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Abstract

Background: Neuroblastoma is one of the most common types of pediatric cancer. In current neuroblastoma
prognosis, patients can be stratified into high- and low-risk groups. Generally, more than 90% of the patients
in the low-risk group will survive, while less than 50% for those with the high-risk disease will survive. Since
the so-called “high-risk” patients still contain patients with mixed good and poor outcomes, more refined
stratification needs to be established so that for the patients with poor outcome, they can receive prompt
and individualized treatment to improve their long-term survival rate, while the patients with good outcome
can avoid unnecessary over treatment.

Methods: We first mined co-expressed gene modules from microarray and RNA-seq data of neuroblastoma
samples using the weighted network mining algorithm lmQCM, and summarize the resulted modules into
eigengenes. Then patient similarity weight matrix was constructed with module eigengenes using two
different approaches. At the last step, a consensus clustering method called Molecular Regularized Consensus
Patient Stratification (MRCPS) was applied to aggregate both clinical information (clinical stage and clinical risk
level) and multiple eigengene data for refined patient stratification.

Results: The integrative method MRCPS demonstrated superior performance to clinical staging or
transcriptomic features alone for the NB cohort stratification. It successfully identified the worst prognosis
group from the clinical high-risk group, with less than 40% survived in the first 50 months of diagnosis. It also
identified highly differentially expressed genes between best prognosis group and worst prognosis group,
which can be potential gene biomarkers for clinical testing.

Conclusions: To address the need for better prognosis and facilitate personalized treatment on neuroblastoma, we
modified the recently developed bioinformatics workflow MRCPS for refined patient prognosis. It integrates clinical
information and molecular features such as gene co-expression for prognosis. This clustering workflow is flexible,
allowing the integration of both categorical and numerical data. The results demonstrate the power of survival
prognosis with this integrative analysis workflow, with superior prognostic performance to only using transcriptomic
data or clinical staging/risk information alone.
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Background
Neuroblastoma (NB) is one of the most common types
of pediatric cancer, with patients being mostly children
of age five or younger. It is a heterogeneous disease af-
fecting different areas of the body, and the likelihood of
cure varies according to age at diagnosis, extent of dis-
ease, and tumor biology [1]. NB patients are usually
stratified into low-risk and high-risk groups with more
than 90% of patients survive in the low-risk group while
only less than 50% for those with high-risk disease can
be cured. Since the high-risk patients still contain pa-
tients with mixed good and poor outcomes, more re-
fined stratification needs to be established to enable
personalized treatment plan for the patients with worse
outcomes, whereas patients with better prognosis can
avoid unnecessary over-treatment.
With the accumulation of large amount of clinical, gen-

omic, and pathological data for NB, a potential approach
to improve the prognosis can be achieved by integrating
genetic mutations, gene expression profiles, tissue and
organ morphological features as well as clinical pheno-
types to make a holistic decision. To achieve this goal,
new methods for integration of different modalities of data
need to be developed. To address this, the consensus clus-
tering method, which integrates multiple clustering results
from different types of data for the same patient cohort to
achieve a single clustering of the data, has been introduced
for this purpose [2]. Currently there are two major ap-
proaches to perform the consensus learning: 1) probabilis-
tic approach, which adopts a maximum likelihood
formulation to generate the consensus clustering results
using the Dirichlet mixture model given the distributions
of base labels [3]; and 2) similarity approach, which dir-
ectly finds consensus clusters that agree the most with the
input base clusters [4]. Despite the quick development of
this method, most of the consensus learning algorithms
still cannot be directly applied to multi-modal data with
mixed data types (e.g., numerical data for gene transcrip-
tion levels and categorical data for clinical stages of the
patients), which limits the clinical applications of this
method. In this work, we present an effective and flexible
data integration workflow for integrating numeric tran-
scriptomic data and categorical clinical information based
on our previously developed consensus clustering algo-
rithm Molecular Regularized Consensus Patient Stratifica-
tion (MRCPS) [5]. MRCPS has been successfully applied
for predicting outcomes for triple negative breast cancers
[5]. Our goal is to identify a consensus partition of pa-
tients from the combination of transcriptomic data and
clinical features (i.e., clinical stage and risk level) to better
refine NB prognosis.
The integrated workflow of MRCPS is shown in Fig. 1.

Our data were obtained from the Neuroblastoma Data
Integration Challenge of CAMDA 2017. Since both

RNA-seq and gene expression microarray data are avail-
able for this cohort, we took advantage of both data
types, which is not required for this workflow per se.
However, the sheer large number of features (i.e., gene
transcripts and probesets) in the transcriptomic data
poses a challenge on the downstream data integration as
well as the statistical power for detecting representative
gene expression features. To reduce the data dimension-
ality and improve the statistical power, we first applied
our previously developed network mining algorithm
lmQCM (local maximum Quasi-Clique Merger) to iden-
tify densely connected co-expressed gene modules [6]
and summarized each module into an “eigengene” using
the protocol described in [7]. The identified co-expres-
sion modules not only reduce the data dimension, but
often contain strong signals for important biological pro-
cesses, functions, or copy number variants associated
with the modules, which facilitates the downstream inte-
gration with other data types and interpretation of the
results. Next, we applied MRCPS method to combine
the eigengenes, clinical stage, and risk level information.
The intuition for MRCPS is that each data type leads to
a patient network and the goal of the algorithm is to
regularize the patient network formed by clinical stage
classification using a weight matrix generated from mo-
lecular data. This weight matrix defines the affinity be-
tween patient samples in the molecular features space. It
can be derived from molecular subtypes and estimation
of density-based models. However, the original MRCPS
method is sensitive to the classification result of the
molecule features, it may impact the integration results
negatively if the classification by the molecule features is
not robust enough. Therefore in this paper, we took two
approaches to generate weighted patient similarity
matrix from transcriptomic data and integrated it with
categorical clinical features from the same patient cohort
and pursued a consensus clustering of the cohort. Spe-
cifically, in the cases that the initial molecular feature
clustering failed to stratify patients into significant sur-
vival groups (i.e., log-rank test p-value > 0.05), we switch
to a patient similarity matrix based on a graph method
to integrate molecular data with clinical stage and risk
level information. Using this strategy, we were able to
further stratify the high-risk patients into subgroups
with significantly different survival times superior to
using clinical stage. The associated co-expression gene
features also confirmed previous findings with known
NB genes [8].

