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Abstract

Background: Metagenomics is the application of modern genomic techniques to investigate the members of a
microbial community directly in their natural environments and is widely used in many studies to survey the
communities of microbial organisms that live in diverse ecosystems. In order to understand the metagenomic
profile of one of the densest interaction spaces for millions of people, the public transit system, the MetaSUB
international Consortium has collected and sequenced metagenomes from subways of different cities across the
world. In collaboration with CAMDA, MetaSUB has made the metagenomic samples from these cities available for
an open challenge of data analysis including, but not limited in scope to, the identification of unknown samples.

Results: To distinguish the metagenomic profiling among different cities and also predict unknown samples
precisely based on the profiling, two different approaches are proposed using machine learning techniques; one is
a read-based taxonomy profiling of each sample and prediction method, and the other is a reduced representation
assembly-based method. Among various machine learning techniques tested, the random forest technique showed
promising results as a suitable classifier for both approaches. Random forest models developed from read-based
taxonomic profiling could achieve an accuracy of 91% with 95% confidence interval between 80 and 93%. The
assembly-based random forest model prediction also reached 90% accuracy. However, both models achieved
roughly the same accuracy on the testing test, whereby they both failed to predict the most abundant label.

Conclusion: Our results suggest that both read-based and assembly-based approaches are powerful tools for the
analysis of metagenomics data. Moreover, our results suggest that reduced representation assembly-based methods
are able to simultaneous provide high-accuracy prediction on available data. Overall, we show that metagenomic
samples can be traced back to their location with careful generation of features from the composition of microbes
and utilizing existing machine learning algorithms. Proposed approaches show high accuracy of prediction, but
require careful inspection before making any decisions due to sample noise or complexity.

Reviewers: This article was reviewed by Eugene V. Koonin, Jing Zhou and Serghei Mangul.
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Background
While microbes make up a significant proportion of the
biomass on the planet, their contributions to the function
of most environments have only recently been explored.
Starting in the 1980s with 16S rRNA profiling to metage-
nomic analyses today we have begun to probe how these

microbial assemblages, the microbiome, shape their envi-
ronments. Metagenomics, specifically, has fundamentally
changed the way we think of the microbial landscape of
countless biological and environmental spaces. From pro-
filing soil communities [1, 2] to investigating the micro-
biome associated with human health and diseases [3], we
can now explore how the microbiome creates harmony
with other organisms in these spaces.
Metagenomic profiling has been particularly explored

as a function of microbial impact on human health and
diseases. This exploration exists as a function of direct
analysis of human derived samples and samples of the
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human occupied environment. In 2007, the framework
for the Human Microbiome Project (HMP) was set for-
ward [3]. This project was a direct consequence of the
Human Genome Project failing to account for the total
function found to exist within the human body. The
project sought to clearly define the concept of a core
microbiome of healthy human participants while ac-
counting for lifestyle, environment, physiology, etc. By
2012, after generating over 5000 samples and 3.5 teraba-
sepairs (Tbp) of next-generation sequencing (NGS) data,
the HMP identified trends in the structure of human
microbiome, but also an incredible amount of diversity
[4, 5]. This diversity stems from multiple backgrounds of
human samples relative to phenotype, lifestyle, and
country of origin [6–8]. Moreover, changes in the hu-
man microbiome have been associated with Clostri-
dioides difficile infection [9–11], bacterial vaginosis [12–
15], Parkinson’s disease [16], and potentially even com-
monplace challenges with mental health [17, 18].
As humans spend roughly 90% of their time indoors,

the frequent association with microbial populations and
human health has prompted deep exploration into the
microbial landscape of the built environment [19]. Clear
associations have been found in built environment-
associated microbiomes as a function of ventilation,
building purpose, and even within buildings as a func-
tion of room-purpose [20–24]. Of particular interest to
human health is the microbiome of public transit sys-
tems, ever-increasing resources upon which millions of
people rely every day. A recent analysis of New York
City public transit systems showed a wealth of microbial
data that is unable to be annotated as well as a microbial
diversity that correlates with the diversity of the public
transit users [25]. An analysis of the Hong Kong subway
system showed that the airborne microbiome dynamic-
ally changes with human density [26]. These results
often largely corroborate findings of human-derived
samples that show high levels of diversity and that mul-
tiple factors explain the variance of the datasets.
With the increasing number of trends correlated with

microbiome data is an increasing amount of data to be
analyzed for any particular question. For example the
HMP, as of 2012, had already generated nearly 3.5 Tbp
of sequences after application of a quality control proto-
col from a total 8.8 Tbp that included human sequence
removal, quality filtering and trimming of reads [4]. As
of 2017, the second phase of the study (HMP1-II) in-
creased the volume to over 24 Tbp [27] and total post
analysis data could be a few times bigger than the se-
quences alone. It is only now becoming commonplace
for labs to store that much data, but it is rare for labs to
have the capacity to analyze that much data. In addition
to the obvious challenge of metagenome assembly, there
are increasing trends toward quantifying the total

