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Abstract

Background: Nowadays, not only are single genomes commonly analyzed, but also metagenomes, which are sets
of, DNA fragments (reads) derived from microbes living in a given environment. Metagenome analysis is aimed at
extracting crucial information on the organisms that have left their traces in an investigated environmental sample.
In this study we focus on the MetaSUB Forensics Challenge (organized within the CAMDA 2018 conference) which
consists in predicting the geographical origin of metagenomic samples. Contrary to the existing methods for
environmental classification that are based on taxonomic or functional classification, we rely on the similarity between
a sample and the reference database computed at a reads level.

Results: We report the results of our extensive experimental study to investigate the behavior of our method and its
sensitivity to different parameters. In our tests, we have followed the protocol of the MetaSUB Challenge, which
allowed us to compare the obtained results with the solutions based on taxonomic and functional classification.

Conclusions: The results reported in the paper indicate that our method is competitive with those based on
taxonomic classification. Importantly, by measuring the similarity at the reads level, we avoid the necessity of using
large databases with annotated gene sequences. Hence our main finding is that environmental classification of
metagenomic data can be proceeded without using large databases required for taxonomic or functional
classification.

Reviewers: This article was reviewed by Eran Elhaik, Alexandra Bettina Graf, Chengsheng Zhu, and Andre Kahles.
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Background
Recently, wemay witness rapid development of nucleotide
sequencing. Not only are single genomes commonly ana-
lyzed, but also metagenomes, which are sets of DNA
fragments (reads) derived from microbes living in a
given environment [1]. Microbiome is a complex com-
munity of bacteria, fungi, viruses, and micro-eukaryotes.
Metagenome analysis is therefore aimed at extracting dif-
ferent kinds of information on the organisms that have left
their traces in an investigated environmental sample. As a
result, it helps in creating a general profile of the place that
the samples were extracted from.
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Metagenomic data analysis may consist in supervised
and/or unsupervised classification (the latter is commonly
referred to as clustering) of the metagenomic reads. Dur-
ing the supervised classification, the reads from a pre-
sented sample are compared against a database containing
groups of reference sequences. Depending on the main
goal of the study, the metagenomic data can be subject
to three main types of supervised classification, namely:
(i) taxonomic classification—to identify the organisms in
the sample; (ii) functional classification—to determine the
functions that can be performed by the microorganisms
from the sample; and (iii) environmental classification—to
identify the origin of the sample. The metagenomic data
may also be subject to clustering (i.e., binning). However,
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it is usually performed as a preprocessing step that pre-
cedes further analysis with the use of reference databases.
A metagenome is a mixture of fragments from different
genomes, hence it is attempted in some studies to recover
each individual genome. First, the metagenome reads are
assembled into contigs, and later the binning is performed
to group them into genomes [2–4].
Metagenome classification is an active research topic,

and there are many studies which explore the aforemen-
tioned classification scenarios [5]. Huson et al. introduced
the MEGAN-LR program [6] which compares long reads
against the NCBI-nr protein reference database. In this
way, they directly perform both taxonomic and functional
classification, which subsequently allows them to identify
the origin of an investigated sample. In the MetaBinG2
program [7], Qiao et al. decompose the complete genome
sequence into short substrings composed of k symbols
(k-mers), and then a Markov model for their probabil-
ity vector is created to perform taxonomic classification.
Based on the organisms identified in different samples, the
similarity between the latter is computed, which makes
it possible to classify an investigated sample to the most
probable environment. Some other attempts make use of
the spaced k-mers [8] or the 16S gene profile for the anal-
ysis [9–12]. In particular, Walker et al. [9] used that for
taxonomic classification prior to the environmental clas-
sification. Moreover, some programs are employed for
metagenomic strain identification (e.g., MetaMLST [13],
StrainPhlAn [14], PanPhlAn [15]), which helps to analyze
the metagenome samples [16–19]. Recently, Gerner et al.
developed a method for in silico creation of artificial com-
munities that can be used as a gold standard for validating
various metagenome approaches [20].
In this paper, we report our research aimed at approach-

ing the MetaSUB Forensics Challenge, which was orga-
nized within the CAMDA 2018 competition (a track of
the ISMB 2018 conference). Other solutions submitted
for this competition are based on information extracted
from the taxonomic and/or functional profiles of micro-
biota compositions. Ryan [21] performs taxonomic clas-
sification against the NCBI-nr database, followed by t-
Distributed Stochastic Neighbor Embedding to reduce the
dimensionality. Finally, the obtained feature vectors are
classified using random forests. Walker and Datta [22], as
well as Chierici et al. [23], proposed to exploit informa-
tion on the taxonomic rank to extract the features that are
later classified using random forests. Sanchez et al. [24]
uses decision trees to classify the functional profiles cre-
ated from themetagenomic data, whilst Zhu et al. employs
support vector machines for classification [25].
Our contribution consists in testing the reliability of the

microbiome fingerprints for identifying the sample ori-
gin directly from themetagenomic data—we exploited the
data published within the MetaSUB Forensics Challenge.

We demonstrate that it is not necessary to identify the
organisms or their functions to perform effective envi-
ronmental classification. Hence, we do not need large
databases of annotated metagenomic reads (like the NCBI
(nt) nucleotide database), which substantially decreases
the amount of data we have to process. Furthermore, this
makes it possible to exploit the organisms specific to each
location, even if their genetic material is not included in
the databases. Taking that into account, in our work, the
microbiome fingerprint is defined as a set of DNA frag-
ments (k-mers) derived from organisms living in a given
city.
In the reported study, we exploit our CoMeta

(Classification of Metagenomes) program [26], which
allows for fast classification of metagenomic samples,
and we apply it to classify the extracted unknown
metagenomes to a set of collections of known samples.
We employ an improved, yet unpublished version of
CoMeta, which uses the k-mer databases built with the
KMC 3 program [27]. We construct separate groups of
metagenomic reads for each city to compare the samples
on the basis of their similarity, measured directly in the
space of the metagenomic reads. Moreover, we use the
CoMeta program to cluster the samples based on their
mutual similarities, which allows us to identify several
groups that have been derived from the same origin. In
addition to CoMeta, we have explored the possibility
of using the Mash program [28] for determining the
similarity between the samples—the classification scores
obtained with CoMeta and Mash are reported and
discussed in the paper.

Materials andmethods
Metagenomic data
The MetaSUB Challenge embraces three complementary
independent test sets and a primary dataset (i.e., the
reference set with all the metadata provided, including
geographical origin of the data). The characteristics of
the samples in the primary dataset are provided in the
Additional file 1. The samples in the first test set (C1)
were acquired from a variety of surfaces in several differ-
ent cities. For the CAMDA contest, the origin of the C1
samples was unknown, however it was stated that these
locations are the same as for the samples from the primary
dataset. The samples from the second set (C2) come from
three cities that are not included in the primary dataset,
and each city is represented by 12 samples (these groups
were known for the contest, but the origin of each group
remained unknown). Finally, the third set (C3) contains
16 samples, which were not grouped at all (also it was
unknown from how many cities they were gathered). The
geographic origin for all the samples in the test sets was
published just before the CAMDA contest (the C3 sam-
ples originate from four cities, three of which are the same
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as those in C2). These three sets were compared with
the annotated data from the primary dataset, available at
the CAMDA 2018 website. The primary dataset contains
311 samples derived from eight cities in six countries (see
Table 1 for details). A map presenting the cities of origin
for all the samples is shown in Fig. 1.
All files were delivered as compressed FASTQ files.

After unpacking and converting to FASTA files (used in
the analysis) the sizes were as follows: 492GB for test sets
and 1.44TB for primary datasets. Information about the
number of samples for each set with average number of
reads is reported in Tables 1 and 2. In the tables, we report
these numbers before and after removing the reads with
human DNA fragments, which is discussed later in the
paper.