Methods
Dataset and preprocessing
The data used in this study was obtained from the
Neuroblastoma Data Integration Challenge of CAMDA
2017, which is also available in NCBI Gene Expression
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Omnibus as GSE47792 [9]. It contains tumor samples of
498 neuroblastoma patients from seven countries:
Belgium (n = 1), Germany (n = 420), Israel (n = 11), Italy
(n = 5), Spain (n = 14), United Kingdom (n = 5), and
United States (n = 42). The patients’ age at diagnosis var-
ied from 0 to 295.5 months (median age, 14.6 months).
Transcriptome datasets from both microarray (Agilent

44 K oligomicroarray) and RNA-seq (Illumina HiSeq
2000) platforms were obtained for the above 498 pa-
tients with known clinical endpoints. The RNA-seq data
includes 60,788 transcripts while the microarray data in-
cludes 45,198 probesets, both from the same 498 pri-
mary neuroblastomas. Tumor stage was classified
according to the International Neuroblastoma Staging
System (INSS): stage 1 (n = 121), stage 2 (n = 78), stage 3
(n = 63), stage 4 (n = 183), and stage 4S (n = 53). 176 pa-
tients were labeled as high-risk, which defined as stage 4
disease for more than 18months since diagnosis as well
as patients of any age and stage with MYCN-amplified
tumors [9]. For RNAs-seq data, processed FPKM values
were downloaded which went through read mapping,
gene expression quantification and normalization as de-
scribed in [9]. We identified 9583 unique genes whose

expression profiles are present in both RNA-seq and
microarray datasets with matched gene symbols. To re-
move any further batch effect within a dataset, we fur-
ther converted gene expression values into z-score
values within each dataset for further gene co-expression
network mining and data integration.

Gene co-expression network mining and eigengene
summarization
We applied our previously developed weighted network
mining algorithm lmQCM [6] for gene co-expression
module mining. Unlike the popular algorithm WGCNA
that utilizes hierarchical clustering and does not allow
overlaps between clusters [10], lmQCM allows genes to
be shared among multiple gene modules, agreeing with
the biological fact that genes often participate in mul-
tiple biological processes. In addition, we have shown
that lmQCM can find co-expressed gene modules that
are often associated with structural variations such as
copy number variances (CNVs) in cancers. The lmQCM
algorithm requires four parameters, namely γ, λ, t, and
β. Among these parameters, γ is the most important par-
ameter as it determines if a new module can be initiated

Fig. 1 The workflow of integrating molecular features with clinical features for NB patient stratification
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by setting the weight threshold for the first edge of the
module as a new subnetwork. t and λ determine an
adaptive threshold for the density of the network, which
the mining algorithm will stop when the threshold is
reached. β specifies the threshold for overlap ratio be-
tween two modules. If the overlap ratio between two
modules (defined as the ratio between the size of overlap
and the size of the smaller module) is larger than β, the
two modules are then merged into a larger one. In prac-
tice, we found that with γ = 0.80, t = 1, λ = 2, and β = 0.4,
the algorithm yielded gene modules with reasonable
sizes (less than 500 genes).
In our analysis, we first computed the Spearman cor-

relation coefficients between expression profiles of any
pair of genes, then transform it into edge weight using a
weight-normalization procedure adopted from spectral
clustering in [11]. We mined co-expression modules
separately in microarray and RNA-seq data. As the re-
sult, it identified 38 co-expressed gene modules for the
microarray data and 24 modules for the RNA-seq data.
The module gene expression levels were summarized
into “eigengene” values using Principle Component Ana-
lysis (PCA) with the first principle component being the
eigengene value for a specific module. They are used as
the transcriptomic features for the survival prognosis.

Molecular regularized consensus patient stratification
(MRCPS)
We previously developed a mathematical formulation
for integrative clustering of multiple-modal data. Specif-
ically, we introduced a consensus clustering method
called Molecular Regularized Consensus Patient Stratifi-
cation (MRCPS) based on an optimization process with
regularization [5]. This consensus clustering workflow is
flexible, allowing integration of both categorical and nu-
merical data. Due to the fact that the original MRCPS is
sensitive to the initial result of molecular clustering, we
developed two methods to build the patient similarity
matrix using molecular density function and the similar-
ity network fusion method as described below, to ensure
the effectiveness of our consensus cluster method. They
are the following:

Patient similarity weight matrix based on molecular density
function
Cluster density function [12]: Based on the molecular
features, a clustering algorithm such as K-means can
be applied thus each patient i is clustered in its mo-
lecular subgroup. Then, we can define a cluster dens-
ity function f(∙) for this sample. A typical choice of
the density function is the Gaussian Kernel density
function [9]:

f ið Þ ¼ 1
hpNi

XNi

j¼1
Kh xi−x j
� �

¼ 1

Ni 2πh
2� �p

2

XNi

j¼1
exp −

xi−x j

�� ��
2h2

� �
ð1Þ

where Ni is the number of patients in the same cluster
with features xi ∈ℜ

p and the summation enumerates
over all the Ni patients in the cluster with i. Further-
more, and Kh is a Gaussian Kernel function with param-
eters h.
Then given two patients i and j, the “molecular affin-

ity” between them can be defined as weight W(i,j) such
that:

W i; jð Þ ¼
f ið Þ � f jð Þ if i≠ j and i; j are in the same cluster

0 if i≠ j and i; j are in the different cluster
1 if i ¼ j

8<
:

ð2Þ

Patient similarity weight matrix using a scaled exponential
similarity kernel
In the cases that the initial clustering using the above
matrix leads to a stratification of the patients without sig-
nificant difference in survival times (i.e., log-rank test p-
value > 0.05), we define another similarity weight matrix
based on graph method, or a patient similarity network.
Edge weights are represented by an n x n similarity matrix
W with W(i,j) indicating the similarity between patients di
and dj. W(i,j) is generated by applying a scaled exponential
similarity kernel on the Euclidean distance d (xi,xj) be-
tween the patient features xi and xj [8].

W i; jð Þ ¼ exp −
d2 xi; x j
� �
μεi; j

 !
ð3Þ

where

ϵi; j ¼
meanðd xi;D ið Þð Þ þmeanðd xj;D jð Þ� �þ d xi; x j

� �
3

ð4Þ
Here D(i) is the cluster containing patient i and

mean(d(xi,D(i)) is the average of Euclidean distance be-
tween xi.
Through the above method we obtain the patient simi-

larity weight matrices from microarray and RNA-seq
datasets respectively. They can be integrated using the
following two approaches:

Original MRCPS integration method
The original MRCPS method is focused on the density
in the overlap samples of same clusters of both the
microarray and RNA-seq. The other density weight will
be 0. The integrated density weight matrices as follows:
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W � i; jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 1ð Þ i; jð Þ∘W 2ð Þ i; jð Þ

q
ð5Þ

where W(1) is for microarray data and W(2) for RNA-
seq data.

