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Abstract

Background: Inferring the mechanisms that drive transcriptional regulation is of great interest to biologists. Generally,
methods that predict physical interactions between transcription factors (TFs) based on positional information of their
binding sites (e.g. chromatin immunoprecipitation followed by sequencing (ChIP-Seq) experiments) cannot distinguish
between different kinds of interaction at the same binding spots, such as co-operation and competition.

Results: In this work, we present the Network-Augmented Transcriptional Interaction and Coregulation Analyser
(NAUTICA), which employs information from protein-protein interaction (PPI) networks to assign TF-TF interaction
candidates to one of three classes: competition, co-operation and non-interactions. NAUTICA filters available PPI
network edges and fits a prediction model based on the number of shared partners in the PPI network between two
candidate interactors.

Conclusions: NAUTICA improves on existing positional information-based TF-TF interaction prediction results,
demonstrating how PPI information can improve the quality of TF interaction prediction. NAUTICA predictions - both
co-operations and competitions - are supported by literature investigation, providing evidence on its capability of
providing novel interactions of both kinds.

Reviewers: This article was reviewed by Zoltán Hegedüs and Endre Barta.

Keywords: Transcription factors, Interaction classification, Protein−protein interactions, TF-TF competition, Data-driven
analysis

Background
The classification of interactions between transcription
factors (TFs) is foundational to the study of regulatory
modules, i.e. groups of TFs implicated in the regulation
of the same genes / transcriptional pathways. Classifica-
tion based on localized binding-site information alone
presents significant challenges, due to the confounding
effect of intervening factors and the fact that some

interactions happen only in the regulatory regions spe-
cific to certain genes or in noncoding area.
It is challenging to infer the precise nature of the in-

teractions between two or more TFs, as they are
dependent on their target, the cellular context in which
the study is performed, and so on [1]. Transcription fac-
tors can compete to bind to a shared partner, compete
for the same binding spots, or cooperate to coregulate
some genes (and not others). Also, an investigation of all
possible interactions between transcription factors (even
for small genomes) is combinatorial in nature, and the
cost of said wet lab experiments grows with the number
of potential candidates.
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In our previous work, we developed the Transcriptional
Interaction and Coregulation Analyzer (TICA) [2], a tool
for the discovery of new interaction candidates from hu-
man ChIP-Seq datasets using statistical inference, based
on the relative positioning of the two potential interactors’
binding sites determined from ChIP-Seq experiments.
One of the challenges of TICA is that it cannot discern
the nature of the interaction itself. The positional nature
of a TICA prediction only ensures the presence of physical
interaction at a molecular level without inferring the func-
tional nature of the interaction itself; other TF-TF inter-
action prediction tools (TACO [3], CENTDIST [4], etc.)
based purely on binding site information derived from e.g.
ChIP-Seq peaks and/or TF binding motifs share this same
limitation.
Intuition suggests that a high number of shared

protein-protein interactions is indicative of cooperative
behaviour, while the reverse indicates competition for
shared partners or no interaction at all. To quantify this,
we could use the number of shared interactions in a ref-
erence protein-protein interaction (PPI) network, viz.
BioGRID [5], as a measure of co-operation between
transcription factors. However, it is not straightforward
to classify interactions as cooperative or competitive
solely by this measure. Consider for example the follow-
ing cases: HDAC1 and E2F1 - evidence presented by
Doetzlhofer et al. [6] indicates that HDAC1 and E2F1
compete for binding to the C terminus of transcription
factor SP1, but there are 16 shared interactors between
the two in BioGRID. OCT4 and SOX2 - these two are
ubiquitous transcription factors of the basic helix-loop-
helix leucine zipper family that form homo- and hetero-
dimers and recognize a CACGTG motif termed E box
[7]. Nevertheless, they have no shared interactor in Bio-
GRID. c-JUN and c-MYC - to the best of our knowledge,
no evidence is available between these two transcription
factors in human cell specimen. Yet they share 15 com-
mon interactors in BioGRID.
These examples indicate that such a model is too sim-

plistic to describe the complexity of TF-TF interactions.
They also suggest that while the number of shared inter-
actions might be an informative feature, it cannot be
used on its own to correctly separate these three classes.
In this paper, we describe the Network-Augmented

Transcriptional Interaction and Coregulation Analyser
(NAUTICA). NAUTICA classifies TF-TF interaction
predictions produced by a prediction tool like TICA,
which considers positional information of binding sites
alone, by using the number of shared interactions be-
tween the candidate TFs in a PPI network. NAUTICA’s
performance is superior to two simpler approaches, viz.
using only TICA (or other similar TF-TF interaction
prediction tool, e.g. CENTDIST), and using only infor-
mation coming from the PPI network.

It is worth noting that we use the term “transcription
factor” as a generalized terminology. In a strict definition,
transcription factors are proteins that control the rate of
DNA-to-mRNA transcription by direct binding of DNA
through DNA-binding domains. However, here, we in-
clude in our set of eligible proteins also those that bind
transcription factors on their binding pockets. This
generalization makes the problem of deciphering the na-
ture of the interactions of these proteins more interesting
(as it includes both interactions on DNA and on binding
pockets), as well as more complete (as these proteins are
part of the involved transcription machineries.)

Results
We trained NAUTICA on the training dataset TR (de-
fined in Methods). The thresholds were fitted by maximis-
ing recall of each class with respect to TR. A parameter
sensitivity analysis was performed to evaluate stability of
the measures: results are described in Supplementary
Table ST1.1. Optimal values were selected as τH = 8 and
τL = 5. We then applied NAUTICA to each TF pair for
which there is a TICA prediction (whether interaction or
not) and each TF in the pair has degree at least 3 in Bio-
GRID. There are 32,796 such pairs (and thus 32,796
NAUTICA predictions). Prediction counts are tabulated
in Table 1.