Data preprocessing
To prepare the data for classification, we construct k-mer
databases and we preprocess the reads from each query
sample.
Moreover, if the Mash program is used to estimate the

similarity between the samples, we construct a sketch for
each sample.
For each reference sample (to which the query samples

are compared), we create a separate sample-level database,
and then the databases created from samples that belong
to the same class are combined together into one larger
class-level database (so we end up with one database
per class). We perform a similar operation for the Mash
sketches—we combine the results for samples derived
from the same class (i.e., a city). In the Mash program,
the reads must be first sketched with s hashes (termed
the sketch size). In order to easily combine the samples
into one class, which is particularly useful for leave-one-
out validation, we have created an auxiliary program for

Table 1 The content of the primary data set before and after
removing human DNA fragments

ID Country City #samples
Average #reads per sample

Original data Without
human
DNA

SCL Chile Santiago 20 14,895,560 10,281,642

TOK Japan Tokyo 20 28,234,328 12,172,488

AKL New Zealand Auckland 15 4,929,497 4,849,711

HAM New Zealand Hamilton 16 6,073,774 5,999,711

OFA Nigeria Offa 20 35,469,676 34,936,176

PXO Portugal Porto 60 5,100,568 3,406,160

NYC USA New York 126 8,437,471 7,059,544

SAC USA Sacramento 34 25,153,713 22,627,578

Together 311 12,757,221 10,224,299

combining the files (obtained after sketching) into a sin-
gle file—thus, multiple lists of hashes are joined into one
list of hashes. Our program loads all the hashes (s hashes
from each sample), then sorts them and saves a new set of
s unique hashes for each class.
The k-mer databases (for the CoMeta program) are con-

structed using the KMC program, which extracts k-mers
composed only of known nucleotides (‘A’, ‘C’, ‘T’, and ‘G’),
and those that contain at least one ‘N’ symbol are ignored.
The databases are subsequently filtered to reject the k-
mers which appear less than ci times, as they may result
from sequencing errors. We have considered two vari-
ants here: (i) filtering applied to the sample-level databases
(before they are joined to form a class-level database) and
(ii) filtering of the final class-level databases.
For the MetaSUB Challenge, most of the reads from

the primary dataset and all reads from the test sets are
paired-end. The CoMeta program determines the simi-
larity between every read from a query sample and each
database. Therefore, taking the above into account, we
concatenate the paired-end sequences in order to obtain a
single score for each read pair. The first read is rewritten,
and a reverse complement of the second read is appended
to it. These two fragments are separated from each other
with a marker symbol (we use ‘N’ to differentiate it from
the symbols that appear in the database of k-mers—
note that KMC rejects all the k-mers that contain ‘N’).
For example, if the first-end read is ACGT (usually much
longer) and the second-end read is TTTC, then our output
sequence is ACGTNGAAA. Afterwards, such a sequence is
split into k-mers and compared with the database (the
k-mers with ‘N’s extracted from the query read do not
appear in the database, so they do not affect the computed
similarity).
The majority of studies on metagenomes are focused

on analysing the bacteria in an investigated sample
[5, 9]. In some studies, also other kinds of microbiomes
are included for analysis (like fungi, archaea, non-living
viruses) [7]. Importantly, it can be expected that theMeta-
SUB samples acquired from different sites contain highly-
similar fragments of the human genome. These human
fragments rather do not help in the analysis, hence we
decided to remove human DNA from the investigated
samples. For this purpose, we used the kmc_tools software
[29]. The file (GRCh38_latest_genomic.fna.gz) with the
human reference genomewas downloaded from the NCBI
Website. For this file, we build a k-mer database using
the KMC 3 program [27], and we subtract this database
from every class-related database. In addition to that, we
filter each query sample—if at least one human k-mer
(k = 24) appears in a read, then that read is removed
from the sample. Information about the sizes of the sam-
ples before and after removing the humanDNA fragments
are reported in Tables 1 and 2. This operation allowed
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Fig. 1 A map presenting the origin of the samples in the MetaSUB dataset. The eight cities marked with blue color are included in the primary
dataset, and four cities marked with red color are the origins of the samples included in the C2 and C3 sets. On the map, we show the classification
accuracies (obtained using the proposed method) for the cities from the primary dataset—blue indicates the scores for the primary dataset (based
on leave-one-out cross validation), and green shows the scores for the C1 set (which includes samples from four cities out of eight from the primary
dataset)

for reducing the sizes of the samples from the test sets by
1% to about 50%.

Data classification
For classifying the metagenomic samples, we have
adopted the methodology developed within our earlier
study on forensic data analysis [30]. In the research
reported here, we introduce several modifications, which
include removing human fragments (as discussed earlier
in the paper) and filtering infrequent k-mers from the
databases (here, we consider two variants). We determine
the similarity between metagenomic samples using our
CoMeta program [26]. It has been designed for fast and
accurate classification of reads obtained after sequencing
entire environmental samples, and it allows for building a
database without any restrictions. The similarity between

Table 2 The test sets (C1, C2, and C3) before and after removing
human DNA fragments

Metagenome sample → C1 set C2 set C3 set

#samples 30 3 × 12 16

Average #reads per sample (original) 4,637,923 28,907,439 18,000,000

Average #reads (without human DNA) 3,871,596 25,082,590 15,027,017

the query read and each class (group) of the reference
sequences is determined by counting the number of the
nucleotides in those k-mers which occur both in the read
and in the group (the algorithm is described in detail
in [26]).
There are a number of other tools for comparing

metagenomic data [6, 7, 31], which potentially may also
be employed for classifying the metagenomic samples
directly from the sequence similarity, without performing
taxonomic or functional classification. In this paper (as
mentioned earlier), we focus on checking whether such
classification scheme is effective, rather than finding the
best tool for comparing the metagenomic data. Neverthe-
less, in addition to employing CoMeta for this purpose, we
decided to test the Mash program as an alternative tool
which performs approximate matching.
A simplified diagram of our classification scheme (using

CoMeta) is shown in Fig. 2. At first, N groups (classes)
containing reference sequences (reads) are created and the
reads from the query sample are compared with them.
For each ith class, the k-mer database (D0

i ) is built from
the original datasets (before removing human fragments)
using the KMC software. In addition, a k-mer database
for the human reference sequences is built (termed DH).
Subsequently, DH is subtracted from each original k-mer
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Fig. 2 The processing pipeline for classifying metagenomic reads to
one of the constructed classes. DH—k-mer database for the human
reference sequence;

{
D0
1,D

0
2, . . . ,D

0
N

}
—k-mer databases from the

original datasets for each of N classes; {D1,D2, . . . ,DN}—k-mer
databases after subtracted DH for each of N classes; Ri—an ith read
from a query sample which includes q reads; �RiDj—a result of
matching a jth read to the ith class (match rate score); x—one of the
constructed classes; each blue block indicates data stored in a
separate file

database using the kmc_tools software (Dj = D0
j \DH).

Each read Ri among q reads derived from a query sample
is compared against each class using CoMeta.We use only
canonical k-mers (i.e., a lexicographically smaller item of
the pair: the k-mer and its reverse complement), there-
fore there is no need to check the reverse complement of
these reads. From the comparison, for each ith read and
jth class, we obtain their mutual similarity value, termed
thematch rate score (�ij). This value is a ratio of the num-
ber of the nucleotides in the k-mers which occur both in

the read and in the database (associated with the class)
to the length of the query read. A detailed algorithm for
computing this value is reported in [26].
For each ith read, we create a list ofmatch rate scores Ri :

{�i,1,�i,2, . . . ,�i,N }, and we analyze only these classes,
whose �’s are greater than or equal to a similarity thresh-
old T. We also take into account the number of classes
which meet that condition—we ignore these reads, for
which that number is larger than a maximum class num-
ber threshold M. Formally, the ith read is skipped, if #{Dj :
�ij ≥ T} > M, 1 ≤ M ≤ N .
For example, let N = 6, M = 3, T = 50, and the match

rate score lists (for a sample composed of three reads) be
R1: {30, 80, 85, 50, 90, 35}, R2: {20, 90, 0, 49, 0, 30}, and R3:
{20, 88, 90, 0, 0, 50} (the underlined values meet the condi-
tion � ≥ T). Here, R1 does not meet the condition of the
maximum number of classes (the number of underlined
values is greater thanM), so R1 is ignored, and only R2 and
R3 are further processed (R2 is matched with D2 and R3 is
matched with D2, D3, and D6).
To determine the similarity of a sample (a set of reads) to

each class, we process each read that meets the aforemen-
tioned conditions, and we cumulate the similarity points
for each class. We consider three ways of computing these
points:

simple sum: each class gets 1 point for every matched
read, no matter how many classes that read is
matched to, and regardless of the differences
between �’s for individual classes. For our earlier
example, D2 gets 2 pts, while D3 and D6 get 1 pt.

fractional sum: each class gets (1/n) pt for an ith
matched read, where n = #{Dj : �ij ≥ T} (n ≥ 1 for
matched reads). In our example,D2 gets 4/3 pt, while
D3 and D6 get 1/3 pt.

weighted sum: a jth class gets
(
�j/

∑
a∈A �a

)
pt, where

A = {j : �ij ≥ T}. In our example, D2 gets (1 +
88/(88+90+50)) = 1.39 pt,D3 gets (90/(88+90+
50)) = 0.39 pt, and D6 gets (50/(88 + 90 + 50)) =
0.22 pt.