Similarity network fusion (SNF)
This method was developed in the [13] to integrate data
from multiple sources. In our work, we have two patient
similarity weight matrices (m = 2). The key step of SNF
is to iteratively update similarity weight matrix corre-
sponding to each of the data types as follows:

~W
1ð Þ
tþ1 ¼ S 1ð Þ �W

~2ð Þ
t � S 1ð ÞT ð6Þ

~W
2ð Þ
tþ1 ¼ S 2ð Þ �Wt

~1ð Þ � S 2ð ÞT ð7Þ

Where W ð ~mÞ is defined as:

W ~mð Þ ¼
W mð Þ

i; j

2
P

k≠iW
mð Þ
i;k

if i≠ j

1
2
if i ¼ j

8>>><
>>>:

ð8Þ

Let D(i) represent a set of xi’s neighbors including xi in
G. Given a graph, G, we use K nearest neighbors (KNN)
to measure local affinity. So S(m) is defined as:

S mð Þ
i; j ¼

W mð Þ
i; j

2
P

k∈Ni
W mð Þ

i;k

if i≠ j

0 if i ¼ j

8><
>:

ð9Þ

That W ðm_Þ carries the full information about the simi-
larity of each patient to all other patients whereas S(m)

only encodes the similarity to the K most similar pa-
tients for each patient. This procedure updates the
weight matrices each time generating two parallel inter-
changing diffusion processes. After t steps, the overall
weight matrix is computed

W � i; jð Þ ¼
~W

1ð Þ
t i; jð Þ þ ~W

2ð Þ
t i; jð Þ

2
ð10Þ

Categorical distance metric
In order to apply the weight matrix from transcriptomic
data to refine the patient clusters defined by the clinical
features, we first need to define a distance metric for the
clinical similarity between a pair of samples. The cat-
egorical distance metric between two clinical clusters Cl,
C is

dist Cl;C
� � ¼

X
i< j

Slij−Sij
h i2

ð11Þ

where Slij = 1 if the patients i and j are in the same clus-
ter, and otherwise is 0. Specifically, given a set of L clin-
ical partitions (in this work, we use clinical stage and
clinical risk), and dist (,) the symmetric difference dis-
tance metric, we wish to find an overall partition C*:

C� ¼ 1
L

arg min
C

XL

l¼1
dist Cl;C
� � ð12Þ

Next, we take the weight matrix generated from the
molecular data to adjust the clinical clusters. We
weighed each pair of patient similarity Sij based on the
fused similarity weight matrix W for every i and j. The
underlying rationale is that, if two patient samples are in
a cluster of poor molecular clustering result, similarity
between them should be low. Thus, a lower weight is
given to leverage the high clinical similarity Sij. Now, we
can get an equation as following:

S� ¼ 1
L

arg min
S

XL

i¼1

X
i< j

wi; j S
l
ij−Sij

h i2
ð13Þ

We can optimize the following cost function to find
the optimal partition of patients:

~S
� ¼ arg min

S
~S
L
−~S

���
���
2

F
ð14Þ

Where ~S
L ¼ 1

L

PL
l¼1ðSl∘

ffiffiffiffiffiffi
W

p Þ and ~S ¼ S∘
ffiffiffiffiffiffi
W

p
are the

Hadamard products with weight matrix W. ‖.‖F denotes
the matrix Frobenius Norm. The detail of this optimal
progress is shown in [5].

Cluster number determination
We evaluate the effectiveness of clustering results using
mutual information, which has been adopted in trad-
itional consensus clustering methods [14]. The optimal
consensus is expected to have the maximal mutual infor-
mation with the base clustering, meaning that it shares
the most information. Therefore, the final clustering
number k can be determined by maximizing the follow-
ing Normalized Mutual Information (NMI) with the ori-
ginal clustering result C:

ϕ NMIð Þ C f ;C
� � ¼

PM
u ðH Cuð Þ þH C f

� �
−H Cu;C f
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H Cuð ÞH C f

� �q

ð15Þ
Where H (Cu) is the entropy associated with u-th base

clustering, H (Cf) is the entropy arising from the final
clustering label and H (Cu,Cf) is the mutual information
between two clustering results.

Gene ontology and pathway over-representation analysis
Two online gene ontology and pathway enrichment tools
ToppGene (http://toppgene.cchmc.org) developed by
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Cincinnati Children’s Hospital Medical Center [15] and
DAVID Gene Functional Classification Tool (http://da-
vid.abcc.ncifcrf.gov) [16] were used for all of the module
functional and pathway over-representation analysis.
ToppGene not only performs enrichment analysis on
standard gene ontology, it also incorporates more than
20 different sources including pathway databases, human
and mouse phenotypes, NCBI PubMed, transcription
factor binding sites, and drug information for a compre-
hensive enrichment analysis.
DAVID provides a comprehensive set of functional an-

notation tools for investigators to understand biological
meaning behind large list of genes.
Both tools used the entire human protein-encoded

genome as the background reference gene list for over-
representation analysis. The gene ontology terms with
adjusted enrichment p value < 0.05 were considered
over-represented terms, and listed for the genes in a spe-
cific module in the Results and the Additional file 1 and
Additional file 4.

Differential gene expression analysis
Differential gene expression analysis was performed on
RNA-seq data between the subgroups of patients with
the best prognosis and the worst prognosis (Group 4
and Group 5 respectively of Fig. 5(d)). The gene expres-
sion values of FPKM were first log-transformed to test
and ensure for distribution normality, then the Student
t-test was performed and the cutoff of 1.5 for the abso-
lute value of foldchange as well as the adjusted p-value
< 0.001 were used for differential expression.

Results
Improved NB prognosis by integrated MRCPS method
over clinical stage or transcriptomic features alone, which
identified a new prognosis group with worst outcomes
As shown in Fig. 1 of the MRCPS workflow, we applied
two approaches to generate the patient similarity matrix
of the molecular feature. Frist by using the cluster dens-
ity function, and second by using the scaled exponential
similarity kernel as described in the previous section.
We then integrated molecular data with the patient clas-
sification information.
To evaluate the prognostic performance of various

methods, Kaplan-Meier survival curves were generated,
and log-rank test between patients in different groups
was applied. The Kaplan-Meier curve along with the p
values for log-rank test from clinical staging is shown in
Fig. 2. The MRCPS results using cluster density function
are shown in Fig. 3, and the ones with scaled exponential
similarity kernel are shown in Fig. 4.
For each approach, we also compared the classification

results with those obtained using transcriptomic features
alone (i.e., eigengenes from co-expression module

mining). We used K-means (Fig. 3(a)) and the similarity
network fusion (SNF) algorithm [9] (Fig. 4(a)) for tran-
scriptomic features alone, which means only the cluster-
ing on molecular data of MRCPS of was used in this
case.
As shown in Fig. 2, the clinical staging information

separates patients into five groups (stages 1,2,3,4 s,4)
with significantly different survival times (p-values for
log-rank test was 9.21e-30). The prognostic results of
using transcriptomic features (eigengenes) alone are
shown in Figs. 3(a) and 4(a) respectively. While the pa-
tients can be well separated using transcriptomic feature
alone, the prediction is inferior to the ones using clinical
stage, suggesting that integrating clinical stage and risk
level information may bring additional information to
survival prediction. As expected, both molecular weight
matrices from MRCPS generate better prognosis predic-
tion than using clinical stage or transcriptomic feature
alone, as shown in Figs. 3(d) and 4(c) (with log-rank p-
values of 2.08e-3 and 1.16e-38, respectively). After inte-
grating both the clinical stage and the risk factor, an-
other intermediate survival group is identified (Fig. 3(d)
Group 4). A closer examination of the patient groups
shows a substantial overlap between the groups of Fig.
3(c) and Fig. 3(d): 84% Patients in group 3 and 5 from
Fig. 3(d) overlap with the patients in group 1 and 4 from
Fig. 3(c) (for details of the patient grouping please see
the Additional file 2). As shown in the clustering results,
MRCPS makes full use of clinical features and has the
superior capability to cluster patients with significantly
different outcomes.
Interestingly, MRCPS using both molecular weight

matrices identified a subgroup of 239 patients that has
the significantly poorer survival rate of less than 40% at

