused on incorporating pathway or subtype infor-
mation rather than using individual genomic features in
different types of cancer datasets [9–18]. In this respect,
pathway-based methods have been proposed for the iden-
tification of important genes within pathways.
To incorporate pathway information, Guo et al. [16]

computed two summary measures to capture the path-
way activity: the arithmetic mean and the median of
the gene expression values of pathway member genes.
They achieved better cancer classification performance
and improved biological interpretability. Lee et al. [12]
proposed a disease classification method based on path-
way activities inferred for each patient. For each path-
way, these authors summarized activity levels with
condition-responsive genes (the pathway member genes
whose combined expression show optimal discriminative
power for the disease phenotype) by combining normal-
ized z-transformed scores of genes (z-score method). A
pathway level analysis of gene expression (PLAGE)
measures the pathway activity profiles of a set of genes
in each pathway, which are derived from a vector of
the singular value decomposition of the given gene set
[14]. PLAGE identified several biologically meaningful
pathways using gene expression data from a study of
type 2 diabetes and the effects of smoking on airway
epithelia. Other pathway activity inference approaches
have been proposed based on probabilistic inference for
better cancer classification [13, 15, 17, 18]. PLAGE and
the z-score method incorporate pathway information
and transformed single genomic profiles into pathway
profiles. However, they simply consider a pathway as a
set of genes, and interactions between genes are not
considered. Some pathway-based methods utilizing gene
signatures or topological information utilizing gene in-
teractions on a gene-gene graph have been studied.

A denoising algorithm based on relevance network
topology (DART) integrates existing pathways with gene
expression data by deriving perturbation signatures
which reflect gene contributions in each pathway to ob-
tain reliable molecular pathway activity predictions [10].
This work also showed that the encoded hub genes in
expression correlation networks represent reliable
markers of pathway activity in clinical tumor specimens.
To consider the topological importance of the genes in
the pathways that can be highly associated with diseases,
Liu et al. [9, 11] proposed a directed random walk
(DRW)-based pathway inference method to identify
topologically important genes and pathways by weight-
ing the genes in a gene-gene network. Although the
DRW method only used gene expression data, this ap-
proach has also been applied to the integration of gene
expression and metabolite data on a gene-metabolite
graph, guided by pathway information [9]. However,
those existing pathway-based methods, including DART
and DRW, have limitations in that they only target a sin-
gle genomic profile, generally obtained from gene
expression data. In order to reflect the combined effect
of different types of genomic profiles, we have previously
proposed an integrative pathway-based method as an ex-
tension of the DRW method for multi-omics data
(iDRW) [6]. In our previous research, we constructed an
integrated gene-gene graph using gene expression and
methylation profiles, and showed that the proposed
method improved the survival prediction performance
for breast cancer patients. We also showed that joint
analysis of the methylation features and gene expression
profiles can identify breast cancer-specific pathways.
One limitation of the iDRW method lies in the lack of

analysis of other types of genomic profiles for different
cancer studies. In the iDRW method, the gene expres-
sion and methylation data of breast cancer patients were
studied. As copy number variants (CNVs) have shown a
significant impact on gene expression [19], an under-
standing of the influence of CNVs on gene expression
and clinical phenotypes in humans can contribute to a
better understanding of disease. In this study, we investi-
gated the impact of CNVs on gene expression for two
different cancer types: breast cancer and neuroblastoma,
utilizing the iDRW method.
The main contributions of this study are as follows.

First, we revamped a directed gene-gene interaction
graph which reflects the interaction between gene ex-
pression and copy number alteration. Considering differ-
ent data distributions of gene expression and copy
number data, we defined the weight initialization and
scoring of genes for each genomic profile. We then per-
formed benchmarking of iDRW with four state-of-th-
e-art pathway-based approaches (PLAGE, z-score,
DART and DRW) by integrating gene expression and
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copy number alteration data and using a single genomic
profile as a baseline for two different cancers. We show
that the proposed method contributes to an improved
survival prediction performance for both breast cancer
and neuroblastoma datasets, despite heterogeneity in the
data., We also jointly analyze multiple genomic profiles
for two different cancer types in the integrated
gene-gene graph by visualizing the gene-gene interaction
network and identifying biologically meaningful path-
ways and genes. The overall process of the proposed
framework is illustrated in Fig. 1.