Finally, we normalize the value of collected similarity
points by the number of reads in the query sample to
obtain the similarities to all the classes, and the sample
is classified to the class of the largest similarity. For our
example, regardless of the way used for computing the
similarity points, the query sample would be assigned to
D2 (for the weighted sum approach, the similarities would
be: 46.33% forD2, 13% forD3, 7.33% forD6, and 0% forD1,
D4, and D5).

Experimental validation
In this section, we present our experimental study per-
formed using MetaSUB Challenge data to evaluate our
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method and compare it with other techniques. We outline
the metrics used for evaluating the performance of inves-
tigated methods in “Evaluation methodology” section, the
obtained results are briefly reported in “Results” section
and discussed in detail in “Discussion” section.

Evaluation methodology
To evaluate our method, we perform leave-one-out cross
validation for the primary dataset. For the C1 test set, we
classify the samples against the primary dataset to check
whether they were assigned correctly. In both scenarios,
for every ith class, we determine the number of correctly
classified samples (TPi), predicted as belonging to that ith
class, and the number of samples incorrectly labeled as
belonging to that ith class (FPi). From these values, we
compute recall (true positive rate):

TPRi = TPi
ni

,

where ni is the number of samples that belong to the ith
class, precision (positive predictive value):

PPV i = TPi
TPi + FPi

,

and overall classification accuracy:

ACC =
∑N

i TPi
Ns

,

where Ns = ∑N
i ni is the total number of samples.

Results
Our experimental study has been divided into three main
parts: (i) determining the values of the hyper-parameters
of our method, (ii) comparison of our method against
other techniques reported in the literature, and (iii) clas-
sification of samples, whose origin was not covered by the
primary dataset. For the first two parts, we exploited the
primary dataset and the C1 test set, while for the third
part, the C2 and C3 test sets were used. The performance
of the Mash program that we considered as an alternative

to CoMeta, was verified using the primary set and the C1
test set.
In Tables 3 and 4, we show how our method performs

for the primary dataset (based on leave-one-out cross vali-
dation, performed for 311 samples) depending on whether
the infrequent k-mers are filtered at the class-level and
sample level, respectively. For each case, we investigated
three different techniques for computing the similarity
scores, namely simple sum, fractional sum, and weighted
sum. We report the overall classification accuracy for dif-
ferent values of thresholds T and M. In order to verify
that the coefficients T and M have similar impact on the
C1 test set, the same experiment was performed for that
test set (see Tables 5 and 6). For C1, the samples were
classified using the databases constructed from the pri-
mary dataset, hence cross validation was not performed (it
is worth noting thatC1 is much smaller, as it contains only
30 samples). Based on Table 4, the remaining experiments
reported in the paper were performed for sample-level fil-
tering (if not stated otherwise), using weighted sum, and
with T = 50% andM = 8.
Confusion matrix for the primary dataset obtained

based on leave-one-out cross validation is presented in
Table 7. For each row, we show samples from a sin-
gle location, classified to eight classes, created from the
remaining 310 samples (the correct results are positioned
on the diagonal). Performance metrics obtained from this
matrix are reported in Table 8 (three bottom rows). We
also show the scores obtained with class-level filtering,
and for the Mash program, we consider three values of
the sketch size (as in CoMeta, the k-mer length is 24). In
both cases, we use leave-one-out cross validation. More-
over, we quote the results published in other papers.
The evaluation methodology varied across these works.
Most of them performed cross validation for the primary
dataset [22–24] (including 10-fold [32] and leave-one-
out [25] approaches). However, in some studies, only a
subset of the primary dataset was analyzed, so we pro-
vide the number of samples (Ns) in the table. All the
papers report classification accuracy and most of them

Table 3 Classification accuracy obtained for the primary dataset using our method with class-level filtering at ci = 4

We report the scores for three approaches to cumulating the similarity points for a sample: a) simple sum, b) fractional sum, and c) weighted sum, each for different values of
threshold T and maximum number of classes that a single read can be classified to (M)
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Table 4 Classification accuracy obtained for the primary dataset using our method with sample-level filtering at ci = 4

We report the scores for three approaches to cumulating the similarity points for a sample: a) simple sum, b) fractional sum, and c) weighted sum, each for different values of
threshold T and maximum number of classes that a single read can be classified to (M)

provide precision (PPV ) and recall (TPV ) for the individ-
ual classes. It is worth noting that our validation method-
ology for the primary dataset is identical to that adopted
by Zhu [25], and no additional data were published after
the CAMDA 2018 competition concerning the primary
dataset.
In Table 9, we report the similarities (defined earlier

in “Data classification” section) between every sample in
the C1 test set and each class from the primary dataset,
obtained using our method with the CoMeta program.
Each sample is classified to the class with the high-
est similarity. Final classification outcomes obtained with
different methods for the C1 test set are presented in
Table 10, and they are summarized in Table 11. As for the
primary dataset, we quote the scores that were reported
in the papers focused on the MetaSUB Challenge.
The C2 test set is composed of three groups (C2_C1,

C2_C2, and C2_C3), each of which contains 12 sam-
ples acquired from the same geographical location. These
locations were made publicly known after closing the
MetaSUB Challenge—these were Ilorin (Nigeria), Lisbon
(Portugal), and Boston (USA). In Tables 12, 13, and 14, we
show the similarities between the samples in C2 and the
classes from the primary dataset.
In Table 15, we show the mutual similarities between 16

samples in the C3 test set, which were derived from four
cities (they include three cities covered by C2 and Bogota
in Colombia). For the MetaSUB Challenge, the number of

locations and their relation with other sets were unknown,
so this task consisted in clustering of the samples. Sub-
sequently, we normalized the similarities for each sample
(i.e., each row in Table 15), so that themaximum similarity
for each sample equals 100%, and we reordered the sam-
ples to identify the clusters (Table 16). After clustering, we
measured the similarity between the samples in C3 with
the classes from the primary dataset and from the C2 set.
The obtained similarity scores are reported in Table 17.
The time needed to build a k-mer database composed

of 106 reads was ca. 11.5 s (0.05 s to read 106 24-mers). To
compare a sample against a k-mer database using CoMeta
(to obtain match rate scores for every read), around 47 s
were required for every 106 reads (an average time for
the databases in the MetaSUB Challenge data). The time
needed to obtain the final similarity of a sample (for 106
reads) to all of the eight classes, was ca. 3.75 s.

Discussion
Our experiments on the primary dataset allowed us to
determine the best settings and values of the hyper-
parameters, as well as to analyze the sensitivity of our
method. From Tables 3 and 4, it can be seen that the
sample-level filtering of infrequent k-mers is definitely
better than if the databases are filtered at the class level.
Probably this is due to the fact that during the sample-
level filtering, only these k-mers are selected, which occur
at least a few times in a single sample (which reduces the

Table 5 Classification accuracy obtained for the C1 test set using our method with class-level filtering at ci = 4

We report the scores for three approaches to cumulating the similarity points for a sample: a) simple sum, b) fractional sum, and c) weighted sum, each for different values of
threshold T and maximum number of classes that a single read can be classified to (M)
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Table 6 Classification accuracy obtained for the C1 test set using our method with sample-level filtering at ci = 4

We report the scores for three approaches to cumulating the similarity points for a sample: a) simple sum, b) fractional sum, and c) weighted sum, each for different values of
threshold T and maximum number of classes that a single read can be classified to (M)

risk of selecting k-mers present due to sequencing errors).
During the class-level filtering, single erroneous k-mers
can be accumulated, as the databases at the class level are
much larger. Possibly, the ci parameter should depend on
the database size, but this would have to be verified.
The differences between three approaches towards

computing the similarity points allow us to conclude that
it is beneficial to take into account the number of classes
that each read is classified to (fractional sum and weighted
sum are better than simple sum). The sensitivity of our
method to the thresholds T and M is rather low—in gen-
eral, the results are best, if T is around 50% and M = 8
(i.e., the number of classes in the primary dataset). Impor-
tantly, the observations made for the primary dataset were
also confirmed by the results obtained for the C1 test
set—even though it is much smaller, the same tendencies
emerge here (Tables 5 and 6).
From Table 8, it can be seen that our method (with