genomic content of a species (pan-genomes) [28], com-
paring disparate metagenomes, and even the functional
analysis of those metagenomes. All of this brings forward
an interesting computational challenge that has to be ad-
dressed moving forward. These computational challenges
are a prime example of big data explorations in the bio-
logical sciences, a key interest of the committee on the
Critical Assessment of Massive Data Analysis (CAMDA)
[29]. In 2018, one of their major challenges is the con-
struction and fingerprinting of a city-specific metagenome
as characterized by the city’s subway system [30]. Here, we
present our interpretation of that challenge.
Over the past decade, diverse metagenomics software

tools have been developed for 16S analysis and shotgun
metagenomic analysis [31]. Shotgun metagenomics data
can be analyzed using several different approaches. The
methodological approaches can be divided into two cat-
egories: read-based and assembly-based [32]. Read-based
metagenomics analysis is useful for quantitative commu-
nity profiling and identification of organisms especially if
relevant references are available. MetaPhlAn2 [33] identi-
fies clade-specific marker genes for evidence of the associ-
ated clade presence. This allows for rapid assignment
relative to a small database as compared to a full database
including many whole genomes and fast mapping aligner,
Bowtie2 [34]. Nucleotide taxonomic classification tools in-
cluding Kraken [35], Centrifuge [36], and Megan [37] are
generally used for precise estimation of taxonomic
abundances by aligning reads to k-mers or full reference
genomes. Assembly-based workflows attempt to assem-
ble the reads from one or more samples, group (bin) the
contigs from these samples into genomes, then analyze
the genes and contigs. Megahit [38], MetaSPAdes [39],
and IDBA-UD [40] are the most widely used k-mer
based assemblers for high-throughput NGS metagenomic
data. Most metagenomic classification tools match reads
or assembled contigs against a database of microbial
genomes to identify the taxon of each sequence. Several
strain-level resolution taxonomic profilers were recently
developed [41–45].
There are few software tools providing the statistical

methods and machine learning modules to derive
microbiome-phenotype associations along with
metagenomics-based prediction using taxonomic profil-
ing. For example, MetAML [46] was developed for
metagenomics-based prediction tasks and for quantita-
tive assessment of the strength of potential microbiome-
phenotype associations. Reiman et al. [47] explored con-
volutional neural network to predict of the phenotype of
a genomic sample based on its microbial taxonomic
abundance profile. Additionally, VirFinder [48] was de-
veloped for virus contig identification with a k-mer
frequency-based machine learning model from metagen-
ome assemblies. However, they all vary from the goal of
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our work which is to compare two widely-used meth-
odological approaches, read-based and assembly-based,
for metagenomics researches with multiple machine learn-
ing methods with a focus on extremely large data sets.
In this paper, we present two approaches using various

machine learning techniques. First, we propose a read-
based taxonomy profiling and prediction method. Both
genus and species level information are explored as ma-
chine learning features and used for prediction from in-
dividual metagenomic profiling of samples. Second, we
investigate a reduced-representation assembly-based ma-
chine learning prediction method. From various experi-
ments using diverse machine learning techniques in the
two proposed approaches, the Random Forest (RF) tech-
nique outperforms other machine learning techniques
with a higher level of accuracy.

Methods
Data sets
CAMDA delegates received access to hundreds of novel
MetaSUB samples, comprising several hundred gigabase-
pairs (Gbp) of whole genome shotgun (WGS) metage-
nomics data. Samples were collected from multiple
surfaces in mass-transit systems (handrails, ticket ma-
chines screens and keypads, plastic, metal, wooden
benches, etc.). The primary data set covered multiple cit-
ies around the world, with tens of samples per city. The
info of samples of eight different cities are provided in
Table 1. Together, they form a unique resource for the
study of biodiversity within and across geographic loca-
tions or surface types.
In addition to the primary data set, complementary in-

dependent data sets were provided for exploration. In
our analysis, we focused on the presentation of 30 new
samples that accompanied the goal of predicting the city
of origin. Throughout our analysis we refer to this set as
the ‘the test set’ or ‘the unknown data set’. The challenge
also provided two other questions, not addressed here,
about ‘mystery’ cities not featured in the primary data

set. The number of samples and sequence sizes of that
primary data set are described in Table 1.

Computing facilities
We performed the large scale analyses using in-house
computing facilities. One workstation (Intel Xeon E5–
2640 v3 2.6GHz 16 cores 32 threads, 128GB RAM, 50
TB disk), one small cluster (3 nodes, each node has 24
cores 48 threads with 2 X Intel Xeon E5–2650 v4
2.2GHz and 256GB memory, 50 TB disk), and a univer-
sity computer cluster consisting of 100 compute nodes,
the 20 newest of which contain Intel Xeon E5–2690 v3
@ 2.60GHz processors. We especially used high memory
nodes with 512GB of RAM, 117 TB InfiniBand con-
nected network storage, and Infiniband interconnection
of nodes.