Methods
Dataset
mRNA expression data and copy number alterations
data of breast cancer patients were obtained from the
METABRIC dataset [20]. mRNA expression data were
obtained as Illumina Human v3 microarrays with
log-intensity levels. DNA copy number alterations were
obtained and calls are made after normal contamination
correction and copy number variation removal using
thresholds. These values were: − 2 = homozygous dele-
tion; − 1 = hemizygous deletion; 0 = neutral / no change;
1 = gain; and 2 = high level amplification. 24,368 and
22,544 genes of the gene expression data and the puta-
tive copy number alterations from the overlapping 1904
samples were used. 313 missing values of gene expres-
sion profiles and copy numbers data were imputed as
the median of the corresponding patients’ data. The pa-
tients were categorized as having good (> 10 years) or
poor (≤ 10 years) group with respect to their survival
days. The cutoff of 10 years was arrived as being the me-
dian survival days of 1904 samples. We excluded 256
samples in which the survival was less than 10 years and
reported as living. In total, 908 samples of the good and
740 samples of the poor group were used out of 1648
samples. We normalized the expression values of the
mRNA gene expression data so that the mean was 0 and
standard deviation was 1.
In the Neuroblastoma dataset, gene expression profile

and copy number data were obtained from GSE49711
[21–23] from the GEO database [24]. Gene expression
profiles of RNA sequencing for 60,586 genes and copy
number data for 22,692 genes were obtained from the
overlapping 144 samples. Raw microarray data from
Microarray-based Comparative Genomic Hybridization
(aCGH) were preprocessed using the rCGH R/Biocon-
ductor package [25] with default parameter settings,
using the circular binary segmentation algorithm (CBS)
[26] and then converting into DNA copy number table
over genes. The missing values for each profile were im-
puted using the median value of the corresponding pa-
tients’ data, and we excluded 331 genes which had more
than half of the missing values. Finally, we divided 144

patients: 38 samples into the good group and 105 sam-
ples into the poor group, according to the predefined
binary class label for overall survival days as provided by
GSE62564 [27].

Pathway-based integrated gene-gene graph construction
To integrate pathway information on multiple genomic
profiles, we utilized an integrative directed random
walk-based pathway activity inference method (iDRW)
for two different types of omics data. To apply the
iDRW method, we redesigned a directed gene-gene
graph for gene expression and copy number data. We
first collected the whole set of human pathways and the
corresponding gene sets from the KEGG database [28].
Interactions between genes were defined in the
gene-gene graph guided by the pathway information
using the R KEGGgraph package [29]. Finally, an inte-
grated directed gene-gene graph was constructed, con-
sisting of 7390 nodes and 58,426 edges from 327 human
pathways. Details about the construction method of the
global directed graph are provided in [11]. To integrate
gene expression and copy number alterations data on
the graph, we included all edges within each gene ex-
pression profile. To consider the impact of copy number
alteration on gene expression [30], we only assigned dir-
ectional edges to the overlapping genes from copy num-
ber to gene expression data, and all edges between genes
of copy number data were excluded. As two or more
copies can be occurred in genes, directed edges can be
assigned between genes in copy number alteration data
and multiple genes in gene expression data in the inte-
grated graph.

Integrative directed random walk-based method (iDRW)
We applied the iDRW method to the pathway-based
gene-gene interaction graph constructed from gene
expression and copy number data. In the algorithm a
random walk is performed on the integrated
gene-gene graph for each cancer dataset. For each
profile, the initial weight vector of the genes W0 was
assigned as:

W 0 ¼ − log wg þ ϵ
� �

Wtþ1 ¼ 1−rð ÞMTWt þ rW 0

where wg is the weight of the gene g in the integrated
gene-gene graph, and ϵ = 2.2e−16. As the iDRW method
is specifically designed for gene expression profiles and
methylation features, the weight initialization scheme
was modified to reflect the distribution of each profile.
For the breast cancer dataset, the weight of the gene is
the p-value from either a two-tailed t-test for the mRNA
expression profile or a χ2-test of independence for copy
number genes. The χ2-test of independence was used as
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the copy numbers are discrete values. A χ2-test of inde-
pendence is a nonparametric statistical test used to de-
termine if the two or more classifications of the samples
are independent or not, and can be applied only to
discrete data [31]. In the neuroblastoma data, the
p-value of RNA-Seq genes were measured by DESeq2,
which is a state-of-the-art technique for the differential
analysis of gene expression based on a negative binomial
distribution for RNA-Seq data [32]. The weight vector
for each gene is normalized to be between 0 and 1, and
W0 is L1-normalized to a unit vector.
A random walker starts on a source node s and tran-