CoMeta employed) is competitive with other techniques
with overall accuracy at 0.875, compared with the best
result of 0.912 [21] and the lowest of 0.71 [22]. How-
ever, the best score was reported for an unspecified subset
of the primary dataset (with Ns = 193 samples). The
best scores for the entire primary dataset (Ns = 311)

were reported in [23, 24] with an accuracy of 0.894. It
is worth noting that the scores quoted for other meth-
ods were reported at the CAMDA 2018 conference, and
it may be expected that these initial results will be fur-
ther improved. On the other hand, the primary set was
fully described before CAMDA 2018, so we do not ben-
efit from any additional information. When we use Mash
instead of CoMeta for comparing the samples, the results
of classification are significantly worse. Mash determines
the similarity between the samples by counting the num-
ber of k-mers found in both samples. CoMeta counts the
sum of matched fragments, (composed of k-mers), which
makes it more resistant to accidental similarities of short
fragments. An important advantage of our approach is
that contrary to these alternative methods, we do not
perform taxonomic or functional classification. Thus, for
comparing the samples we can exploit even those frag-
ments of sequences which are not covered by the reference
databases.
The results obtained using our method for the C1

data set are much better than those reported in other
works (Table 11), but it must be taken into account that
the ground-truth data were published only after closing
the MetaSUB Challenge, which puts us in a privileged

Table 7 Confusion matrix for the primary dataset obtained using our method with sample-level filtering, similarity points computed
using weighted sum, with T = 50% andM = 8

Predicted →
Tested ↓ AKL HAM NYC OFA PXO SAC SCL TOK ALL

AKL 4 6 4 0 1 0 0 0 15

HAM 2 13 1 0 0 0 0 0 16

NYC 1 1 113 11 0 0 0 0 126

OFA 0 0 0 20 0 0 0 0 20

PXO 0 0 1 0 57 0 0 2 60

SAC 0 0 3 0 0 30 1 0 34

SCL 0 0 1 0 3 0 16 0 20

TOK 0 0 0 0 1 0 0 19 20

ALL 7 20 123 31 62 30 17 21 311

The diagonal values in bold indicate the correct results
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Table 8 Scores obtained for the primary dataset using cross validation

AKL HAM NYC OFA PXO SAC SCL TOK Total

Ryan [21] #correct 7 10 25 20 60 16 18 20
∑ = 176

PPV 0.54 0.56 0.96 0.95 0.98 1 1 1 Ns = 193

TPR 0.47 0.63 0.96 1 1 1 0.9 1 ACC = 0.912

Sanchez et al. [24] #correct 9 11 110 17 60 34 17 20
∑ = 278

PPV 0.69 0.73 0.95 0.89 1 0.83 0.89 0.71 Ns = 311

TPR 0.6 0.69 0.87 0.85 1 1 0.85 1 ACC = 0.894

Harris et al. [32] — — — — — — — — — Ns = N/A

ACC = 0.897

Walker and Datta [22] TPR (median) 0.6 0.62 0.58 0.95 0.87 0.76 0.3 0.7 Ns = 211

— — — — — — — — — ACC = 0.71

Zhu [25] #correct 5 3 114 14 51 31 17 15
∑ = 250

TPR 0.33 0.19 0.9 0.74 0.85 0.91 0.85 0.75 Ns = 310

ACC = 0.81

Chierici et al. [23] — — — — — — — — — Ns = 311

ACC = 0.894

Our method using Mash #correct 15 15 50 20 60 31 19 20
∑ = 230

sketch size = 1000 PPV 0.34 0.26 1.00 0.67 1.00 1.00 1.00 1.00 Ns = 311

TPR 1.00 0.94 0.40 1.00 1.00 0.91 0.95 1.00 ACC = 0.740

Our method using Mash #correct 15 16 42 20 60 34 20 20
∑ = 227

sketch size = 10000 PPV 0.65 0.18 1.00 0.83 1.00 1.00 1.00 1.00 Ns = 311

TPR 1.00 1.00 0.33 1.00 1.00 1.00 1.00 1.00 ACC = 0.730

Our method using Mash #correct 15 16 44 20 60 34 19 20
∑ = 228

sketch size = 100000 PPV 0.60 0.18 1.00 1.00 1.00 1.00 1.00 1.00 Ns = 311

TPR 1.00 1.00 0.35 1.00 1.00 1.00 0.95 1.00 ACC = 0.733

Our method using CoMeta #correct 4 12 116 20 37 34 13 20
∑ = 256

(class-level filtering) PPV 0.67 0.63 0.92 0.74 1.00 0.97 1 0.42 Ns = 311

TPR 0.27 0.75 0.92 1.00 0.62 1.00 0.65 1.00 ACC = 0.823

Our method using CoMeta #correct 4 13 113 20 57 30 16 19
∑ = 272

(sample-level filtering) PPV 0.57 0.65 0.92 0.65 0.92 1.00 0.94 0.9 Ns = 311

TPR 0.27 0.81 0.9 1.00 0.95 0.88 0.8 0.95 ACC = 0.875

We report the number of correctly classified samples (#correct), precision (PPV), and recall (TPR) for each class, as well as the overall accuracy (ACC). Some of the values are
missing, as they were not reported in the referenced papers. Also, we show the number of samples (Ns), as in some works, the results for a subset of all of Ns = 311 samples
were reported

position here. Actually, in our submission to CAMDA
2018 [33], we identified correctly 19 out of 30 samples
(hence the accuracy was of 0.633), but no infrequent k-
mer filtering was performed there, and also we did not
remove human DNA from the samples. In the approach
proposed here, we misclassify only 2 out of 30 samples
(see Table 10), but we strongly benefit from information
that each sample in C1 belongs to one of the known

classes (that was clear before CAMDA 2018). It can be
seen from Table 9 that the values of highest similarities in
each row differ much among themselves. Thus, it would
be difficult to establish a cut-off threshold required for
open-world classification (when it is unknown whether
a sample originates from the places covered by the ref-
erence set). Our approach with Mash used instead of
CoMeta returned the worst results. While the scores for
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Table 9 Similarities (in %) of the samples in the C1 test set to the individual classes from the primary dataset, obtained using ourmethod

the primary dataset obtained usingMash are similar to the
classification results returned by other methods, for the
C1 test set they are extremely poor.
For the C2 test set, it can be seen from Table 12 that the

first group of samples was most similar to Offa (Nigeria),
so in our submission to CAMDA 2018 [33], we suspected
that the samples originated from Africa. This was cor-
rect, as the samples were derived from Ilorin in Nigeria.
Surprisingly, the samples that originate from Lisbon (Por-
tugal) are most similar to New York (USA) andOffa (Nige-
ria), while being little similar to Porto (Portugal), which
is geographically the closest to Lisbon (see Table 13). The
samples acquired in Boston (USA) were similar to several
classes, including New York, Porto, Santiago de Chile, and
Tokyo (see Table 14). Apparently, the geographical neigh-
borhood is not the most important factor influencing
the similarity between metagenomic samples. It may be
noticed that apart from the Nigerian cities, these are large

metropolises with many people travelling around, which
may affect themetagenomic fingerprint of these locations.
Therefore, it may be an interesting research direction to
analyze the differences between these databases to iden-
tify a set of unique k-mers that would work as a signature
of a certain location.
From Table 16, it can be observed that the samples

in the C3 test set form four clusters (we identified the
same clusters in our CAMDA submission [33]), and they
reflect the ground-truth origin of the samples, as shown
in Table 17. For clustering, the sample-wise normalization
helped much (compare Table 15 with Table 16), and it was
not difficult to identify the clusters manually. Neverthe-
less, for more samples, it would be necessary to automate
the clustering process, for example relying on bicluster
induction that can be performed for discrete [34] and con-
tinuous data [35]. It can also be seen from Table 17 that
the C3 samples are correctly classified to the databases
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Table 10 Detailed classification outcomes obtained using different methods for the C1 test set. The correct results are highlighted

Sample True Harris et al. Walker and Datta Zhu Chierici et al. Mash sketch Our method with filtering

ID origin [32] [22] [25] [23] size = 10000 class-level sample-level

C1_1 SCL SCL SAC SCL SCL SCL SCL SCL

C1_2 SCL SCL SCL SCL SCL SCL SCL SCL

C1_3 OFA OFA NYC OFA NYC OFA NYC NYC

C1_4 PXO PXO PXO PXO PXO AKL SAC PXO

C1_5 OFA OFA TOK OFA NYC OFA OFA OFA

C1_6 PXO PXO SCL PXO PXO PXO TOK PXO

C1_7 SCL SCL SCL NYC SCL SCL TOK PXO

C1_8 PXO PXO PXO PXO PXO PXO TOK PXO

C1_9 NYC OFA NYC NYC NYC HAM NYC NYC

C1_10 PXO PXO PXO PXO PXO TOK TOK PXO

C1_11 SCL SCL PXO SCL SCL SCL SCL SCL

C1_12 OFA OFA NYC OFA NYC OFA OFA OFA

C1_13 PXO PXO PXO TOK PXO AKL TOK PXO

C1_14 SCL SCL SAC SCL SCL SCL SCL SCL

C1_15 NYC HAM NYC NYC NYC HAM NYC NYC

C1_16 NYC AKL SCL AKL NYC AKL NYC NYC

C1_17 PXO PXO PXO TOK PXO AKL TOK PXO

C1_18 NYC AKL NYC AKL NYC HAM NYC NYC

C1_19 NYC AKL AKL AKL NYC HAM NYC NYC

C1_20 OFA OFA OFA OFA NYC HAM OFA OFA

C1_21 NYC AKL SAC NYC NYC HAM NYC NYC

C1_22 PXO PXO PXO PXO PXO PXO PXO PXO

C1_23 NYC AKL PXO AKL NYC AKL NYC NYC

C1_24 NYC HAM PXO AKL NYC AKL NYC NYC

C1_25 NYC HAM NYC HAM NYC HAM NYC NYC

C1_26 PXO PXO PXO PXO PXO PXO PXO PXO

C1_27 PXO PXO PXO PXO PXO PXO TOK PXO

C1_28 OFA OFA HAM OFA NYC AKL OFA OFA

C1_29 NYC AKL AKL AKL NYC HAM NYC NYC

C1_30 PXO PXO PXO TOK PXO PXO TOK PXO

constructed from the C2 set, which once again confirms
that our method can effectively be used for classifying
metagenomic data.