Fig. 2 The Kaplan-Meier survival plot for the entire NB cohort using
clinical stage information
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the end of the study (Fig. 3(c) Group 2&3, Fig. 4(c)
Group 2&3). We noticed that in Fig. 4(d), the patients in
Group 1 are all alive, and the clinical risk level also
shows as low-risk level. This suggests that adding the
transcriptomic features may improve the stratification
for these “high risk” patients alone. By focusing on these
239 patients, we aimed to achieve better classification
and identify the worse survival subgroup can be identi-
fied. After applying MRCPS with either of the two pa-
tient similarity matrix approaches on the poorer
prognostic group of these 239 patients, an even higher
risk subgroup was identified, and surprisingly, also a
low-risk subgroup as well (Fig. 5). We then compared
the clustering results by MRCPS and disease stage on
these patients. These results are shown in Fig. 5. As
aforementioned, although clinical features are capable of
identifying the patients of low-risk subgroup, it does not
further stratify the high-risk group with mixed outcomes
very well (Fig. 5(a)). Figure 5(b) shows the clustering re-
sult of SNF using only the transcriptomic feature. K-
means clustering (K = 2) generates the best clustering re-
sult with the maximal mutual information within each
cluster. However, it is difficult to reconcile with the cur-
rently used five clinical stages. MRCPS with two patient
similarity weight matrix generation approaches clustered

these high-risk patients into four and subgroups respect-
ively, as shown in Fig. 5(c) and (d). Figure 5(c) shows the
clustering result of integrating patient similarity matrix
with the scaled exponential similarity kernel approach.
However, the log-rank p value is not better than the
classification using clinical stages. In the Fig. 5(d), the re-
sults of MRCPS with density kernel showed the best
prognosis performance (log-rank p = 1.77e-6), which still
preserves five subgroups. We compared the good prog-
nosis groups between the two approaches in Fig. 5(c)
and (d). They are shown in the Additional file 3 and all
the patients in group 4 in Fig. 5(d) are in either group 2
or group 4 in Fig. 5(c). More importantly, Fig. 5(d) re-
sults separated the majority of the stage IV patients into
two groups, i.e., Group 1 and Group 3. It identified
Group 3 with the worst prognosis, with less than 40%
survived in the first 50 months of diagnosis.
We also identified highly differentially expressed genes

between the patients in Group 4 (best prognosis) and
Group 3 (worst prognosis) of Fig. 5(d) from RNA-seq data,
then carried out the gene ontology over-representation ana-
lysis on the differentially expressed gene list. The results are
shown in Fig. 6. All the top enriched biological processes
are related to neuron differentiation and development,
which fits this pediatric neurological disease context very

Fig. 3 The Kaplan-Meier survival plot for the entire NB cohort with MRCPS of molecular density weight matrix: (a) Results from K-means clustering
using only transcriptomic features; (b) Results from MRCPS of molecular density kernel integrated with clinical stage; (c) Results from MRCPS of
molecular density kernel integrated with risk-level; (d) Results from MRCPS of molecular density kernel integrated with clinical stage and risk-level

Han et al. Biology Direct           (2019) 14:16 Page 7 of 16



well. The mitochondrial genes are also enriched, which sug-
gests the energy production and metabolic pathways may
play an role to differentiate the patients disease progression.
These differentially expressed genes may harbor molecular
level differences between the two prognostic groups, which
can be potential gene biomarkers for clinical testing.

The co-expression modules reveal genes previously
associated with NB
From a parallel separate study where co-expression
modules were further examined for their association
with survival outcomes [17], we discovered that for co-
expression modules from microarray data, the genes in
Module 2, 7, 10, 36 and 37 are significantly associated
with survival prognosis which shown in Additional file 4,
and most genes are involved in cancer hallmark path-
ways. Specifically, Module 2 is highly enriched with cell
cycle and cell division genes (97 out of total 127 genes,
p = 1.45e-69). The genes in Module 7 are mostly in-
volved in extracellular matrix organization (19/53, p =
3.88e-16) and angiogenesis (20/53, p = 1.12e-12). Module
10 is enriched with genes in immune response (16/42,
p = 6.03e-4), angiogenesis (11/42, p = 6.03e-4), and

extracellular component (15/42, p = 1.06e-4). Module 36
and 37 are also mostly immune response genes (4/10,
p = 8.17e-7). All of above fit very well with the highly el-
evated biological processes in cancer cells. For co-ex-
pression modules from RNA-seq data, RNA-seq data
Module 2,7, 17 and 21 are most significantly associated
with survival outcome. RNA-seq data Module 2 includes
most of the Module 2 genes from microarray data,
which is enriched with the same cell cycle genes (144/
268, p = 4.84e-73). RNA-seq data Module 17 and 21 are
mostly zinc finger family proteins that play important
roles in transcriptional regulation. The co-expressed
module gene lists from microarray and RNA-seq data
are shown in the Additional file 1.
We also crosschecked our gene co-expression module

results with the genes previously known to be associated
with NB. The microarray module 2 contains gene BIRC5,
which previously found to be strongly overexpressed in
neuroblastoma tumor samples and correlate to a poor
prognosis, which could be a potential therapeutic target
[9, 18]. Another study of NB [8] discovered that patients
over one year of age with advanced stage and rapidly pro-
gressive disease generally have a near-diploid or near-

Fig. 4 The Kaplan-Meier survival plot for the entire NB cohort with MRCPS of molecular similarity weight matrix. (a) Results from SNF using only
transcriptomic features; (b) Results from MRCPS of scaled exponential similarity kernel integrated with clinical stage; (c) Results from MRCPS of
scaled exponential similarity kernel integrated with risk-level; (d) Results from MRCPS of scaled exponential similarity kernel integrated with clinical
stage and risk-level
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Fig. 5 The Kaplan-Meier survival plot for the “high-risk” NB cohort in Fig. 4(c) cohort survival outcome among multiple methods. (a) Results from
Clinical stage; (b) Results from SNF; (c) Results from MRCPS of scaled exponential similarity kernel integrated with clinical stage; (d) Results from
MRCPS of molecular density kernel integrated with clinical stage

Fig. 6 Gene ontology enrichment analysis using differentially expressed genes between patients in Group 4 (best prognosis) and Group 3 (worst
prognosis) in Fig. 5(d)
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tetraploid DNA karyotype and show recurrent segmental
chromosomal copy number variations (CNVs), including
allelic losses of 1p, 3p, 4p, 6q, 11q and 14q and gains of
1q, 2p and 17q. Study of [19] showing structural chromo-
somal abnormalities syntenic to segmental aberrations
such as 17q gain, 2p gain and 1p36 LOH closely related to
human MYCN-amplified NB. Among our co-expressed
modules, module R13 all genes are located on 17q; R15 all
genes are located on 1p36 1p36.33; R23 all genes are lo-
cated on 3p; R24 all genes are located on 2q, which are
consistent with the findings in [8] [19].