Sample preprocessing
BBDuk of the BBTools suite [49], designed for filtering
or trimming reads for adapters and contaminants using
k-mers, was used for quality filtering and for the removal
of potential adapter contamination from all the samples.
Specifically, reads were trimmed for quality from both
the right and left termini (option: qtrim = rl) at a quality
threshold of Q10 (option: trimq = 10). Adapters were re-
moved based on the precompiled list of adapters in
BBDuk.

Approach
In order to efficiently handle the magnitude of data re-
quired for this analysis, we opted to explore these data
using two major approaches that greatly reduce the com-
putational load of analyses at any given time: one is a read-
based taxonomy profiling and quantification, and the other
is a metagenome assembly-based approach as shown in
Fig. 1. For each of these approaches, we generated abun-
dances of the microbial species (or proxies thereof) for the
use in machine learning-based predictions.

Table 1 Primary and unknown data sets. Sample size for different cities and unknown, along with clean files (size is in GB)

Location Acronym Number of samples Total size (GB) of clean files (FASTQ format) Total number of reads (filtered)

Auckland, New Zealand AKL 15 47.8 136,022,160

Hamilton, Canada HAM 16 61.5 179,554,428

Sacramento, US SAC 16 36.5 105,326,430

Santiago, Chile SCL 20 215.3 613,721,390

Offa, Nigeria OFA 20 438.2 1,267,427,220

Porto, Portugal PXO 60 132.2 380,372,340

Tokyo, Japan TOK 20 308.6 1,103,076,136

New York, US NYC 26 368.8 1,086,713,476

Unknown UNK 30 75.3 219,935,058
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Read-based taxonomic profiling and quantification
Read-based metagenomic profiles were obtained for the
preprocessed samples using MetaPhlAn2 [33]. We note,
that while some interpretations of MetaPhlAn2 include
limited sensitivity especially on the case of similar ge-
nomes presenting in a sample [50], we have included it in
this analysis for precisely that reason - it limits the poten-
tial search space and fast for taxonomic profiling by the
marker-gene database. We executed each iteration of
MetaPhlAn2 using 16 cores. The metagenomic profile and
the estimate of the number of the reads in each clade ob-
tained after running MetaPhlAn2 were extracted from
each output file using custom script and the number of
reads in each clade was merged into a table using the
MetaPhlAn2 utility script. From the merged table, species
and genus level information was extracted and used for
building the machine learning model.

Metagenome assembly and quantification
For the assembly-based metagenomic analysis, we fur-
ther divided the work into two analysis paradigms to
ease the computational necessity of the analysis. These
paradigms are summarized in Additional file 1: Fig. S1,
where the paradigm PP (the paired end paradigm) ex-
tracted a random set of all reads while maintaining the
paired end structure of the data, and PL (the left-only
paradigm) used only the left reads from each sample.
After extraction of these reads, Megahit [38] was used to
assemble the reads in each of the two paradigms with
default assembly parameters on a university cluster node
with 512 GB of RAM. Megahit was allowed access to all
of that memory (option: --mem-flag 2) and a verbose
output was written (option: --verbose). The abundance
of each generated sequence was estimated for all paired-
end reads with BBMap, a short-read aligner for DNA
and RNA-seq data of BBTools [49], and each set of se-
quences was filtered such that only long sequences were
retained, but the mapping rate of both assemblies was
roughly equal (Additional file 2: Figure S2). This meant
that PP was filtered for sequences longer than 5000 bp
and PL was filtered for sequences longer than 1000 bp.

Machine learning and city prediction
To analyze large scale and complex biological data sets
effectively, we notice an increasing use of machine learn-
ing techniques. Based on prior work, we analyzed each
of the approaches using two major algorithms: linear
discriminant analysis (LDA) and random forests (RF).
LDA is a supervised classification technique proposed
for dimensionality reduction to project the features in
higher dimension space onto a lower dimensional space.
RF is a scheme of ensemble-based decision trees with a
combination of tree predictors where each tree in the
ensemble is grown correspondingly with a random sub-
set of features. We selected LDA and RF to compare
parametric (LDA) vs nonparametric (RF) machine learn-
ing techniques. In the areas of biomedical science and
bioinformatics, the LDA and RF are popular choices for
efficiency and accuracy. Support vector machines (SVM)
and multi-layer perceptrons (MLP) are also tested for
benchmark to the RF.
In each approach, the abundances (either derived from

MetaPhlAn2 for read-based or BBMap for assembly-
based) were used as features for city-based predictions.
Machine learning analyses were conducted using Scikit-
Learn [51] and caret R-package [52] - both of which are
popular implementations of common machine learning al-
gorithms in Python and R respectively. For the LDA, de-
fault parameters were used. For the RF, 50 random
decision trees were used in the following naïve hyperpara-
meter searching through cross validation (Additional file 3:
Figure S3). For each analysis, the metric of interest was

Fig. 1 The analysis pipeline presented in this paper. Here we show
the two-pronged approach used in this analysis. The data were
analyzed under a read-based and assembly-based approach. In the
read-based approach, we used taxonomic profiling for the generation
of machine learning features for city prediction. In the assembly-based
approach, we used two different reduced representation paradigms to
generate features for machine learning features
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the accuracy of prediction (Accuracy = (TP + TN)/(TP +
TN+ FP + FN)) and this metric is presented in two ways:
1) a 10-fold cross validation accuracy and 2) the perform-
ance on 30 samples held out by CAMDA. For 10-fold
cross validation accuracies, the data were randomly split
in ten train/test partitions, and the final prediction were
made using a model trained on all available samples.