Conclusions
In this paper, we introduced a new method for environ-
mental classification of metagenomic reads to the refer-
ence groups. A significant advantage of our approach lies
in determining the similarity between the samples at the
read level, without the necessity to understand the con-
tents of these samples. The results of our experimental
study indicate that our approach is competitive with other
methods that are based on taxonomic or functional classi-
fication of each sample, which makes them dependent on

large databases of annotated reads. We investigated two
different programs (CoMeta and Mash) for comparing
the samples, and we found CoMeta much more appro-
priate for dealing with the investigated cases. Overall,
we have demonstrated that environmental classification
of metagenomic data is feasible without using such large
datasets.
The reported experimental results indicated several lim-

itations of the proposed method that can be addressed
in our future research. First of all, the maximum val-
ues of the similarity scores vary much across the classes,
so they would not be suitable for open-world classifica-
tion. Possibly, some normalization could be helpful here
as a postprocessing step. Furthermore, the results for
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Table 11 Classification scores obtained for the C1 test set using different methods

NYC OFA PXO SCL Overall accuracy

Harris et al. [32] #correct 0 5 10 5

PPV — 0.83 1.00 1.00 ACC = 0.667

TPR 0.00 1.00 1.00 1.00

Walker and Datta [22] #correct 4 1 9 2

PPV 0.67 1.00 0.75 0.50 ACC = 0.533

TPR 0.40 0.20 0.90 0.40

Zhu [25] #correct 3 5 7 4

PPV — 5.00 0.58 1.00 ACC = 0.633

TPR 0.30 1.00 0.70 0.80

Chierici et al. [23] #correct 10 0 10 5

PPV 0.67 — 1.00 1.00 ACC = 0.833

TPR 1.00 0.00 1.00 1.00

Our method using Mash #correct 0 3 4 2

sketch size = 1000 PPV — 1 1 0.5 ACC = 0.300

TPR 0 0.6 0.4 0.4

Our method using Mash #correct 0 3 6 5

sketch size = 10000 PPV — 1 1 1 ACC = 0.467

TPR 0 0.6 0.6 1

Our method using Mash #correct 0 3 5 4

sketch size = 100000 PPV — 1 1 1 ACC = 0.400

TPR 0 0.6 0.5 0.8

Our method using CoMeta #correct 10 4 2 4

(class-level filtering) PPV 0.91 1.00 0.91 1.00 ACC = 0.667

TPR 1.00 0.80 1.00 0.80

Our method using CoMeta #correct 10 4 10 4

(sample-level filtering) PPV 0.91 1.00 1.00 1.00 ACC = 0.933

TPR 1.00 0.80 0.20 0.80

We report the number of correctly classified samples (#correct), precision (PPV), and recall (TPR) for each class, as well as the overall accuracy (ACC)

the C2 set showed that geographical neighborhood does
not necessarily imply similarity between the metagenomic
samples—in the test sets, there were three pairs of cities
located near each other: Boston with New York, Lisbon
with Porto, and Offa with Iloris. Only for the last pair, we
observed high similarity between the samples. This would
have to be investigated whether the similarity measured at
the taxonomic or functional level between these samples
allows for obtaining better results in this case. A poten-
tially interesting direction of future research would be
to investigate the influence of the dataset characteristics
specific for particular locations (such as microbial diver-
sity or read depth) on the classification accuracy. Also,

it could be explored more deeply how the preprocess-
ing affects the classification accuracy—this may include
checking the influence of removing human DNA or filter-
ing infrequent k-mers using different values of ci, as well
as tuning the value of k (i.e., the length of k-mers). Finally,
for performing clustering of metagenomic samples, it may
be interesting to exploit biclustering so as to make the
reported approach scalable.
Our ongoing work is focused on enhancing our clas-

sification rules to consider both the similarities, as well
as the dissimilarities between the samples. We plan to
construct differential databases, which could be used
as specific markers of particular locations. We intend
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Table 12 Similarities (in %) of the samples that originate from Ilorin (Nigeria) in the C2 test set to the individual classes from the
primary dataset, obtained using our method

to investigate whether this would help in understand-
ing the surprising classification results observed for the
C2 test set. Furthermore, we will employ the developed
method for other datasets to check whether it is suitable
for solving different kinds of metagenomic classification
problems.

Reviewers’ comments
Reviewer 1, Eran Elhaik, Ph.D.
In this study, the authors propose a new method to identify
the geographical and surface of origins of microbiome sam-
ples. This method is applied to the MetaSUB database, as
part of the MetaSUB Forensics Challenge of the CAMDA
2018 conference. It is very difficult to evaluate the method
proposed by the authors since the manuscript is so poorly
written. I hope that the authors would use my comments to
improve their work.

Detailed comments and responses (major recommendations)
1. The abstract and the whole paper should be written

succinctly. There is much repetition, use of long
sentences, and marketing type of comments that are
unwarranted (“Therefore, this analysis can help
answer a variety of questions about the place from
where the samples have been derived”). I expect a
reduction of at least 25% in the size of both.
Response: Thank you for pointing that out—the
abstract, as well as some parts of the paper were too
long indeed. Also, we have carefully reviewed the
paper to remove the statements which are
unwarranted.

2. Figure 1 is unclear. There are no “red boxes” line 44,
page 4.
Response: Thank you very much for drawing our
attention to that. We have changed that figure

Table 13 Similarities (in %) of the samples that originate from Lisbon (Portugal) in the C2 test set to the individual classes from the
primary dataset, obtained using our method
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Table 14 Similarities (in %) of the samples that originate from Boston (USA) in the C2 test set to the individual classes from the primary
dataset, obtained using our method

alongside its caption and description in the text.
3. Add more figures. For example, a figure with a map

showing the origin of the samples with pie chart in
each location showing what % were successfully
predicted to those locations.
Response:We have modified Fig. 1 (which became
Fig. 2 in the revised manuscript) and added the
requested map (Fig. 1 in the revised manuscript).
Also, we improved the way of presenting the data in
the tables.

4. The entire paper is completely deviant of any results
or statistical analyses. This is not how research
papers are written.
Response: For the revised manuscript, we
substantially extended our experimental study and
we analyse our method quantitatively.

5. Did you consider using other methods? Maybe they
work better? The paper would be far more convincing
if you’d compare your method to other methods. I
realize this involves more work, but this would
markedly improve the paper. As it is, we have an

unverified method, with some unclear performances,
and we don’t know how other methods perform.
Response: Thank you for this comment. As many
authors who contributed to the MetaSUB Challenge
reported classification scores for the reference
database containing 311 samples (using cross
validation), we have also performed an experiment
following the same protocol. This has allowed us to
compare with other methods quantitatively, and
these scores are reported in the paper.

6. The authors adopted a strategy where the authors
should dig the results from their numerous tables.
That’s a poor habit. Put the results clearly in the
manuscript.
Response: Thank you, the results were indeed not
easy to analyze. We have reviewed the way we
present our experimental results and we hope that
this is much clearer now.

Detailed comments and responses (minor issues)
1. “Importantly, the existing methods for

environmental classification are based on taxonomic

Table 15 Mutual similarities (in %) between the samples in the C3 test set, obtained using our method
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Table 16 Mutual similarities (in %) between the samples in the C3 test set, obtained using our method, normalized independently for
each row

The samples were sorted manually to identify four clusters (cluster 1: C3_01, C3_13, and C3_15, cluster 2: C3_07, C3_08, C3_10, C3_11, and C3_16, cluster 3: C3_03, C3_05,
C3_09, and C3_12, and cluster 4: C3_04, C3_06, C3_14, and C3_02)

or functional classification which require large
databases of annotated gene sequences” – when you
say “the existing methods” can you be more specific?
Also, can you focus on biogeography as this is the
main focus of the paper.
Response: In the revised manuscript, we briefly
review other papers which perform environmental
classification, and we compare our results with the
works submitted to CAMDA 2018.