Discussion and conclusion
In this paper, we modified the recently developed work-
flow MRCPS to integrate the transcriptomic data with the
clinical features (clinical stage and clinical risk level) of
NB patients. While the currently used clinical tumor stage
can predict patient outcome reasonably well, it purely de-
pends on the pathological features, which does not incorp-
orate molecular features of the tumor, and fails to
accurately identify the best and worst disease outcome pa-
tients from the high-risk group. Our integrative methods
showed that this new workflow has superior performance
to clinical staging for the NB cohort tested. MRCPS shows
that “high-risk” group of patients can actually be further
stratified into multiple groups with significantly different
survival outcomes --- subgroups of patients with poor sur-
vival in early months were identified (Groups 1, 2, 3, and
5 in Fig. 5(d)), as well as a subgroup of high-risk patients
has good prognosis (Group 4 in Fig. 5(d)). Further com-
parison of our stratification results with patient clinical
stage information (Table 1) reveals an interesting finding:
for the best survival group (Group 4) with 16 patients, 10
of them are from stage 2 patients while the rest six are all
from stage 4 s patients, suggesting dramatic different out-
comes exist even for the late stage patients. The analysis
of differentially expressed genes between the refined best
and worst prognostic groups indicates that the two sub-
groups contain genes behave differently in disease path-
ways, which is worth further investigation.
We also tested two types of patient similarity matrix

constructions based on molecular features and found
that MRCPS with density weight matrix method can

stratify patients into robust and clinically relevant sub-
types much better than the traditional tumor stage clas-
sification. MRCPS of scaled exponential similarity kernel
method performs equally well in the entire cohort but
not as good as the former in the high-risk cohort.
In summary, MRCPS consensus clustering workflow is

a flexible workflow, allowing integration of both categor-
ical and numerical data. The patient similarity matrix
and molecular weighting schemes are adjustable. In the
future, we will incorporate the genetic data (e.g., cope
number variants and mutation data) with our current
framework to improve the survival prognosis perform-
ance and verify our findings on other NB datasets.

Reviewer comments
Reviewer’s report 1: Lan Hu
1. Summarized that “This manuscript described a clean
application of the authors’ original weighted network min-
ing algorithm in NB patient gene expression data. The re-
sults showed that their approach improved prognosis
significantly by clustering patients using the additional
weighted similarity matrix information. Specifically, a sub-
group of patients with extremely poor survival in early
months was identified”
Author’s response: We thank the reviewer for the en-

couraging comments on this work.
2. “There are a few instances of placeholders in the

manuscript that still remain to be filled with details. For
example: in page 2, ‘the integrated workflow is shown in
figure??’ Should fill in the figure number. In page 5, ‘the
first is to use the original MRCPS algorithm to calculate
the patient similarity matrix as described in section (Fig-
ure 3). The second approach is to use the message pass-
ing approach as described in section (Figure 4).’ What
sections?”
Author’s response: We have filled in all the place-

holders with the corresponding figure and numbers,
which are highlighted with yellow in the text. The sen-
tences in page 5 were revised to "The first is to use the
Cluster density function to calculate the patient similar-
ity matrix (Figure 3), and the second approach is to use
the scaled exponential sa “eigengene” > an ‘eigengene’
Molecular similar weight matrix > molecular.
3. “Similarity matriximilarity kernel (Figure 4) as de-

scribed in methods section.” on page 7
Author’s response: We have corrected the first one as

the reviewer suggested and highlighted it in the text. For
the second one, we changed to “patient similarity matrix
using molecular density function and the similarity net-
work fusion method respectively” on page 4.
4. “In Figure 1, spelling check for ‘molecular’ in page 6,

‘the clustering result of using molecular similarity weight
matrix is worse than using the clinical stage, for molecular

Table 1 The overall distribution of the patients in different
stages in our stratification groups of Fig. 5(d)

Stage 1
(n = 10)

Stage 2
(n = 21)

Stage 3
(n = 33)

Stage 4 s
(n = 16)

Stage 4
(n = 159)

Group 1 0% 0% 0% 37.5% 47%

Group 2 60% 52% 100% 6% 0%

Group 3 30% 0% 0% 6% 37%

Group 4 0% 48% 0% 37.5% 0%

Group 5 10% 0% 0% 13% 16%
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similar weight matrix using spectral clustering, we found
that k = 2 is the best cluster result according to maximum
mutual information, the result is shown in Figure 5(a), it is
difficult to reconcile with the five clinical stages.’ Should
break down into two sentences”
Author’s response: We have corrected the above mis-

takes as the reviewer suggested and highlighted them in
the text. The sentences in page 6 were revised to “Figure
5(b) shows the clustering result of SNF. k = 2 generates
the best clustering result with the maximal mutual infor-
mation within each cluster. However, it is difficult to rec-
oncile with the currently used five clinical stages.”

Reviewer comments
Reviewer’s report 2: Haibo Liu and Julie Zhu
1. Suggested to us that “This workflow could be use-
ful for stratifying NB patients if the authors could
validate its superiority with improved sensitivity and
specificity by using independent data”
Author’s response: We thank the reviewer for the

very helpful suggestion for independent cohort valid-
ation, while this paper focuses on the dataset provided
by the CAMDA contest, we are actively seeking add-
itional validation dataset through the Pediatric Oncol-
ogy program at Riley Children’s Hospital.
2. “In addition, it would help readers to understand

the algorithm better if the authors could give more
detailed explanation to notations in formula (1), (5),
(6) and (7)”
Author’s response: We added the explanations for no-

tations to the above four formulas to help readers under-
stand them.
3. “Formula (1) seems wrong since integration of this

density function is not 1 over the sampling space. Also,
based on the current definition, the formula (5) will always
give 0. The formula should be corrected according to the
original publication (cited by this paper as reference 1)”
Author’s response: We corrected the formula.
4. "Suggest authors do a spelling check and also make

sure all figures are mentioned in the text. Here are a few
examples. Page 1, Line 30, “build” should be “built”;
“diagnose” should be “diagnosis”. The tense of verbs
should be consistent in the abstract. Page 1, line 40, “neu-
roblastom survival time predict” should be “neuroblastom
survival time prediction”; page 1, line 41, “consensus clus-
ter” should be “consensus clustering”. Page2, Line31, what
does the “??” stand for? Is it “1”? Similarly, some numbers
are missing in page 5, lines 49 and 50, “section??”
Author’s response: We thank the reviewer for the gram-