Results
Read-based machine learning prediction
For the fast turnaround time of running MetaPhlAn2 with
223 primary data set from eight cities, we used both
multi-threaded option provided in MetaPhlAn2 and
multi-job submission script to run the MetaPhlAn2 jobs
in parallel in our many-node cluster. Then, we merged
each sample taxonomic profile into one large table. The
merged table has four kingdoms, 17 phyla, 33 classes, 59
orders, 160 families, 353 genera, and 865 species, and the
relative abundance of each was quantified. We first evalu-
ated the prediction accuracy using the primary data set
after splitting the data set into ten randomly generated 70/
30 training/test partitions. To generate model training fea-
tures, we tested both genus-level taxonomy profile and
species-level taxonomy profile. In short, species-level
model predictions outperformed that of the genus-level.
Below we report results from the species-level prediction.
We investigated linear discriminant analysis (LDA) and

random forest (RF) machine learning techniques. Based
on species-level LDA, the samples from each city dis-
played very little variance (Fig. 2a), but the model had a
very low prediction accuracy (~ 20%). Like the principal
component analysis (PCA) dimension reduction approach,
the LD scatter plot using the 1st two discriminant dimen-
sions can show the supervised clustering of each group.
The LDA model was tested again after removing the rare
species where the abundances of species present in < 5%
of samples. The rare-species-removed LDA experiment

shows much better separation of cities (Fig. 2b), but the
model prediction was still very low (22.08% accuracy
range of 9.52–43.85%). To try to improve the model per-
formance, we examined the RF model using default pa-
rameters. The ten-fold 70/30 train/test partitions were
able to achieve a mean accuracy 83% (Fig. 3a, for example)
accuracy with 95% confidence interval between 70 and
91%. Figure 3a shows the confusion matrix that is a tech-
nique for summarizing the performance of a classification
algorithm. Because classification accuracy alone can be
misleading if there are an unequal number of observations
in each class or more than two classes in the data set, cal-
culating a confusion matrix can provide a better idea of
what the classification model is getting right and what
types of errors it is making. In machine learning classifica-
tion problems, an imbalance of the frequencies (e.g., sam-
ple size) of the observed classes can have a significant
negative impact on model fitting. One technique to re-
solve such a class imbalance is to subsample the training
data in a manner that mitigates the issues. Using the sub-
sample technique optimization, we increased the accuracy
of prediction to 91% with 95% confidence interval of 80–
93% (Fig. 3b). To compare approximate system usage and
elapsed time for read-based and assembly-based analyses,
we used one-node based calculation in Table 2. The wall-
clock time using read-based approach can be reduced and
near linearly scaled if multi-node cluster is available.
After we exhaustively validated model performance in

our assigned training data set, we used the entire assigned
data set as training data set to predict and assigned 30 un-
known samples (Table 3). Based on the provided true la-
bels from CAMDA, Table 3 shows that the read-based RF
model correctly identified 18 out of 30 samples. 10 out of
12 false predicted samples are from New York city. The
accuracy rate is lower than primary data set prediction by
the New York city samples, but the read-based RF ap-
proach shows good prediction in most of other cities.

A B

Fig. 2 LDA plots of the read-based approach. a LDA with all species. b LDA with rare species (present in < 5% of samples) removed
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Assembly-based machine learning prediction
In order to efficiently handle the magnitude of data re-
quired for this analysis, we additionally opted to use a
reduced-representation assembly-based methodology.
This has been achieved using two different paradigms:
PL represents a metagenome assembly using only the
left reads from all samples and PP stands for a paired-
end assembly using only a random even subset from all
cities. The PL approach was hypothetically more compu-
tationally efficient without considering paired-end infor-
mation in the assembly program, but the PP should have
generated higher quality sequences. As we expected PP
generated many more longer sequences. To test different
scenarios, we used PP assembled length > 5000 bp (242,
348 assembled sequences) and PL assembled length >
1000 bp (2,070,675 assembled sequences) for training
features which minimized the number of features for
computation, but approximately normalized the map-
ping rates of the raw reads back to the assembly (Add-
itional file 2: Figure S2).