sits to a randomly selected neighbor or returns to the
source node s with a restart probability r at each time
step t. The weight vector Wt is iteratively updated at
time step t and is guaranteed to converge to a steady
state W∞ when ∣Wt + 1 −Wt ∣ < 10−10, as shown in the
DRW method [11]. M is a row-normalized adjacency
matrix of the integrated gene-gene graph. We set the re-
start probability r to 0.7, which is default value of the
DRW method, as it was previously shown that the per-
formance of the DRW method is not sensitive to varia-
tions in r [11].
For a j-th pathway Pj containing nj differential genes ð

g1; g2;…; gn j
Þ whose p-value (wg) is < 0.05, the pathway

activity is defined as:

a P j
� � ¼

Xn j

i¼1

W∞ gi
� � � score gi

� � � z gi
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn j

i¼1

W∞ gi
� �� �2s

where W∞(gi) is the weight of gene gi from the DRW
method, z(gi) is the normalized expression vector of gi
across overall samples, and score(gi) is either a log2 fold
change from the DESeq2 analysis for a RNA-Seq gene,
or a sign(tscore(gi)) where tscore(gi) is a t-value from
two-tailed t-test statistics for a mRNA expression gene.
The sign of a t-value indicates the direction of the
significant difference in sample group means. For copy
number data, we scored each gene by mean(CNA(gi)-
poor) −mean(CNA(gi)good) where CNA(gi)poor and CNA(-
gi)good are the copy numbers of genes in the samples for
the poor or good groups, reflecting the mean difference
between the two groups. The score(gi) represents how
much the values of gene gi have changed between
groups of samples. More details of the DRW method
and the pathway activity inference method are provided
in [9]. For each pathway, the pathway activity is com-
puted from the gene expression and copy number values
for each sample, which corresponds to a pathway profile.

Pathway feature selection and survival prediction
To select important pathway features, 327 human path-
ways were ranked by their p-values from the t-test of
pathway activities across samples. The top-k pathway
features across samples were used as an input to a classi-
fication model. For each model, the hyper-parameter k
was empirically set to the optimal one which shows the
best classification performance with varying k between 5
and 50 in increments of five.
For the final survival prediction, a logistic regression

model was applied. The regression model classifies the
samples into either the good or the poor groups. The
classification performances are measured using accuracy,
precision, recall, and F-1 scores. Accuracy is a ratio of
correctly predicted observation to the total observations.
Precision is the ratio of correctly predicted positive ob-
servations to the total predicted positive observations.
Recall (Sensitivity) is the ratio of correctly predicted
positive observations to the all observations in actual
class. F-1 Score is the weighted average of precision and
recall. While accuracy intuitively measures how correctly
the model classifies the samples into two survival
groups, precision or recall takes the costs of false posi-
tives and false negatives into account. When class distri-
bution is uneven, the performance of classification
model should be measured with precision and recall. In
our experiments, we used accuracy as a performance
measure, and we also validated with precision, recall and
F1-score for further experiments.

Performance evaluation
In breast cancer data, we evaluated the classification per-
formance with 5-fold cross-validation. We divided the
whole samples into five folds. The classification model
was trained using four folds and validated using the
remaining fold. The entire process was repeated 50
times and then we assessed the accuracy, precision, re-
call and F-1 score after the entire 250 iterations, using
the selected top-k pathway features as a final classifica-
tion performance. As the number of samples in neuro-
blastoma data is imbalanced and not enough to perform
5-fold cross-validation, we evaluated the classification
performance using a leave-one-out cross-validation,
which leaves one sample as a validation set and trains a
classification model with remaining samples for each
iteration.
To investigate the utility of the iDRW method using

breast cancer and neuroblastoma datasets, we compared
iDRW with four state-of-the-art pathway-based
methods: PLAGE, z-score, DART, and DRW. PLAGE
and the z-score method were implemented using the R
GSVA package with default settings [33]. In the experi-
ments, the pathway activity scores across samples were
obtained from the gene expression data using the four

Kim et al. Biology Direct            (2019) 14:8 Page 4 of 13



pathway-based methods. In order to ensure a fair com-
parison, the top-k pathway features selection and the
classification performance evaluation of the four
pathway-based methods and the iDRW method were
conducted as stated above. As a baseline, we evaluated
the classification performance with single gene expres-
sion profile. The top-k genes which are ranked by wg

which are their p-values from a statistical test were used
to train the classification model.
To demonstrate the robustness of the proposed model,

the models are tested with different hyper-parameter
value settings for k. We also assessed classification per-
formances for varying training data size. In this experi-
ment, the parameter k is set to the optimal one for each
method.