mar and spelling corrections, we have corrected the such
mistakes and highlighted them in the text. We also ran a
thorough spelling check for the entire text.
5. We recommend the authors search TCGA cBioPor-

tal, we found there are at least 4 large scale studies of

NB, with expression data and clinical data. The author
should consider testing their methods on at least one of
these datasets to show the reliability and superiority of
their methods. Suggest the authors site the dataset used
in this study, which is available in GEO and has been
published by Zhang et al. 2015: https://genomebiology.
biomedcentral.com/articles/10.1186/s13059-015-0694-1
Author’s response: We thank the reviewers for their

suggestions. In the manuscript, we actually used the same
datasets as suggested by the reviewers in Zhang et. al
publication. With the newly available datasets from
TCGA, we plan to apply our workflow these datasets to
validate our findings. We modified the description of the
dataset used in this study and added reference of paper
of Zhang et al. 2015.
6. Suggest authors provide detailed information on

processing of the microarray and RNA-seq data such as
how batch effects were modeled. The authors should
provide a brief description of how differential expression
and gene ontology enrichment analysis were done in the
method section, instead of putting it on page 18, lines
51–57
Author’s response: We added the reference of raw

data preprocessing and the section of the gene ontology
and pathway enrichment analysis tool in the Methods
section. As for the batch effect, we did the co-expres-
sion modules mining on gene pair correlation for
RNA-seq and microarray dataset separately, not com-
bined them together, and the expressions from each
dataset was individually normalized then converted to
z-score values, so any potential batch effect is re-
moved. This pre-processing step was added in the
Methods section. Differential expression analysis was
added in the Method section with the foldchange cut-
off 1.5 and adjusted p value cutoff of 0.001. Gene
ontology enrichment analysis is also added in the
Methods section.
7. Why do the authors think that both microarray and

RNA-seq data are needed for stratifying NB patients?
Doesn’t RNA-seq providing more accurate measurement
of gene expression? Do they suggest in the future re-
searchers should acquire both types of expression data
to better stratify NB patients? Some of the modules
identified from co-expression analyses are very small,
only contain a few genes. Are they stable clusters? Some
of the clusters from RNA-seq and microarray assays
overlaps to some degree, but many of them are so differ-
ent. What’s the most important module for NB stratifi-
cation? Perhaps validation with independent datasets
will help to address this type of questions
Author’s response: RNA-seq technique is the new

transcriptomic quantification tool, which provide more
details in gene expression than microarray technique,
but a lot of transcriptomic analyses were done using
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microarray technique. In the manuscript we didn’t
suggest researchers to obtain both types for their pa-
tient stratification. Instead, the reason we included
both RNA-seq and microarray data for analysis is be-
cause we would like to investigate if the data type af-
fects the co-expression mining result or not. We found
that differences exist between the co-expression mod-
ules mined from microarray and RNA-seq data, which
resulted in different patient classification results. In
this study, we address the discrepancy by provide the
flexible MRCPS method to incorporate the different
co-exp results. We integrated the patients networks
based on the different gene modules, and yield stable
clusters. In a parallel study, we focused on the com-
parison these gene modules and the survival associ-
ated modules. The paper was accepted by Biology
Direct will be publish soon. We added reference of this
paper Result section.
8. The explanation to the mathematic formulas could

be improved. Since the methods are computationally in-
tensive, to make their algorithms clear and reusable by
other researchers, we strongly suggest the code/scripts
be published along with the manuscript
Author’s response: The first version of original MRCPS

integration code is available in https://github.com/chao-
wang1010/MorCPS. We are working on organizing the
current version of code and uploading all parts of our
pipeline together, it will be soon available on https://
github.com/unicornH/MorCPS-2.
9. Language/writing can be further refined although it

has been significantly improved in the revision. For ex-
ample, the figure legend for Figures 2-4, “predict the en-
tire NB cohort survival outcome …” is misleading. The
survival outcomes of these patients are known instead of
predicted, right? On page 18, line 24, need to add refer-
ence to “From separate studies …” . There are typos in
the last box in the workflow, finial should be final
Author’s response: We thank the reviewers to point out

the typos and missing references. We have corrected them
according to reviewer’s suggestions.
10. Suggest authors review the latest advances of

diagnosis, treatment and prognosis of NB in the
introduction section, and compare their module genes
to any genetic and molecular markers discovered so
far in NB in the discussion section. It is important to
discuss the results in the context of known biology of
the NB. In the supplementary Table 1, the terms
overrepresented among each module are displayed,
which include chromosomal regions/cytoband. Has
any of these regions been reported to be related to
NB? Several recent reviews are suggested to be con-
sidered by the authors: http://www.cancerindex.org/
geneweb/X1701.htm (1) https://academic.oup.com/
jjco/article/48/3/214/4825045 (2) https://www.ncbi.

nlm.nih.gov/pubmed/28055978 (3) https://www.ncbi.
nlm.nih.gov/pubmed/29380702 (4)
Author’s response: We thank the reviewer’s suggestion.

We used gene set intersection between RNA-seq and
microarray data in this paper, so it didn’t include all the
genes mentioned in the above article. But we still found
overlapping known NB genes as mentioned in above ref-
erences. We added contents of comparing our identified
module genes with the gene mentioned in these litera-
tures in the Results section with the relevant references
inserted.
11. The supplementary tables lack of explanation. For

example, there is no column name for Supp. Table 1. On
page 33, a brief description of α and t would be helpful
Author’s response: We added column name for Sup-

plement Material 1. There are some typos regarding the
parameters and their meaning. We clarified them in the
manuscript Methods section. The two parameters t and
determine an adaptive threshold of the density of the net-
work, which the network mining algorithm will stop when
the threshold is reached. The parameter alpha should be,
previously mislabeled. We added the description of the
parameter .

Reviewer comments
Reviewer’s report 3: Aleksandra Gruca
1. “… Development of the methods for integration of
heterogeneous data such as clinical information and
transcriptomic experimental data allows not only valid-
ating and improving confidence in experimental results
but also developing more complete more complete
models of biological systems. In this context, the ap-
proach presented by the authors is very interesting, how-
ever, there are some issues in the paper that should be
corrected in order to make its message more clear and
understandable for the readers”
Author’s response: We thank the reviewer for the com-

ments of our methodology and fully agree to modify and
clarify the text according to the reviewer’s suggestion so
that it is more understandable to the readers.
2. “The dataset is too briefly described … the data sec-

tion should be expanded in order to provide the wider
picture of the analysed dataset. In particular, there is no
description of the clinical stage information (how it is
defined? how many of them? how many patients are
assigned to each clinical stage?)”
Author’s response: We have added a detailed descrip-

tion of the transcriptomic dataset used in this study as
well as the description on clinical stage information.
They are highlighted with yellow in the text.
3. The data used in this study is obtained from the

neuroblastoma data integration challenge of CAMDA
2017. It contains tumor samples of 498 neuroblastoma
patients from seven countries: Belgium (n = 1), Germany