As the read-based experiments, we explored LDA and
RF machine learning techniques using ten 70/30 train/
test partitions of the primary data set. While the separ-
ation was not as clear as the rare-species removed model
in the read-based approach, the PP-based model did
achieve an accuracy of 71.8% (57.1–93.8%) (Fig. 4a)
Using a random forest the accuracy improved consider-
ably at 88.5% (76.4–95.2%) as shown in Fig. 5a. For the
PL-approach, results were very similar with the linear
discriminant analysis showing an accuracy of 69.3%
(58.5–82.4) (Fig. 4b) and the random forest showing an
accuracy of 89.7% (64.7–100%) (Fig. 5b). To put these re-
sults in a broader context, we tested other commonly used
models in bioinformatics including the support vector ma-
chine (SVM; default params) and the multi-layer percep-
tron (MLP) using the PP paradigm. SVM models were
tested using both normalized (SVM-N) and non-
normalized (SVM) data, and the MLP models were tested
using both default nodal architectures (1X100; MLP) and
a more complex nodal architecture [((4X256) + (4X128) +
(4X32) + (8X16)); MLP-C]. These models consistently
performed poorly using the PP paradigm (Table 4), so
they were not explored in the larger PL paradigm.
After we completed the experiments of prediction of

the primary data set, we used the assembly sequences as
features of a training data set to predict unknown 30
samples. Based on the provided true labels from
CAMDA, Table 3 shows that the assembly-based RF
model accurately predicted all cities except New York

A B

Fig. 3 Confusion matrices for the read-based approach. a Confusion matrix for the random forest model trained on a random 70/30 train/test
data partition. b Confusion matrix for the random forest model trained on a random 70/30 train/test data partition of the rare-species-removed
data set

Table 2 The system usage for read-based approach and two
(PP and PL) assembly-based approaches (1 node based calculation)

Method CPU usage Wall Clock Time (Hours) Memory Usage

Read-based 16 cores 187.2 62 GB of RAM

PP Assembly 24 cores 83.28 500 GB of RAM

PL Assembly 24 cores 38.4 500 GB of RAM
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city. This approach correctly identified 20 out of 30 sam-
ples without the 10 samples from New York City. The
assembly-based and the read-based results show very
comparable and related predictions.

Discussion
The data presented in the CAMDA challenge offer a
unique ability to identify methods of appropriate analysis
for large and noisy metagenomic data sets. Here we pro-
posed two different approaches to collect features from
the same city samples to utilize them for unknown sample
prediction using machine learning techniques. The first
approach is a read-based taxonomy profiling and predic-
tion method. The second approach is an assembly-based
profiling and prediction technique. Although the final

random forest prediction results for both approaches
show very similar accuracies, the two approaches have
significant differences especially in system usage. As
CAMDA focuses on exploring and solving big data chal-
lenged in life science using advanced and modernistic
ideas, it is worthy to describe the design concept of two
proposed approaches and their benefits and detriments as
they apply to massive-scale metagenomic data analysis.
Overall, our results indicate that while both of our ap-

proaches have different advantages and drawbacks, they
provided very similar results when it comes to the final
analysis. More specifically, even though the approaches are
different, they both underperformed in the prediction of
one specific city label, NYC. The differences in the ap-
proaches indicate that this performance is most likely

Table 3 The evaluation of 30 unknown cities prediction from read-based RF and PP-assembly-based RF. The predictions that do not
match true labels, and do not match between two predictions are shown in red. The predictions that do not match true labels, but
match between two predictions are shown in blue
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outside the purview of the approaches themselves. Most
likely, samples were taken from a variety of surfaces that
could foster different microbial taxa and the full extent of
that space may have been unavailable in the initial training
data. Interestingly, our results may have broader implica-
tions. Namely, our results indicate that read-based profiling
is functionally equivalent, and in fact slightly worse when
looking to the test set, than essentially throwing away half
of the available data for the assembly-based protocols.
While this result is theoretically reasonable as our
taxonomy-based approach should lower sensitivity, the
scope of this finding is substantial and favors the use of
metagenomic assembly-based protocols. The remainder of

this discussion should serve to guide biologists to make ap-
propriate decisions for analyzing large metagenomics data
sets under variable circumstances and their questions.
The first read-based approach is good for users who

do not have large-memory system. In here, we used
MetaPhlAn2 for each sample profiling. MetaPhlAn2 or
other read mapping based software tools usually do not
use high-memory for one sample analysis. For example,
MEGAN [37], a widely used taxonomy profiling algo-
rithm with read mapping, usually uses ~5X the memory
of the sample size depending on algorithm selection (for
example, the weighted LCA algorithm uses higher mem-
ory than the LCA algorithm). MEGAN-LR [53], a newer

A B

Fig. 4 LDA of the assembly-based approach. a LDA of the random paired-end subset assembly (PP). b LDA of the left-only subset assembly (PL)