2. “The reported research was focused on verifying the
reliability” – not verifying, testing. You don’t know
that it works.
Response:We agree with that comment.

3. “In our work, we showed that our approach” why do
you need so many “our XX”? just say that “We
showed that our approach...” there are many
instances like that.

Response: Thank you for drawing our attention to
that.

4. “troublesome” from the abstract. Can you be more
specific? Provide numbers!
Response:We have shortened the abstract and this
phrase is no longer in the paper. Also, we have
reviewed the manuscript to remove any ambiguities.

5. The manuscript is full of typos. Commas are
missing. Authors should use past tense when
appropriate.
Response:We have carefully reviewed the
manuscript and we hope that the language has been
improved.

6. there are many works which → many studies
Response: Thank you, we have changed that.

7. remove “The paper is organized as follows” its
obvious

Table 17 Similarities (in %) of the samples that originate in the C3 test set to the individual classes from the primary dataset and from
the C2 test set, obtained using our method

Three out of four ground-truth origins were identical to these of the samples from the C2 set
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Response:We agree that this paragraph was
redundant, hence it was removed.

8. I don’t understand the method. Why 2N’s are added
in the middle and not 3 or 4?
Response:We have clarified that
description—generally, it is important to separate a
forward fragment from the backward one, and at
least a single symbol can be inserted (so that the
k-mers spanning over these two fragments are not
matched with anything in the database). Actually, a
single ’N’ would be sufficient, and we changed the
description accordingly.

9. First sentence of the methodology: This brief
explanation about other methods should be expanded
and go into the introduction? The justification for
using the authors’ method should also be expanded.
Response: Thank you, we have restructured that
description (we have also renamed it to
“Data classification” section). The other methods are
now described in “Background” section.

10. What are the colors in Table 7? Table 18 and other
tables. What is the true location? Why are there 1, 2,
or 3 results? What is the threshold?
Response: In the revised manuscript, we have
created most of the tables from scratch.

Reviewer 2, Alexandra Bettina Graf
Initial submission
Reviewer summary
1. The authors apply a k-mer approach using a

previously published program (CoMeta) and
methodology, to predict the location of metagenome
samples of unknown origin in the frame of the
CAMDA challenge. The samples consisted of the
following datasets:

Table 18 The number of unique k-mers in the class-level
databases extracted from the primary dataset (for k = 24) after
filtering infrequent k-mers (with ci = 4) from (i) sample-level
databases and (ii) class-level databases

Class name Class-level filtering Sample-level filtering

Chile, Santiago 3,330,241,847 1,947,678,404

Japan, Tokyo 6,179,603,359 3,436,570,406

New Zealand, Auckland 586,168,771 567,504,772

New Zealand, Hamilton 897,549,433 845,417,208

Nigeria, Offa 3,293,428,857 2,833,690,965

Portugal, Porto 3,793,750,265 3,108,855,323

USA, New York 7,413,034,106 4,252,342,215

USA, Sacramento 2,413,540,643 599,036,464

— Primary Dataset: 311 known samples from 8
cities in 6 countries

— C1 Sample Set: different cities and surfaces;
unknown but selected from cities from the
trainings set (primary dataset).

— C2 Sample Set: Samples from 3 cities that are
not included in the training set (primary
dataset). 12 samples/city.

— C3 Sample Set: 16 samples of unknown origin.
Although the method is intriguing, at the moment
the paper lacks objective measurements to evaluate
the presented method against other available
prediction methods.
Response: Thank you very much for this comment.
In the revised manuscript, we compare our method
with several other techniques that were used to
approach the MetaSUB Forensic Challenge. As most
of these studies report the scores for the tests on the
primary dataset based on cross validation, we have
performed the tests following the leave-one-out
approach.

2. I would like to see a more detailed analysis of the
robustness and accuracy of the method. The authors
work with datasets of which the ground truth is
known so they can calculate the accuracy of their
method.
Response: Thank you. We provide quantitative
scores to summarize the qualitative results presented
in our original manuscript. Also, we investigate the
influence of several hyper-parameters on the
classification accuracy.

3. Did the authors test how their method is influenced
by different parameters of the datasets, like microbial
diversity or read depth (this will also be influenced by
the human read content). Are there parameters of
metagenome datasets that influence the accuracy of
the method? Is there maybe a pattern in the data
from cities which could correctly be predicted and
data from cities that were not correctly predicted.
Response: Thank you for raising this idea. We have
tried to analyse the k-mer histograms to determine
the read depth, but we have not managed to reach
any meaningful conclusions. As this may be an
interesting direction for future research, we mention
that in the final section.

Detailed comments and responses (major recommendations)
1. The introduction reads unspecific and disconnected,

and it is not clear what the authors want to describe.
Response:We have revised the manuscript carefully
and restructured the unclear parts of the text.

2. In reference 3,4 are tools to bin assembled contigs,
assembly per-se does not use reference genomes, but
for taxonomic or functional analysis one still needs to
compare with known data or models.



Kawulok et al. Biology Direct           (2019) 14:20 Page 17 of 23

Response:We have clarified that description and in
the revised manuscript, we note that binning is used
as a preprocessing step that precedes classification.

3. There is nothing similar between reference 5, which
is based on long reads, although they do use mock
communities to evaluate their method, and Gerner et
al. which developed a method for in-silico artificial
communities against which to validate metagenome
approaches.
Response: Thank you for drawing our attention to
that—we have changed the description to be more
specific.

4. Zolfo et al., analyses the same CAMDA dataset as
Gerner et al., but apart from that there is no
similarity in method to Gerner et al. or Hudson et al.
Response:We have changed that description in the
revised version.

5. Removal of human DNA is a standard procedure in
the analysis of metagenomes. The analysis will be
strongly influenced by the amount of human DNA in
the sample. As also seen by the authors, the amount of
human DNA can be significant. It is often seen that a
sample includes human variants, which are not in the
reference genome, hence they would not be removed
in the process. Could the presence the remaining
human DNA cause a negative effect on the analysis?
Response: Human DNA may introduce some noise
to the data, while increasing the size of the datasets
and affecting time performance. It was confusing in
the original submission, as we presented incomplete
results without removing human DNA (which we
presented at CAMDA 2018). In the revised paper, we
report only the results obtained after removing
human DNA.

6. Did the authors see a correlation between content of
human DNA and prediction accuracy? I would
implore the authors to provide more information
about the parameters of the dataset, and the
behaviour of their method. Especially in view of a
significant amount of wrong/unprecise predictions.
For the C1 dataset, 23% of their predictions were
incorrect, if one includes unspecific predictions
(where more then one city was predicted) the value
rises to 40%. For the C2 dataset only one of the three
sets was predicted to be at least in the same country.
For the C3 dataset it looks like the method is
consistent in the prediction (when compared to the
results for C2), but assigns incorrect locations.
— Were all datasets metagenome datasets, or also

Amplicon?
— Did they have the same read length? Similar

quality? Similar read depth?
— Were the reads trimmed or otherwise

pre-processed, if so how?

All of these factors can influence the k-mer content.
Response:We agree that it would be very interesting
to explore how the properties of the metagenomic
datasets affect the prediction accuracy (including
removal of human DNA from the samples), and this
is an interesting direction for future work. Answering
the specific questions, there was no information
provided on whether the sequences were amplified.
The read lengths are generally uniform in majority of
the samples (we report these lengths in a table
attached as an Additional file 1), but there were also
samples with varied read length. We have described
how we preprocess the reads (actually, we do not
trim them).

7. The paper would also greatly benefit from the
inclusion of other datasets and the comparison with
other prediction approaches, in order to get a better
picture of the performance of their method.

— How does the method perform with other
datasets (e.g. Kawulok & Kawulok, 2018)?

— Or even more importantly how does it compare
to other prediction methods in terms of
prediction accuracy?

Response: In the revised manuscript, we still focus
on the MetaSUB data, however, we have extended
the analysis and added comparisons with other
methods. As most of submissions to CAMDA 2018
report the scores for the primary dataset adopting
leave-one-out cross validation, we have also
performed that experiment. This allowed us to
investigate the sensitivity of our method to its
hyper-parameters and to compare its performance
with other CAMDA 2018 papers. We will definitely
include more datasets in our future works, and we
commented on that in the conclusions.