Han et al. Biology Direct           (2019) 14:16 Page 12 of 16

https://github.com/chaowang1010/MorCPS
https://github.com/chaowang1010/MorCPS
https://github.com/unicornH/MorCPS-2
https://github.com/unicornH/MorCPS-2
http://www.cancerindex.org/geneweb/X1701.htm
http://www.cancerindex.org/geneweb/X1701.htm
https://academic.oup.com/jjco/article/48/3/214/4825045
https://academic.oup.com/jjco/article/48/3/214/4825045
https://www.ncbi.nlm.nih.gov/pubmed/28055978
https://www.ncbi.nlm.nih.gov/pubmed/28055978
https://www.ncbi.nlm.nih.gov/pubmed/29380702
https://www.ncbi.nlm.nih.gov/pubmed/29380702


(n = 420), Israel (n = 11), Italy (n = 5), Spain (n = 14),
United Kingdom (n = 5), and United States (n = 42). The
patients’ age at diagnosis varied from 0 to 295.5 months
(median age, 14.6 months)
Author’s response: Transcriptome datasets from both

microarray (Agilent Whole Human Genome 44 K Oligo
microarray) and RNA-seq are obtained from the Neuro-
blastoma Data Integration Challenge of CAMDA 2017
for 498 pediatric patients with known clinical endpoints.
The RNA-seq includes 60,788 transcripts and Agilent
microarray data for 45,198 probes, both from 498 pri-
mary neuroblastomas. Tumor stage was classified ac-
cording to the International Neuroblastoma Staging
System (INSS): stage 1 (n = 121), stage 2 (n = 78), stage 3
(n = 63), stage 4 (n = 183), stage 4S (n = 53). 176 patients
are labeled as high-risk, which the patients with stage 4
disease > 18 months at diagnosis and patients of any age
and stage with MYCN-amplified tumors [13].
4. “The middle step (transcriptomic data) clustering

methods and the results are described very briefly. This
part of the data processing should be presented in the
paper in more detailed way. For example, the authors
provide information that they were able to obtain 38
coexpressed gene modules for the mircoarray data and
24 modules for the RNAseq data. The information how
the information from RNASeq experiment is integrated
with the results of DNA microarray experiment is miss-
ing in the paper. The presentation of the result needs to
be improved”
Author’s response: We added this part in the Molecu-

lar Regularized Consensus Patient Stratification
(MRCPS) section and used the formulas to explain how
RNA-Seq and DNA microarray integrated together with
two approaches.
5. “There are some technical issues that should be cor-

rected. First, there is no description of the legend for
pictures. They are inconsistent with the description in
the text (tumour stages 1,2,3,4 and 4s vs 1,2,3,4,5)”
Author’s response: We thank the reviewer to point out

the mistakes and added the description of the legend and
corrected in the text as tumor stages 1,2,3,4 and 4 s.
6. “the legend box covers the survival curves”
Author’s response: We redrew the figure to fix this

problem. The survival curves are not covered by legend
box now.
7. “Also clarify if the results presented in Fig 3a are

based on k-means clustering (as in the figure descrip-
tion) or similarity network fusion algorithm (as in the
text description)”
Author’s response: We clarified the description, which

highlighted in the text and the figure description. Fig-
ure 3(a) is from K-means clustering results.
8. “Figures 3d and 4d present clustering results where

clinical risk and clinical stage are integrated but in the

methods part of the paper no explanation is provided
how this two types of categorical data are combined”
Author’s response: The L in the formula (12) is the set

of clinical partitions of patients. The clinical risk level
and clinical stage are integrated by using this formula.
We added more description for this equation in the text.
9. “Also, please explain why there are different num-

bers of groups for subfigures of Figures 3, 4 and 5. It is
not clear from the paper how the number of clusters is
determined”
Author’s response: We added this part in the section of

“Cluster number determination” in the revised version to
explain how the number of clusters is determined. The
result in Figures 3 and 4 are based on different patient
similarity matrices. Figure 3 is based on MRCPS methods
of molecular density. Figure 4 is based on MRCPS
methods of scaled exponential similarity kernel. There-
fore, they resulted in different clustering results, i.e. differ-
ent number of groups. The results are explained in more
details in the text.
10. “The main deficiency of the paper is that the as-

sessment of the presented framework is based only on
survival analysis and pvalue statistics. Unfortunately, the
authors do not try to provide any biological interpret-
ation of the results presented on the figures”
Author’s response: We thank the reviewer for this sug-

gestion and added one more paragraph about the bio-
logical investigation of the co-expressed gene modules
that are used to stratify patients. The following text are
added to the Result section.
From separate studies where co-expression modules

were further examined for their association with sur-
vival outcome, we discovered that for co-expression
modules from Microarray data, The genes in Module
2, 7, 10, 36 and 37 are significantly associated with
survival prognosis. Among them, Module 2 is highly
enriched with cell cycle and cell division genes (97 out
of total 127 genes, p = 1.45e-69), The genes in Module
7 are mostly involved in extracellular matrix
organization (19/53, p = 3.88e-16) and angiogenesis
(20/53, p = 1.12e-12). Module 10 is enriched with
genes in immune response (16/42, p = 6.03e-4), angio-
genesis (11/42, p = 6.03e-4), and extracellular compo-
nent (15/42, p = 1.06e-4). Module 36 and 37 are also
mostly immune response genes (4/10, p = 8.17e7). All
of above fits very well with the highly elevated bio-
logical processes in cancer cells. For co-expression
modules from RNA-seq data, The genes in Module 2,
7, 17 and 21 are most significantly associated with
survival outcome. Module 2 includes most of the Mod-
ule 2 genes from microarray, and enriched with the
same cell cycle genes (144/268, p = 4.84e-73). Module
17 and 21 are zinc finger family proteins that plays
important roles in transcriptional regulation.

Han et al. Biology Direct           (2019) 14:16 Page 13 of 16



We also identified differentially expressed genes be-
tween the patients in Group 4 (best prognosis) and Group
3 (worst prognosis) of Figure 5(d), and carried out the
gene ontology enrichment analysis using ToppGene
(https://toppgene.cchmc.org/enrichment.jsp). The results
are shown in Figure 6.
11. “In particular, it is unknown how the new stratifi-

cation groups are related to the original clinical clusters”
Author’s response: The original clinical clusters are the

clinical stages. The overall distribution of the patients in
different stages in our stratification groups (generated
using the density kernel MRCPS method and shown in
Figure 5d) is shown in Table 1.
12. “What are the groups 1 and 4 from fig 3(c) and

how they are related to the groups 3 and 5 from the fig
4(d)? Please, explain.”
Author’s response: There is no group 5 in the Figure

4(d), we think the reviewer meant Figure 3(d). The groups
1 and 4 from Figure 3(c) and groups 3 and 5 from the
Figure 3(d) were obtained from MRCPS method. Figure 3
is based on the MRCPS of molecular density kernel and
Figure 4 is based MRCPS methods of scaled exponential
similarity kernel. There is substantial overlap between
them: 84% Patients in group 3 and 5 from Figure 3(d)
overlap with the patients in group 1 and 4 from Figure
3(c) and the details are shown in the Supplement Mater-
ial 2.
13. “Similar remarks concern the description of the re-

sults presented in figure 5.”
Author’s response: The same situation is in Figure 5.