Results
iDRW improves survival prediction performance
compared to other pathway-based approaches
We assessed the survival prediction performances using
four pathway-based methods with a single gene expres-
sion profile and the iDRW method on the gene expres-
sion profile and copy number data both in breast cancer
and neuroblastoma patients. Figure 2a shows the predic-
tion performances after 50 repeats of 5-fold
cross-validation. Performances were measured using ac-
curacy and F-1 score. We note that the classification
performances of neuroblastoma data were evaluated

with leave-one-out cross-validation since the sample size
is extremely small, as shown in Fig. 2b. We compared
the classification performances of the iDRW method
with four state-of-the-art pathway-based approaches:
PLAGE, z-score, DART and the DRW method. The four
pathway-based approaches are implemented using gene
expression profiles only, and the iDRW method is per-
formed on the combined gene expression and copy
number data. As a baseline, the classification perform-
ance of a single gene expression profile is shown as a
dotted horizontal line. We used the top-k pathway fea-
tures across samples as an input to the classification
model, and the optimal value of k is set to that which
shows the best classification accuracy for each method.
The optimal parameter k for each model is denoted at
x-axis label. When single gene expression profile was
used, the top-50 gene features in breast cancer data or
top-10 genes in neuroblastoma data were used.
Although the performances of the z-score and PLAGE

were worse than those of the gene expression profile, the
performances were improved when DART, DRW and
iDRW utilizing the pathway information were used. In
particular, DRW-based methods contribute to an enhance
classification performance in both cancer datasets investi-
gated. This research demonstrates that DRW-based ap-
proaches which utilizes topological information of genes
on a pathway-based integrated graph is a more effective
way of inferring pathway activities than other methods.

Fig. 1 Overview of the proposed pathway-based multi-omics integration method for survival prediction
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The iDRW method on the combined feature data per-
formed the best amongst all of the other methods used
despite the heterogeneity in gene expression and copy
number data. These results demonstrate that the iDRW
method successfully represented the combined effects of
multiple genomic profiles on a pathway-based integrated
graph both in breast cancer and neuroblastoma data.
We evaluated the classification performances with

top-k pathway features for each model with values of k
varying from 5 to 50 in increments of five with respect
to precision, recall and F-1 score for breast cancer data
(Fig. 3a) and for neuroblastoma data (Fig. 3b). In breast
cancer data, we observe that DRW-based approaches
show higher accuracy and more stable performance with
respect to the change in k. DART infers pathway activ-
ities using genes encoding hubs in expression correlation
networks and shows better performances than other
benchmark pathway-based approaches. As z-score and
PLAGE measure pathway activity profiles by summariz-
ing scores of gene sets for each pathway, prediction

performances tend to increase with more number of fea-
tures. When taking both precision and recall into ac-
count, the results revealed that DRW-based pathway
activity profiles lead to a more stable performance and
less sensitive result to the number of features compared
to other pathway-based approaches. It indicates that
top-ranked 10 to 25 pathways and corresponding signifi-
cant genes obtained from DRW-based pathway activity
profiles represent meaningful markers enough to train
the classification model. In case of neuroblastoma data-
set (Fig. 3b), the performances of the all the methods are
more sensitive to the change of k. This appears to be be-
cause the neuroblastoma dataset is relatively small and
hence it becomes more critical to choose the optimal
hyper-parameter value. It is observed that around the
optimal values of k, the performances of DRW-based
methods are substantially better than the others.
Figure 4 shows the performance behavior with respect

to the data size variation by using 70 to 100% of the en-
tire samples in the experiments. For example, when 70%
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Fig. 2 Survival prediction performance comparison between pathway profiles of four pathway-based methods on the gene expression data and
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performance of the gene expression profile is shown as a dotted horizontal line
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of samples in breast cancer dataset were used, we ran-
domly sampled 1153 out of 1648 samples, which are
then used for 5-fold cross validation. The experiments
are performed only with breast cancer data due to ex-
tremely small size of the neuroblastoma dataset. The
neuroblastoma dataset has 144 samples as a whole and
further reduction in the training data size may not lead
to meaningful performance results. And the actual dif-
ference in the number of used samples in 70 and 100%
setting is also small, so we only experimented with
breast cancer samples.
Performances were measured in terms of precision, re-

call and F-1 score with the optimal value of k. We ob-
serve that the performances of DRW-based approaches
were superior to other pathway-based approaches and
single gene expression profile by showing that those of