A B

Fig. 5 Confusion matrices for the assembly-based approach. a Confusion matrix for the random forest model trained on a random 70/30 train/test
data partition in the random paired-end subset assembly. b Confusion matrix for the random forest model trained on a random 70/30 train/test data
partition of the left-only assembly
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LCA-based algorithm for taxonomic binning, also uses
desktop level memory on the scale of tens of GB per
sample. Most alignment-based metagenomic profiling
tools use fast and memory efficient aligners such as
Bowtie2 [34], BWA [54], and LAST [55]. The user, how-
ever, should consider running time. Aligning and profil-
ing of one metagenomic sample is not that long, but if
you have thousands of samples, it will take roughly thou-
sands of times of each sample run time. If user can ac-
cess a multi-node cluster, batch job scripts or simple
message-passing-interface (MPI) programs can reduce
the wall-clock time dramatically.
The second assembly-based approach is an appropriate

method for users who can access large memory
computing resources. Although there are few scalable
de-novo metagenome assembly programs (such as Ray
Meta [56]) available, most metagenome assembly pro-
grams require very large memory (10X of sample size)
for the large-scale merged data set. Here, we showed
that reduced-representation subset of the total data set
also can derive precise prediction when used in conjunc-
tion with machine learning. We showed that this was a
valid approach using two different assembly-based para-
digms. First, we showed that a random subset of paired
end reads (PP) were sufficient to predict the correct city
label. This approach is especially useful for researchers
who have access to large computational resources but
may be time limited. Subsetting the data requires only a
fraction of the time for assembly. Second, we showed
that the left-only paradigm (PL) performed just as well
as the random subset of paired end reads. This result is
especially useful in time-limited systems as the assembly
takes roughly half the time of the of the PP-based subset.
Here, we do warn users that paired-end data tend to
generate better (less fragmented) assemblies. The frag-
mentation of the PL method meant that more sequences
were required to generate the same mapping rates as the
PP method. The meant that the resultant ML models

had ~10X as many features. This meant that models like
LDA and RF took longer (albeit on the scale of minutes),
but larger models like multi-layer perceptrons with com-
plex nodal architectures took too long to consider in the
scope of this manuscript.
While the topic of biological interpretation of these

data are beyond the scope of this analysis, many
researches will likely include biological interpretation
downstream in their analysis. The read-based ap-
proach, shown here with MetaPhlAn2 is an excellent
choice for these analyses. Inherent in the execution of
MetaPhlAn2, the data are placed in a biological
context. Users would be able to see how different bac-
terial families, genera, or species compare within and
between samples. This is also possible in the assembly-
based approach, but requires even more computation-
ally intensive analyses. For example, the metagenomes
can be binned using alignment based binning tools
[57–60], and the binned metagenomes could be taxo-
nomically assigned using SendSketch [49] or BLAST
[61]. Additionally, the different approaches could be
combined, and the metagenomes can be fed to commu-
nity profiling tools like MetaPhlAn2 for biological
interpretation.

Conclusions
For the last decade, a cultivation-independent metage-
nomics approach, in which all microorganisms in a sam-
ple are directly sequenced together, has been intensely
applied to understand microbes’ impact on human
health, plant, soil, water, and so on. A new generation of
sequencing technologies accelerated research, but left a
vast amount of metagenomic sequencing data to be ana-
lyzed. Software and high-performance computing sys-
tems that could speed analysis are still lacking. It is
important to develop novel computational algorithms or
pipelines to decipher terabytes of metagenomic sequen-
cing data quickly and precisely. We here proposed two
approaches to analyze the large-scale data set efficiently:
one is read-based profiling approach and the other is re-
duced data set assembly-based approach. Multiple ma-
chine learning techniques were investigated and
incorporated in the pipeline to predict unknown samples
precisely. Overall, these approaches shows promise al-
though more dedicated work is required to increase the
prediction accuracy.

Reviewers’ comments
Reviewer’s report 1 - Eugene V. Koonin
Reviewer comments: The authors present two machine
learning techniques to analyze metagenomic data. I be-
lieve that the methods are sound and could be useful to
many researchers working with metagenomes. The au-
thors explicitly indicate that biological interpretation is

Table 4 Model prediction accuracies based on cross-validation
of the training set. RF-10: Random forest with 10 random
decision trees, RF-20: Random forest with 20 random decision
trees, SVM: default support vector machine, SVM-N: SVM with
normalized features, MLP: default Multilayer perceptron, MLP-C:
Multilayer perceptron with complex nodal architecture
(described in methods)

Model Accuracy

RF-10 87.9

RF-20 89.7

SVM 43.1

SVM-N 32.8

MLP 63.7

MLP-C 55.2
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beyond the scope of the present work and briefly discuss
the directions for extending their methods into the bio-
logical domain. This approach somewhat limits the im-
pact of the article but is fully legitimate. Within the
limitations mentioned above, I do not see significant
flaws in the article.
Author’s response: The authors would like to thank

you for your time and effort to review our paper. The
comments are greatly appreciated.