They were from different MRCPS settings. We compared
the good prognosis groups between the two approaches in
Figure 5(c) and (d). They are shown in the Supplement
Material 3 and all the patients in group 4 in Figure 5(d)
are in either group 2 or group 4 in Figure 5(c).
14. “There are some issues regarding indices in equa-

tion 5. Please check and correct accordingly”
Author’s response: We corrected Equation 5.
15. “Please, provide explanation what do you mean by

clinical cluster”
Author’s response: That is actually clinical stage, we

corrected this description.
16. "In the paper, the authors use several the expres-

sion “clinical features” or “clinical attributes” to describe
division of papers to risk levels and clinical stage. Most
people would assume that clinical features or attributes
are related to additional medical information describing
patients such as age, gender or any values that can result
from medical examinations. To avoid confusion, please,
state clearly in the introduction section of the paper
what “clinical information” is and try to avoid using dif-
ferent expressions"
Author’s response: We totally agree with the reviewer

and further explained clinical feature as the clinical

stage and risk level. We stick to clinical feature through-
out the text.
17. The methods used to obtain results that are men-

tioned in the “Biological evaluation of the co-expression
modules” section should be described in methods sec-
tion of the paper
Author’s response: The method for co-expression mod-

ule mining is lmQCM, which is explained in Methods
section. The details of the module comparisons between
microarray and RNA-seq data were further discussed in
a separate publication. The paper was accepted by Biol-
ogy Direct and will be publish soon. We added reference
of this paper in the Results section.
18. Also, in the “Biological evaluation of the co-expres-

sion modules” section, the authors mention several mod-
ules from gene expression data, but there are no such
modules (2, 7, 10, 36 and 37) and its corresponding
genes in the supplementary material 1
Author’s response: We added the miss Modules to the

Supplementary Material 4.
19. The sentence starting from “Module 2 includes

most of the Module 2 genes from microarray” is unclear.
(the first mentioned module is from RNA-seq???). It is
not always clear if the authors refer to the results from
microarray data or from RNA-seq data
Author’s response: We thank reviewer for the com-

ments, we changed the sentence as “RNA-seq data Mod-
ule 2 includes most of the Module 2 genes from
microarray” to make it clearer.
20. Results from supplementary material 1 should be

presented more thoughtfully. The column B has no
name. What is the meaning of ‘NS’. What is the meaning
of the following notion (column B, row 26): GO:0006334
nucleosome assembly p = 1.925E-13; 6p22.1 p = 2.058E-6
(I might try to guess again but reading scientific results
should not be about guessing)
Author’s response: We added name for column B

and modify the description so it can be better under-
stood for the Supplementary Material 1.
21. The English language in the manuscript is im-

proved in comparison to the first version. However,
still some corrections are needed. For example using
plural/singular forms (Figures 2, Figures 3(a), module
2 gene, etc). Also the captions of the figures that
starts with the word “predict” should be corrected, I
assume it should be “prediction of” - please check
carefully symbols in the text of the manuscript – they
all should be in italic - supplementary materials 2
and 3 should be referenced in the text, not only in
the response for reviewer’s comments
Author’s response: We corrected these errors and inserted

the supplementary Materials 2 and 3 reference in the text.
22. Language of the manuscript still needs improve-

ment. Please, prepare the final version with the help of
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native speaker (for example: module 2 gene are; module
2, 7, 10, 36 and 37 are significantly associated with sur-
vival prognosis which shown in supplement material 4)
Author’s response: We thank the reviewer for the sug-

gestion. We have edited the entire manuscript with the
help of native English speaker.
23. In supplement material 4, please delete headers of

columns C up to end: “Co-expression Modules from
RNAseq”
Author’s response: we delete headers of columns C up

to end: “Co-expression Modules from RNAseq”.

Reviewer’s report 4: Haibo Liu
1. Page 20, Lines 14–28, the authors mis-described their
GO term and pathway analysis. What the authors did
should be called “GO term and pathway over-
representation analysis”, instead of “GO term and path-
way enrichment analysis”. See papers https://journals.
plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1
002375 and https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3829842/.
What was the background reference gene list used for

over-representation analysis, whole genome or genes
expressed in the target tumor tissue samples?
Author’s response: We followed reviewer’s suggestion

and used “over-representation analysis” instead of “en-
richment analysis”. we used whole genome as background
reference gene list. We clarified this in the method part.
2. Page 20, Line 28, “Supplement Material 1 and 4”

should be “Supplement Materials 1 and 4”. By the way,
at the bottom of the table in the Supplement Material 4,
the authors stated that pathway analysis was done using
DAVID, instead as described in Lines 16–17. Please
clarify.
Author’s response: Thank the reviewer to point it out,

we clarified them in the corresponding section.
3. Page 20, Lines 32–41, the authors mentioned that

Student t-test was used for RNA-seq differential ex-
pression analysis. Based on Methods, the FPKM
values for RNA-seq gene expression were downloaded
and used for further analysis. The FPKM values are
not normally distributed, so t-test is not appropriate
here. Log-transformation is needed before applying t-
test. Notably, more recent comparative studies, such
as https://academic.oup.com/bib/article/14/6/671/1896
45, indicate that FPKM normalization is not an ap-
propriate normalization method for RNA-seq data
analysis.
Author’s response: We thank the reviewer for the very

helpful suggestion, we used log-transformation before ap-
plying t-test, we clarified it and added this description in
the method.
4. Page 23, Lines 11–12, the authors stated that “we

identified the same CNVs as the co-expression modules

in our RNA module R13, R15, R23 and R24”. Through-
out the manuscript, there is no other place where the
authors mentioned CNV identification. So it is not rea-
sonable to mention CNVs here.
Author’s response: We delete this part according to re-

viewer’s suggestion.
5.In the Result section of Abstract, Page 2 Lines 44–

53, the authors list their results as: First, ….; secondly,
….; thirdly, … .. These three sentences should be
rephrased to present results. Currently, those sentences
are presenting methods.
Author’s response: We thank the reviewer for the sug-

gestion and rewrote the abstract.
6.All “superior than” should be changed to “superior

to”
Author’s response: We changed it according to re-

viewer’s suggestion.
7.Page 15, lines 9–11, “176 patients are labeled as

high-risk, which are the patients with stage 4 disease of
more than 18months since diagnosis as well as patients
of any age and stage with MYCN-amplified tumors
[12]”. All “are” should be “were”
Author’s response: We changed it according to re-

viewer’s suggestion.
8.Page 15, line 58, “spectral cluster” should be “spectral

clustering”. 5. Reference formats are not consistent
Author’s response: We changed it according to re-

viewer’s suggestion.
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