DRW and iDRW showed more stable and better perfor-
mances across varying data sizes. When the recall is
considered, the performances of pathway profiles ob-
tained from z-score, PLAGE and DART were worse than
the one from single gene expression profile. As the genes
in gene expression profile were weighted by their statis-
tical significance values and top-k genes were selected
that yielded the best classification accuracy, it seems to
contribute to the higher performance than other ap-
proaches of z-score, PLAGE and DART which don’t use
statistical difference information of two survival groups.

iDRW identifies cancer-associated pathways and genes
The iDRW method has the advantage in that we can
jointly identify genes which are differentially expressed
or have differential changes in copy number in the
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top-ranked pathway features. Table 1 shows the selected
top-k pathways and corresponding gene sets ranked by
the iDRW method from gene expression and copy num-
ber data in breast cancer (k = 25) and neuroblastoma
data (k = 5). The total number of genes and significant
genes from the gene expression and copy number data
are shown for each pathway. The significant genes from
the gene expression and copy number data are those
genes whose p-value of a significant test is lower than
0.05.
Hanahan and Weinberg have established six biological

capabilities which are acquired during tumor generation:
sustaining proliferative signaling; evading growth sup-
pressors; activating invasion and metastasis; enabling

replicative immortality; inducing angiogenesis; and
resisting cell death [34]. We found that some of the
top-25 ranked pathways in breast cancer data are related
to at least one of six functions, such as the Ras signaling
pathway (KEGG ID: hsa04740), Necroptosis (KEGG ID:
hsa04217), Regulation of actin cytoskeleton (KEGG ID:
hsa04810), and the PI3K-Akt signaling pathway (KEGG
ID: hsa04151) [34]. Olfactory receptors are known to act
on cell migration, proliferation, and secretion in a variety
of human tissues, and function as biomarkers for breast
cancer [35], which indicates a relationship between the
top-ranked pathway, the olfactory transduction pathway
(KEGG ID: hsa04740) and breast cancer. In particular,
the expression of Olfactory Receptor Family 2 Subfamily

Table 1 Top-k pathways ranked by the iDRW method in breast cancer (k = 25) and neuroblastoma data (k = 5). For each pathway,
total number of genes, significant genes from gene expression (EXP) and copy number data (CNA) are shown (p-value of t-test /
DESeq2 or χ2-test < 0.05)

Dataset Pathway ID Pathway name Total genes EXP CNA

Breast cancer hsa04740 Olfactory transduction 419 54 268

hsa04014 Ras signaling pathway 232 68 164

hsa04015 Rap1 signaling pathway 206 64 142

hsa04916 Melanogenesis 101 37 73

hsa04722 Neurotrophin signaling pathway 119 38 84

hsa05200 Pathways in cancer 526 166 359

hsa04933 AGE-RAGE signaling pathway in diabetic complications 99 37 67

hsa04530 Tight junction 170 53 107

hsa04510 Focal adhesion 199 76 125

hsa04080 Neuroactive ligand-receptor interaction 278 64 193

hsa05225 Hepatocellular carcinoma 168 56 112

hsa04020 Calcium signaling pathway 182 59 136

hsa04024 cAMP signaling pathway 198 58 139

hsa04217 Necroptosis 164 49 97

hsa04060 Cytokine-cytokine receptor interaction 270 70 192

hsa05152 Tuberculosis 179 58 112

hsa05165 Human papillomavirus infection 319 103 210

hsa04810 Regulation of actin cytoskeleton 208 64 132

hsa04151 PI3K-Akt signaling pathway 352 119 241

hsa04022 cGMP-PKG signaling pathway 163 58 109

hsa04630 Jak-STAT signaling pathway 162 43 112

hsa05167 Kaposi’s sarcoma-associated herpesvirus infection 186 61 114

hsa04010 MAPK signaling pathway 295 87 209

hsa04371 Apelin signaling pathway 137 46 99

hsa04390 Hippo signaling pathway 154 58 100

Neuroblastoma hsa04976 Bile secretion 71 13 5

hsa05034 Alcoholism 180 22 7

hsa01100 Metabolic pathways 1273 43 93

hsa04080 Neuroactive ligand-receptor interaction 278 21 24

hsa04151 PI3K-Akt signaling pathway 352 19 31
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B Member 6 (OR2B6), which is a differentially expressed
gene, was detected in most breast carcinoma tissues
[36]. The development of cancer is closely linked to viral
infection, and breast cancer is known to be associated
with viruses of the herpesvirus, polyomavirus, and retro-
virus families [37]. This information indicates that Hu-
man papillomavirus infection (KEGG ID: hsa05165) and
Kaposi’s sarcoma-associated herpesvirus infection
(KEGG ID: hsa05167) are related to breast cancer [38].
Thus, we assume that the top-ranked pathways can play
a crucial role on breast cancer mechanism and differen-
tiate survival groups of patients.
The top five pathways involved in neuroblastoma were