Reviewer’s report 2 - Jing Zhou
Reviewer comments: In this paper, the authors ex-
plored different abundance-based machine learning
methods to predict city identity based on its subway
metagenome. They examined two different approaches
to generate metagenomic profiles – one is sample-
based taxonomy profiling and the other one is
reduced-representation assembly-based method. They
found the Random Forest (RF) machine learning
method yielded highest prediction accuracy (i.e. 91%)
among other machine learning methods. For an inde-
pendent testing set, the RF method with sample-based
taxonomy profiling method correctly identified 18/30
samples. Although both profiling methods have shown
very similar accuracy using RF methods, the authors
pointed out the two methods have different require-
ment in system usage and provided recommendation
for different systems. This information would be very
useful, when it comes to choose profiling methods
and prediction methods. I believe this paper fit the
standard of Biology Direct and should publish with
the following comments addressed.
Author’s response: The authors would like to thank

you for your time and effort to review our paper. The
comments are greatly appreciated.
Reviewer comments: Major Comments: 1) In the

background session, I would expect the authors provide
more background on the methods they used in the
paper—especially the profiling methods.
Author’s response: We agree that the methodology of

our approaches should have been more explicitly stated
in the “Background” section. As such, we have amended
out “Background” section to include this level of detail.
Reviewer comments: 2) Also, is there any other paper

has used a similar combination of genomic profiling and
machine learning methods? If there is any, how the re-
sults compared to the study here?
Author’s response: To address this, we included a

paragraph in the “Background” section.
Reviewer comments: 3) I wonder if surfaces informa-

tion is also available in the data set. If so, is that possible
to use the best approach used in this paper to predict
city identity+ surface identity? It may beyond the scope

of this paper, but it would be an interesting question to
explore in the future.
Author’s response: This is an excellent comment. Un-

fortunately, we were not provided with the surface infor-
mation for all of the samples through the CAMDA
challenge. As such, we are unable to adequately analyze
these data in that light. However, we absolutely agree
that this would be a great comment to explore in the fu-
ture in CAMDA challenges.
Reviewer comments: Minor Comments: 1) The con-

clusions in the abstract did not provide any useful infor-
mation to the readers. The main findings in the paper
should be emphasized 2) The authors should provide
the prediction accuracy for the independent testing set
in the abstract as well. 3) In the method part, I think
they should move the second paragraph to introduction.
Also, it is confusing to me, how did the authors know
which 30 were new samples? It states in the paper
“About 30 new samples from different cities and surface
types already featured in the primary dataset- can you
tell which?”
Author’s response: We have updated the “Results”

and “Conclusions” paragraphs in the “Abstract”. “Data
sets” subsection in the “Methods” section has been
amended to more clearly describe our approaches to the
specific challenge.

Reviewer’s report 3 - Serghei Mangul
Reviewer comments: Major comments: The caption to
the figures are missing and need to be added More de-
tails of sequencing datasets need to be provided. For ex-
ample, read the length of each dataset (Table 1).
Author’s response: The authors would like to thank

you for your time and effort to review our paper. The
comments are greatly appreciated. We would like to
kindly point that the captions of figures were provided in
the main manuscript prior to the References section
called “Figure Descriptions:” after following Biology Direct
journal submission guidelines about figures. As reviewer
commented, a column with read information has been
added to Table 1.
Reviewer comments: According to a recent bench-

marking paper, Metahplan2 suffers from low sensitivity:
Sczyrba, Alexander, et al. “Critical assessment of meta-
genome interpretation—a benchmark of metagenomics
software.”; Nature methods 14.11 (2017): 1063. Authors
need to comment on these issues with Metahplan2 and
warn the users about this.
Author’s response: We agree that MetaPhlAn2.0

could have low sensitivity especially in the case of closely-
related genomes coexisting in the samples. That is why
several strain-level resolution taxonomic profilers were
recently published including Sigma [45], that we
developed before, ConStrains [44], MIDAS [43],
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StrainPhlAn [41], and StrainEst [42]. However, most
strain-level resolution profilers are computationally ex-
pensive and requiring large reference database with
many genomes. In the CAMI manuscript, the authors
stated that “In terms of precision, MetaPhlAn 2.0 and
“Common Kmers” demonstrated an overall superior per-
formance, indicating that these two are best at only pre-
dicting organisms that are actually present in a given
sample and …” . In addition, MetaPhlAn2 allows very
fast assignment by the smaller marker gene and fast
mapping aligner, Bowtie2 that has a great fit into this
massive metagenomic analysis. That is why we selected
MetaPhlAn2 for our massive data analysis, and the re-
sults showed good accuracy from it. Based on reviewer’s
comment, we added sentences in the “Read-based
taxonomic profiling and quantification” subsection in
“Methods”.
Reviewer comments: P 7.line 162. Details of the pack-

ages used needs to be explained. What exactly they do?
Author’s response: The sentences about machine

learning library have been updated.
Reviewer comments: Line 176. Data were divided into

training and test partitions. The validation datasets need
to be added. Ideally from a different cohort or from the
same one. If this is impossible, the authors need to
clearly provide reasoning.
Author’s response: This is a very valid criticism of