Detailed comments and responses (minor issues)
1. Page 3, Line 26: the bacteria

Response: Thank you, corrected.

Second submission
The paper has improvedmuch with the changes introduced
by the authors, there are some minor issues left with regard
to typos and flow of the text.
Minor issues

• Page 2, Line 12, right: There is a full stop missing -
Forensics Challenge. We demonstrate that...

• Page 3, Line 19/20, right: “the” is missing - with “the”
human reference genome

• Page 3, Line 45-52, left: The part would read more
fluent if split in two sentences.

• Page 3, Line 52/53, left: “reverse complement” instead
of reversed complement.
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• Page 6, Line 26/27, right: “read level”, instead of reads
level

Response: Thank you very much for these detailed
remarks. We have corrected all these issues.

Reviewer 3, Chengsheng Zhu
In this paper, the authors adopted a k-mer comparison-
based algorithm that directly assigns metagenomic reads
to a group of reference sequences (class). The reference
sequences do not have to be taxonomically or functionally
annotated – in fact they can be from other metagenomes,
which allows circumvention of our limited knowledge of
the entire microbial world and makes full use of novel
sequences in metagenomes. The authors analyzed Meta-
SUB dataset from this year’s CAMDA challenge, deter-
mined the city origin of unknown samples, and clustered
unknown samples of the same origin into the same group.
I like the method the authors propose, but have some
concerns with how it is presented in the manuscript. My
comments are listed below.

Major issues
1. The methods part lacks important details at several

places. For example, the authors attribute each read
to the class with the largest match rate score – is
there a cutoff below which the read stays unassigned?
A read can be assigned to multiple classes if they
“have very similar match results” – what is the
definition of “very similar”? There is also a final step
where the read assignments are analyzed to classify
the samples – but the details are completely missing.
I would suggest the authors to add the info (or
according citations) to the manuscript so that the
readers can better understand the method.
Response: Thank you very much for these
comments. We have reviewed the description of our
method, as well as we introduced some changes to the
method itself (see “Data classification” section), and
we have defined exact classification criteria to remove
ambiguities. We introduce two thresholds (T andM)
and we analyse the method’s sensitivity to them. This
eliminated vague statements like “very similar”.

2. I have concerns with the authors’ data preprocessing
step: the authors concatenate two reads from the
same pair with “NN” in between as separators. First
of all, N is an alphabet used in sequencing. There
could be “NN”s in the original reads, which can cause
confusion with the artificially introduced “NN”s. I am
more worrisome when it comes to k-mer profiling.
The concatenated outputs are now continuous
“read”s with always two unknown residues in the
middle, while in reality these unknown gaps between
the forward and reverse fragments on genomes can

vary across different sequencing platforms, usually
with sizes much large than two. In my understanding
of what the authors did based on the manuscript,
they will inevitably generate a large amount of false
k-mers, spanning the forward read, the “NN”, and
the reverse read, e.g., “XXXXNNXXXX”. These
k-mers do not exist in the original metagenomes.
Due to the gap length variation in reality, I also doubt
the reliability of these k-mers as consistent patterns
that fingerprint classes across different sequencing
batches. After all, I am not clear of the purpose of
this preprocessing step. I don’t intuitively see how
the k-mer analysis from the concatenated “read”s is
much faster than from the raw reads, in the overall
computation time. In fact it generates a lot more
k-mers, which are, as discussed above, false signals. If
these issues have been taken care of and the
preprocessing step is indeed necessary, the authors
need to make it clear in the manuscript; otherwise I
would suggest to have this step removed.
Response: Thank you, this description was
confusing, indeed. In fact, this is an implementation
detail which results from the specific properties of the
CoMeta program that exploits KMC. As databases
do not contain k-mers with ’N’ symbols (this is a
feature of KMC), the ’N’ symbols can be added to the
query sequence without taking the risk of producing
false k-mers from the query sequence (the k-mers
with ’N’s would not be matched with anything in the
database). Also, as it is sufficient to use a single ’N’ as
a separator, we have changed that to avoid confusion.
We have clarified that description in the paper—
even though this is an implementation detail, it may
be relevant for those who want to reproduce our
method (or employ CoMeta for a similar task).

3. In basic experiments, the authors attempted to
account for the imbalanced nature of the data – they
removed, from the six largest classes (i.e., city-surface
combinations), the k-mers that appeared only once,
leaving the rest classes, however, still containing the
rare k-mers. I don’t agree with this method as it
introduces inconsistency between the top six classes
(also why six?) vs. the rest classes. Later in extended
experiments, the authors removed rare k-mers from
all classes, but this time they didn’t account for the
still imbalanced data. I would suggest if the authors
were to remove the rare k-mers, this procedure
should be carried out to all the classes in both basic
and extended experiments. Balancing data can be
achieved via, for example, randomly selecting x
samples from each class in a bootstrap manner.
And data balancing should be carried out in both
cases too, unless the authors provide evidence for not
to do so.
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Response: In the original manuscript, we included
our initial results presented at CAMDA 2018. We
agree that these experiments were not performed in a
systematic way, so we are not presenting them any
more in the revised paper to avoid confusion.
In the initial studies (presented at CAMDA 2018),
this analysis consisted of two steps. In the first one,
each read was attributed to that class, whose � was
the largest. Also, a read could be assigned to several
classes, if they had very similar match results, i.e., the
subsequent � values were greater than 90% of the
highest one. Each analyzed � had to be greater than
or equal to a certain threshold (set to 30%). In the
second step, the total number of reads classified to
each class was summed for the whole query sample,
and it was classified to the class, for which this
summed value was the largest. In the extended
studies, reported in the paper, we combine the
above-mentioned steps and thoroughly examine the
impact of various factors on the obtained results.

Minor issues
1. I would suggest the authors to report their

performance in actual numbers in additional to
listing the tables, e.g., XX% accuracy. This could give
the readers a quick and clear impression of the power
of their method.
Response: Thank you, we report the classification
accuracy in (%), and we compare the results with
other methods.

2. In the basic experiments for C2 set, the authors only
analyzed the first four samples. Are there any specific
reasons why not to include all the samples?
Response: As already mentioned in the response, we
showed the results underpinning our initial
submission to CAMDA 2018, which were
incomplete. We removed that from the paper.

3. Page 5, line 14: “...We can notice that for three
samples (C1_3, C1_14, and C1_21), the classification
result has been improved after using k-mer databases
without human fragments and infrequent k-mers...”
This is not necessarily correct. The authors drew this
conclusion from the comparison of C1 sample
assignments between the basic (N=23) and extended
(N=8) experiments in Table 7. One could argue that
the driving force for improvements here is the
different classes (23 city-surface combinations vs. 8
cities) rather than whether to remove the human
DNA and infrequent k-mers. In order to thoroughly
assess the effect of human DNA and infrequent
k-mers, the authors need to provide assigments
comparisons based on the same classes (e.g. N=8)
with or without human DNA and infrequent k-mers
(like in Table 6). In fact, Table 7 showed that further

removing more rare k-mers (ci=2 vs ci=4 when N=8)
didn’t affect the assignments.
Response: Thank you for this remark. In the revised
manuscript, we report the results only after removing
human fragments from the analysis (which is
considered a standard procedure).

Reviewer 4, Andre Kahles (second submission)
The authors describe new features of CoMeta using a
case study based on environmental metagenome sam-
ples published in context of the CAMDA 2018 confer-
ence. The central theme of the manuscript is to evaluate
new features of the previously presented CoMeta method
for the (re)-identification/class assignment of metagenome
sequence samples. The core strategy is to use the fast kmer
counter KMC to generate a sample-specific kmer database.
Depending on the application of several levels of filtering
and the join of several sample databases into class-level
database, a set of reference databases is created that is
then used for comparison against the kmer database of the
sample to be classified. Based on the text of the manuscript
as well as the responses to the previous three reviewers that
were made available with the submission, I acknowledge
that the text has been streamlined and now comprehen-
sively, though not succinctly, describes motivation, method
and evaluation. In general, I believe that the method is an
interesting contribution to the pool of tools assessing the
similarity of metagenome samples. However, it yet remains
to be determined how it would compare against its closest
competitors when evaluated in a rigorous manner. The lat-
ter is, unfortunately, the strongest weakness of the work. I
will summarize my points of criticism below.