identified using the iDRW method. Several previous stud-
ies suggested that top five pathways in Table 1 are relevant
to neuroblastoma. For example, an in vitro research pro-
ject suggested a mechanism underlying a potent and se-
lective anti-tumor effect of lithocholic bile acid in
neuroblastoma cells [39], which shows the relation be-
tween the bile secretion pathway (KEGG ID: hsa04976)
and the neuroblastoma. Alcoholism pathway (KEGG ID:

hsa05034) includes the reaction to ethanol in a dopamin-
ergic neuron [40]. Several studies have shown that the
level of Urinary catecholamine metabolites including
vanillylmandelic acid (VMA), homovanillic acid (HVA)
and dopamine are elevated in neuroblastoma patients [41,
42]. Furthermore, the neuroactive ligand-receptor inter-
action pathway (KEGG ID: hsa04080) and metabolic path-
ways (KEGG ID: hsa01100) are associated with
neuroblastoma, since neuroblastoma occurs in nerve tis-
sue and changes in metabolism are common phenomena
in cancer [34]. We found some evidences that the
PI3K-Akt signaling pathway (KEGG ID: hsa04151) aids in
the pro-survival of neuroblastoma [43–45]. Based on these
findings, we hypothesized that the top five pathways can
be associated with neuroblastoma and can be crucial fea-
tures for distinguishing between two survival groups.

The pathways and genes are jointly analyzed in the gene-
gene network
The interactions between significant genes in the top-25
pathways in the breast cancer dataset (Table 1) are
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visualized in the gene-gene network shown in Fig. 5.
The gene-gene network of neuroblastoma is not shown,
as the number of edges between genes in the top five
pathways were few. The hub genes whose degree in the
network is equal or greater than three play a crucial role
in pathways selected by the iDRW method. Several stud-
ies have identified relationships between the survival of
breast cancer patients and the hub genes in the network:
specifically the GNAS complex locus (GNAS), growth
factor receptor bound protein 2 (GRB2), follicle stimu-
lating Hormone Subunit Beta (FSHB), Cholinergic Re-
ceptor Muscarinic 1 (CHRM1), SOS Ras/Rac Guanine
Nucleotide Exchange Factor 1 (SOS1), Nuclear Factor
Kappa B Subunit 1 (NFKB1), and the BCL2 Apoptosis
Regulator (BCL2). It has been reported that the amplifi-
cation of GNAS may contribute to the pathogenesis of
breast cancer and is associated with the survival of pa-
tients with invasive breast carcinoma [46, 47]. In
addition, GRB2 and SOS1 have been reported to be
overexpressed in breast cancer tissues compared with
normal tissues [48, 49].

Discussions
In this study, we demonstrated the effectiveness of
DRW-based approaches and the interaction effects be-
tween multiple genomic profiles on the integrated graph.
However, the results in neuroblastoma samples showed a
different tendency and didn’t confirm clear performance
improvement of DRW-based approaches with increasing
k. We found that statistically significant expressed genes
in neuroblastoma data are relatively small compared to in
copy number alterations data and those in breast cancer
data as shown in Table 1. iDRW performed random walk
process on the integrated graph which reflects the impact
of copy number genes on gene expression and DRW
reflected interactions between genes from gene expression
data. Other pathway-based approaches: z-score, PLAGE
and DART were implemented using gene expression pro-
file. Therefore, there is a possibility that the effect of gene
expression profile and the impact of copy number alter-
ations on gene expression on the graph can be under-
mined. As the clear tendency was not shown due to the
extremely small sample size in neuroblastoma data, we
can reduce the limitations when more samples were ob-
tained or other genomic profiles can be utilized as well as
gene expression and copy number alterations data. In fu-
ture works, the clear criteria of dividing two survival
groups are needed or it can be extended to the survival
analysis by training regression model which predicts the
actual survival days of patient samples.