our manuscript. For this analysis, we opted not to in-
clude a validation set so as to maximize the volume of
data available to train the models. We contend that, as
this is a purely theoretical exercise not to be used for ac-
tual model deployments, this deviation from expected
protocols is justified. We hold this to be true for two
major reasons: 1) the data are highly imbalanced and 2)
we have relatively few samples. This could then give us a
very biased interpretation of our results. Using our
method, we set aside the initial test set and then esti-
mated model performance using different random parti-
tions of the available training data (comprehensive cross
validation). Perhaps, our most egregious deviation from
expected protocols was attempting to tune the random
forest hyperparameter (n_estimators in SciKit Learn)
within this framework. In our approach, we simply used
a relaxed implementation of the bootstrapping to iterate
over several random cross-validation splits to find an
appropriate range (Efron and Gong 1983). We have clari-
fied out language to describe this throughout multiple
section of the manuscript.
Reviewer comments: The paper suggests that the pre-

diction accuracy was 20%. Page 8. Line 182. How the
prediction accuracy was calculated? This needs to be
added to the paper.
Author’s response: In the “Machine learning and city

prediction” subsection in “Methods” section, we have

amended the manuscript methods to include a definition
of accuracy.
Reviewer comments: Line 201/ page 9. The paper

claims that many NYC sample failed to be identified.
The immediate reason can be that NY is low coverage
samples (> 2M reads). The authors need to further in-
vestigate this and adjust for total coverage if this is was
not done before. One approach is to subsample all sam-
ples to the same coverage (number of reads). Also was
the read length of NY different from the rest?
Author’s response: The reviewer outlines several

really good potential explainers of our inability to appro-
priately predict the NY samples. Unfortunately, they are
probably no closer than what we could come up with. As
we added a column to Table 1, NY is the third largest
sample. As our models are relative-abundance based, we
opted not to adjust for coverage. This was primarily
because we could not have applied the same filters to the
testing set.
Reviewer comments: The figure comparing marker

gene-based approach (Metahplan2) and assembly one
(Megahit) needs to be added. Maybe with the best classi-
fier. This will help the reader better understand the dif-
ference between those approached.
Author’s response: Table 3 shows the evaluation of 30

unknown cities prediction from read-based RF and PP-
assembly-based RF to compare the power of two ap-
proaches. Figures 3 and 5 also show confusion matrices
of training dataset for the read-based approach and the
assembly-based approach.
Reviewer comments: P 11. Line 257. Both marker

gene-based approach (Metahplan2) and assembly one
(Megahit) show similar results. The interpretation if this
needs to be added to the Discussion section. Why low
sensitivity of Metahplan2 does not affect the results.
Author’s response: We have added a paragraph to

the “Discussion” section addressing this issue and discuss-
ing our results overall.
Reviewer comments: Minor comments: The paper

mentioned the association of microbiome with mental
health. The authors are recommended to add an add-
itional citation supporting the association of microbiome
with mental health: Loohuis, Loes M. Olde, et al. “Tran-
scriptome analysis in whole blood reveals increased mi-
crobial diversity in schizophrenia.” Translational
psychiatry 8.1 (2018): 96. P 3 line 75.
Author’s response: Thank you for providing the refer-

ence paper. We have amended the citation for this sec-
tion to include this work and a couple more recent
analyses of similar approached.
Reviewer comments: The paper claims that post ana-

lysis is at least a few times bigger than the sequencing
data. This is unexpected and needs to be clarified with
supporting results or reference.
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Author’s response: In most bioinformatics researches,
it is naturally common to keep intermediate processed
files with original sequence files for possible secondary
analyses or any other purposes. Therefore, it will be safe
for researchers to prepare few times larger available stor-
age than amount of sequencing data size to analyze the
data, but it is not always true as reviewer commended.
By following of reviewer’s comment, we modified the
sentence.
Reviewer comments: P 4. Line 77. Definition of pan-

genomes needs to be provided.
Author’s response: We have updated the paragraph.

Additional files

Additional file 1: Figure S1. A schematic view of the reduced-
representation paradigms for the assembly-based approach. In the
random paired-end subset (PP), half of each city was extracted randomly
while maintaining the paired-end structure of the data. In the left-only
subset (PL), only the left read from each sample were used for the assembly.
(PDF 656 kb)

Additional file 2: Figure S2. Mapping rates of the cleaned reads back
to the metagenome assembly. The random paired-end subset (PP)
assembly is shown in red. The left-only subset (PL) assembly is shown in
green. (PDF 5 kb)

Additional file 3: Figure S3. Hyperparameter tuning for n_estimators in
the assembly-based approach. Each figure shows accuracy results from a
series of random decision tree constructions and random train/test
partitions for each of those constructions. (A) Hyperparameter tuning of
the random paired-end subset assembly (PP). (B). Hyperparameter tuning
of the left-only assembly (PL). Note: The difference is point count is from
fewer tests in the PL assembly as it had 10X as many features and took
much longer to train and test. (PDF 2103 kb)
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