Major issues
1. The work is presented as a case study in context of

the CAMDA 2018 conference. As a case study alone,
the contributed novelty is limited as the data is not
original any more. This leaves a contribution on the
methodological side, which requires comparison to
other methods, if existing. The authors chose to
compare against the results obtained by other
submitters to the CAMDA conference. The
evaluation presented in the paper includes data
revealed at the conference, such as the labels of
sample sets C2 and C3. From the text I believe, that
no such information was utilized for training in any
of the experiments. However, as the results from
other submitters to the CAMDA conference are used
as a point of comparison, that all did not have access
to this data, said comparison can only be a weak point
of support. It would be good, if at least one of the
competitor’s methods (for instance the one reporting
the strongest performance in their contribution)
would be run by the authors on the same data and
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evaluated rigorously. This would allow the reader to
see whether the new features of CoMeta increase
performance and if so, which one does so the most.
Response: Thank you very much for this remark.
Actually, the primary set was entirely published
before the CAMDA challenge, and no information
on that set was added afterwards, hence we believe
that the comparison for that set is rigorous and it
meets all the scientific standards. There have been
some differences between the competitors in the
adopted evaluation methodology (including
leave-one-out and 10-fold cross validation)—we
decided to follow the leave-one-out approach, as the
results for 10-fold cross validation may depend on
how the data are split into the folds. The results
obtained using leave-one-out cross validation can be
compared between themselves, as there is no
randomness involved. For clarity, we have added the
following remark in “Results” section:

It is worth noting that our validation methodology
for the primary dataset is identical to that adopted
by Zhu [25], and no additional data were published
after the CAMDA 2018 competition concerning
the primary dataset.

We agree that the best way for experimental
evaluation would be to implement the methods
published by other competitors (or used their
published implementations), but while the extended
abstracts published after CAMDA contain the results
that we quote in our paper, they are not detailed
enough to reproduce the methods rigorously. We
hope that the competitors will also publish full
papers with the results they have obtained for all the
CAMDA datasets, which would make it possible to
compare the methods for the remaining datasets (C1,
C2, and C3) as well. Overall, we expect that adopting
the leave-one-out approach should help achieve that
goal.

2. The main task to be solved is to determine distances
between metagenome samples. There are other
methods in the field that require little overhead to
run that approximate such distances (such as MASH
by Ondov et al.). It would be good to see how
CoMeta, which is based on the full kmer spectrum,
would compare to such sketching methods.
Response: Thank you for this suggestion. We
decided to implement another variant of our method,
in which we use Mash instead of CoMeta for
determining the similarity between the samples. We
have evaluated that variant for the primary dataset
and for C1, as classification accuracy can be
evaluated for these cases. The results obtained using

Mash instead of CoMeta for the primary dataset are
worse than those obtained using other methods, and
they are extremely poor for the C1 test set. Overall,
the new results that we report and discuss in the
revised paper clearly show that our approach is
highly sensitive to the tool used for measuring the
sample similarity, and that the approximate
matching methods like Mash cannot be
straightforwardly applied here. Nevertheless, this
poses an interesting direction for future work.

3. The step of hyper parameter tuning is not quite clear
to me. From the text I get that the authors use
leave-one-out-cross-validation on the 311 samples of
the primary dataset to determine values for M and T
(see Tables 3 and 4). Why is this repeated on the test
set C1 (Tables 5 and 6)? Are both the primary dataset
and the C1 set used for fixing the hyper parameters?
If yes, how are the results combined?
Response: Thank you, this was not clearly stated in
the paper, indeed. We used the primary set to tune
the hyper-parameters. We have repeated the same
tests for C1 in order to verify whether the
observations made for the primary set are correct for
other data. We have commented that in the revised
paper.

4. Some expressions used in the text are not properly
defined, e.g., the “match rate score” (page 4). It would
be helpful to see how it is computed.
Response: In the revised paper, we have briefly
explained how these expression are computed, and
we added a comment that exact algorithm
description can be found in our earlier paper [26]
(which is published Open Access).

Minor issues
1. I think it would help the understanding of the setup

of the classification if Fig. 2 gets extended to also
include the generation of data sets D1, ...,DN ,
including the initial datasets D0

1, ...,D
0
N and the

removal of human read set DH .
Response: Thank you for this suggestion—we have
extended the figure, and now it includes the step of
removing human reads.

2. In the background the authors write about
“unsupervised classification”. This is a bit confusing,
as classification is usually a representative of
supervised learning. Is it clustering that is actually
meant here?
Response: Yes, we meant “clustering” when using
the term “unsupervised classification”. We have
clarified that in the text to avoid confusion.

3. Also in the background the authors refer to
“microbiome fingerprints”. This term is not defined
and it is not quite clear what exactly the authors
mean by this.
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Response: Thank you for drawing our attention to
this. Actually, different concepts may be hidden
behind this term, so we have clearly defined its
meaning in the context of our research:

Taking that into account, in our work, the
microbiome fingerprint is defined as a set of DNA
fragments (k-mers) derived from organisms living
in a given city.

4. In the section on Data processing (page 3) the
authors write “by counting the number of the
nucleotides in those k-mers which occur both in the
read and in the group”. This is not quite clear to me.
The text describes the use of KMC, a kmer counter,
but here the authors refer to counting nucleotides.
Response: In the revised paper, we have added a
brief explanation on how the match rate score is
computed, but for the details, it is better to refer to
our earlier paper [26], in which this is explained
thoroughly.

5. On page 4 the authors write “For each ith read, we
create a list of match rate scores ...”. This directly
follows the description of Fig. 2, where the match
rate scores are actually grouped by Dj, rather than by
Ri. Maybe the depiction in Fig. 2 could be improved?
Response: Thank you for spotting that—we have
corrected that in Fig. 2.

6. In the current setting, the classification of a dataset
follows the “winner takes it all” principle, as this
reflects the setup of the experiments. However, it
would be interesting if the authors could discuss how
robust this is in their evaluations and also comment
on other strategies to derive the class label, e.g.,
through mixing the similarity vectors of all samples
of the same group in C2.
Response: Thank you for this remark. In fact, the
samples in the C2 set originate from other places that
those covered by the primary set (and this was clearly
stated before CAMDA), so there is no reason to
combine the partial results (obtained for every
sample) at the group level. We agree that it would be
an interesting direction for future research to
investigate different strategies towards fusing the
results obtained from multiple samples, however the
dataset would have to be structured in a different way
to verify the robustness of such approaches.

7. Sometimes statements would benefit from some
context/interpretation. For instance, in the
discussion the authors write: “sample-level filtering
of infrequent k-mers is definitely better than if the
databases are filtered at the class level”. While this
observation is true, it would be interesting to
understand why this is the case. Also further down

the authors write: “An important advantage of our
approach is that ... we do not perform taxonomic or
functional classification.” Why is this an advantage?
Response: Thank you for these questions. We have
tried to clarify that in the revised paper. Regarding
filtering the infrequent k-mers, we have added the
following comment:

Probably this is due to the fact that during the
sample-level filtering, only these k-mers are
selected, which occur at least a few times in a
single sample (which reduces the risk of selecting
k-mers present due to sequencing errors). During
the class-level filtering, single erroneous k-mers
can be accumulated, as the databases at the class
level are much larger. Possibly, the ci parameter
should depend on the database size, but this would
have to be verified.

Regarding avoiding taxonomic or functional
classification, the advantages are twofold: (i) we do
not need large reference databases to perform the
analysis, and (ii) we may exploit even these fragments
which are not covered by existing databases (they do
not cover all of the existing organisms). We have
commented that in “Discussion” section.

8. In the Conclusion the authors write about
“open-world classification”. What is meant by this?
Response:We use this term in “Discussion” section
for the first time, hence we have added an
explanation there:

...it would be difficult to establish a cut-off
threshold required for open-world classification
(when it is unknown whether a sample originates
from the places covered by the reference set).

9. The authors are tuning hyper parameters M and T
but not k. Why?
Response: The influence of the hyper-parameter k
has been deeply analysed in the literature, so we have
focused on the new hyper-parameters in our research,
assuming sensible value of k. We are planning to
verify whether k (as well as ci ) can be better tuned,
but this would require much larger computational
effort. This problem is commented in Conclusions:

Also, it could be explored more deeply how the
preprocessing affects the classification
accuracy—this may include checking the influence
of removing human DNA or filtering infrequent
k-mers using different values of ci, as well as
tuning the value of k (i.e., the length of k-mers).

Some grammar issues/typos
1. page 2: We demonstrate that it is not necessary to

identify neither the organisms, nor their functions ...
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→ We demonstrate that it is not necessary to
identify the organisms or their functions ...

2. page 3: The majority of studies on metagenome ... →
The majority of studies on metagenomes ...

3. page 3: ... allows a database being built ... → ... allows
for building a database ...

4. page 5: sensitiveness (used twice) → sensitivity
5. page 6: ... with the accuracy of ... → with an accuracy

of ...
Response:Thank you for these detailed remarks—we
have corrected the paper following your comments.
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