Conclusions
In this study, the effectiveness of a directed random
walk-based multi-omics data integration method was

investigated and analyzed using datasets incorporating
gene expression and copy number alterations for two
different cancer datasets. To integrate the gene expres-
sion and copy number alteration data, we first con-
structed a directed gene-gene graph representing the
impact of copy number variants on gene expression by
defining weight initializations and gene scoring measures
for each genomic profile. To demonstrate the utility of
the iDRW method, the performances of four
state-of-the-art pathway-based methods: PLAGE,
z-score, DART and DRW were compared with the sur-
vival prediction model which classifies samples into two
survival groups. The results demonstrate that the iDRW
method, which utilizes the interactions between genes
on an integrated gene-gene graph, produced the best
classification performance for both breast cancer and
neuroblastoma data. It shows that the integrated
gene-gene graph successfully reflected the combined ef-
fect of gene expression and copy number alterations
data, guided by pathway information for both cancer
datasets. From a joint analysis of multiple genomic pro-
files, the iDRW method can identify biologically mean-
ingful pathways and genes highly related to the cancer
under investigation. We also visualized the gene-gene in-
teractions between gene expression, and copy number
alterations data in the integrated gene-gene graph for
both the breast cancer and neuroblastoma datasets.

Reviewers’ comments
Reviewer’s report 1: Helena Molina-Abril
Reviewer summary
In this paper the authors apply their previously devel-

oped method iDRW on multiple genomic profiles for
two different cancers and redesign a directed gene gene
graph which reflects the interaction between gene ex-
pression and copy number data. They also compare the
iDRW method with other pathway-based methods for a
survival prediction model which classifies samples into
two survival groups.
Reviewer recommendations to authors
In my opinion the paper needs some language correc-

tions (english quality) as well as some methodological
corrections before being published.
Author’s response: We have carefully proofread our

manuscript and revised grammatical errors and unclear
sentences.
Further explanations of some concrete points need to

be addressed. Data sources as well as preprocessing is
too briefly explained. For instance, mRNA data
normalization and the imputation method for the neuro-
blastoma dataset is not mentioned.
Author’s response: We have added a more detailed

description of METABRIC breast cancer dataset and
neuroblastoma dataset in the GEO database provided by
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CAMDA 2018 data integration challenge in “Dataset”
section of “Methods”. Explanations of data preprocessing
such as mRNA data normalization, aCGH microarray
raw data processing, and median imputation method for
the neuroblastoma data are also included.
The generation of an integrated directed gene-gene

graph is vaguely described as well as the KEGG pathway
selection (327?). Authors should give a clearer explan-
ation of this process.
Author’s response: We have added a new sub-section

“Pathway-based integrated gene-gene graph construction”
in “Methods” to provide a more detailed and clearer ex-
planation of how the integrated graph is constructed to
reflect the interactions between gene expression and copy
number alterations. As the total number of human path-
ways we obtained in KEGG database is 327, we also re-
vised the description of how the pathways and
corresponding gene sets were collected more clearly.
The use of t-test of chisquared test values for initial

weights is not sufficiently reasoned.
Author’s response: We used two tailed t-test for

mRNA expression data, chi-squared test of independence
for copy number data, and DESeq2 measure for
RNA-Seq data to consider the different data distribu-
tions. We added clear explanations of each statistical test
and weight initialization of genes with equations in sec-
tion “Integrative directed random walk-based method
(iDRW)” in “Methods”. We also added more explanations
of gene scoring measures for each genomic profile when
pathway activity inference is performed.
Accuracy is not an appropriate performance measure

for imbalanced data sets. Please change that.
Author’s response: Considering the reviewer’s valu-

able suggestion, we evaluated the performance with pre-
cision, recall and F-1 score in addition to accuracy, and
added a description of each performance measure in sec-
tion “Pathway feature selection and survival prediction”
of “Methods”. In Fig. 2, the classification performances
were evaluated in terms of accuracy and F-1 score for
both cancer datasets. In addition, we performed add-
itional experiments to investigate the performance behav-
ior with respect to changes in the parameter k (Fig. 3)
and the number of samples (Fig. 4) using precision, recall
and F-1 score.
I’m also concerned about the logistic regression model.

No testing data has been used for validation, and there-
fore classification results might be too optimistic.
Author’s response: To evaluate the classification per-

formance in breast cancer data as an example, we have
performed 5-fold cross-validation which divided the
whole samples into five folds and used four folds as
training data and the remaining fold as validation data.
We repeated the entire 5-fold cross-validation process 50
times and obtained the average performance of 250

iterations as a final classification performance. The de-
scriptions of cross-validation process are described in the
first paragraph of section “classification performance
evaluation” in “Methods”.
Feature selection, does not seem to be included within

the learning process, which may lead to biased results.
Author’s response: For feature selection, we first

ranked pathway features using their statistical signifi-
cance and then determined the optimal number of top-k
ranked feature set which yields the best cross validation
accuracy. For a clear explanation of this process, we re-
vised the first paragraph of section “Pathway feature se-
lection and survival prediction” and “Performance
evaluation” in “Methods”.
In general, the paper is based on a previously pub-

lished method, but applied to a new dataset. It is not
sufficiently clear what is its substantial contribution and
novelty.
Author’s response: We clarified the main contribu-

tions of this study to differentiate our method from the
previously published method in the last paragraph of
“Background” and in “Conclusions”. In the current paper,
we proposed an integrated gene-gene graph construction
method reflecting interactions between copy number al-
terations and gene expression data for two different can-
cer types. We also demonstrated improved prediction
performance by a comparative analysis of iDRW with
four state-of-the-art pathway-based approaches. By visu-
alizing the gene-gene interaction network on the com-
bined profiles, we could jointly analyze multiple genomic
profiles on the integrated gene-gene graph, and we could
also identify biologically meaningful pathways and genes.
Abbreviations should be first mentioned with its corre-

sponding name (see for instance Array comparative gen-
omic hybridization (aCGH)
Author’s response: We added the full name of all ab-

breviations including aCGH throughout the entire manu-
script and we also listed them in “List of abbreviations”.

Reviewer’s report 2: Marta Hidalgo
Reviewer summary
Integration of different types of genomic data is a

major open problem. This paper presents a new method
for survival prediction through the integration of gene
expression and copy number data in a pathway model. It
also presents the comparison of the performance of the
described model with other 4 pathways methods in
terms of prediction of survival groups. In general the
paper is well written, although some paragraphs and
sentences are somehow not clear enough. In particular,
it should be explained with more detail how the integra-
tion is performed. Also some language improvements
should be addressed before publication.
Reviewer recommendations to authors
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MINOR RECOMMENDATIONS: The major concern
that I find is that although integration is one of the key
points of the method, called iDRW, and the one new
feature with respect to the DRW method on which it is
based, the explanation of how this integration is per-
formed is not clear enough.
Author’s response: As the reviewer pointed out, the

integration method of gene expression copy number data
based on a gene-gene graph guided by the pathway infor-
mation is one of the main contributions. We have in-
cluded a detailed and clearer explanation of how the
integrated graph is constructed to reflect the interactions
between gene expression and copy number alterations
data in a new sub-section “Pathway-based integrated
gene-gene graph construction” in “Methods”.
Also, I would appreciate a mention to the kind of data

used by the other methods: are they also accepting both
gene expression and copy number data? If not, then an
explanation of why these methods are appropriate to be
compared with iDRW should be given.
Author’s response: The existing pathway activity in-

ference methods focused on how to effectively incorpor-
ate pathway information into genomic analysis and
they were implemented to handle only single genomic
profile. In this respect, the iDRW method has been
proposed for combining multiple genomic profiles on
an integrated gene-gene graph constructed by pathway
information. Therefore, we used gene expression profile
for four pathway-based methods: z-score, PLAGE,
DART and DRW method, and gene expression and
copy number data for iDRW method in this study. We
added further explanations of each pathway-based
method and iDRW method in “Background”. We
stated that only iDRW method were implemented by
incorporating gene expression and copy number data
in section “iDRW improves survival prediction per-
formance compared to other pathway-based ap-
proaches” in “Results”.
Sentences to be revised:
- Fourth sentence in the last paragraph of

“Background”.
- Second sentence in first paragraph of section “Results

and discussion”, subsection “Integrative analysis...”.
- First sentence in first paragraph of section “Results

and discussion”, subsection “iDRW identifies...”.
Spelling typos:
- When defining the initial weights, after W_0 should

say “are”.
- In sign (tscore(g_i)), should it be sign (score(g_i))?
- Before “More details of the DRW method...” should

be a “.”.
- First sentence in first paragraph of section “Results

and discussion”, subsection “iDRW identifies...”, “differ-
ential” should be “differentially”.

- Second sentence of second paragraph in the same
section, “some of top-25” should be “some of the
top-25”.
- Last sentence in the same paragraph, “crucial role of

breast cancer” should be “crucial role on breast cancer”.
- Fifth sentence in next paragraph, “and dopamine ele-

vated” should be “and dopamine are elevated”.
Author’s response: We revised all the unclear sen-

tences as the reviewer suggested and thoroughly proof-
read the entire manuscript. We appreciate the reviewer’s
kind corrections and suggestions.
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aCGH: Microarray-based comparative genomic hybridization; CBS: Circular
binary segmentation algorithm; CNVs: Copy number variants; DRW: Directed
random walk
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