Calibrated confusion matrix shows high levels of recall for
NINTs and COOPs
We used dataset TS to evaluate the recall of NAUTICA,
subject to the calibrations described in Recall calibra-
tion and evaluation. The confusion matrices for the fit-
ted parameters both without and with calibrations are
reported in Table 2 (upper and lower, respectively). By
comparing the two, we observe that, after calibration,
the method displays very good recall in predicting co-
operations (COOP, 75%) and non-interactions (NINT,
83%). The table also reveals a lower recall for competi-
tions (COMP, 39%), and that there is difficulty in distin-
guishing between COMP and NINT. On the other hand,
if one is interested in distinguishing COOP from COMP
and NINT (i.e. one is not interested in distinguishing
COMP and NINT), one can expect excellent perform-
ance (75% recall for COOP and 98% recall for COMP
and NINT combined.)

Table 1 Breakdown of predictions based on class

Class Count Percentage

COOP 806 02.46%

COMP 2807 08.56%

NINT 29,183 88.68%

TOTAL 32,796 100.0%

Note: Percentages indicate the relative proportion of classes in the output set
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NAUTICA theoretical precision estimation confirms
soundness
At the same time, we ran the theoretical estimation de-
scribed in Precision estimation on dataset TS (cf.
Methods). Here are the results where we analysed a total
of M = 32823 pairs. Under the assumption that the pro-
portions of actual NINT:COMP:COOP is 80:10:10, and
assuming recalls as in Table 2 (RNINT = 0.83, RCOMP =
0.39, RCO0P = 0.75), we have an estimated precision of
interaction prediction of

PINT ¼ 0:040M þ 0:075M
0:040M þ 0:075M þ 0:136M

¼ 0:46

This estimate of precision is very respectable, given
the assumption that there are eight times more NINT
than each of COMP and COOP cases in the population;
it is circa two folds better than random guessing.
In fact, under a general assumption that the ratio NINT:

COMP:COOP is y:x:x (where y + 2x = 1), and the same re-
calls as before, we can derive PINT = 1.14x/(0.8x + 0.17).
Moreover, PINT/2x gives the number of folds improve-
ment over random guessing. Thus, when x < 0.14 (i.e. no
more than 28% of random TF pairs are COOP or COMP,
which seems a safe assumption), the estimated precision is
always at least two folds better than random. And this im-
provement over random monotonically increases as x
decreases.

Comparison with TICA and a PPI-based tree
We compared NAUTICA’s predictions with its two basic
components: the TF-TF interaction prediction tool (viz.
TICA) and a decision tree based on BioGRID alone. We
did this to investigate whether or not the novel method
is more effective than its constituents. For what con-
cerns the interaction prediction tool, we ran TICA on
TS (an independent test set, described in Section Recall
calibration and evaluation), and compared the results.

Since TICA alone does not distinguish between co-
operations and competitions, we combine the two clas-
ses into a more general “interaction” class in this com-
parison. Also, in NAUTICA, we have relaxed our TICA
statistical threshold (to 0.3) to increase recall (since
NAUTICA is able to filter the corresponding increase in
false positives from TICA). The comparison here is done
against TICA alone, both using the same statistical
threshold (viz., 0.3) and with TICA at its original 0.2
threshold. Results are shown in Table 3. NAUTICA has
a 17%-higher recall w.r.t. TICA at the 0.2 threshold
when used to predict noninteractions on dataset TS
(36%-higher after calibration), with the added capability
of being able to distinguish between co-operations and
competitions. On these, NAUTICA also exhibits better
recall on co-operations (20%-higher after calibration) at
comparable recall on competitions. NAUTICA has
higher calibrated recall on noninteractions and coopera-
tions, but lower calibrated recall on competitions, than
TICA at the 0.3 threshold. However, as noninteracting
TF pairs are expected to vastly outnumber interacting
pairs in the real population, NAUTICA’s much better
recall on noninteractions is a significant advantage that
fully compensates for its lower recall on competitions
than TICA at the 0.3 threshold in practice.
For what concerns BioGRID, we defined a simplified

decision tree based only on N12 (i.e., the number of
shared interactors in the network, cf. Methods), using
the following rules. Consider two thresholds L and H
distinct from τL and τH.Then, if a candidate TF pair has
a number of shared interactions between 0 and L (L ex-
clusive), predict non-interaction; if a candidate has a
number of shared interactions between L and H (L in-
clusive, H exclusive), predict competition; otherwise,
predict co-operation.
L and H were estimated based on the same training

set TR as in NAUTICA, for consistency. The calibration
of parameters is shown in Supplementary Table ST1.2;
the final thresholds are L = 1 and H = 10. We ran this
simple BioGRID decision tree on TS. The resulting cali-
brated recall values are RNINT = 0.79, RCOMP = 0.96, and
RCOOP = 0.40; the corresponding theoretical precision is
PINT = 0.45. NAUTICA has better performance after cali-
bration with respect to dataset TS when predicting non-
interactions and co-operation (cf. Table 2). While the
BioGRID decision tree’s performance on competition
looks superior on the surface, it is important to note that
it predicts every TF pair that has 1 ≤N12 < 10 as a com-
petition. In other words, the BioGRID decision tree ---if
we ran it on all candidates, as opposed to just TS---
would predict 10,016 out of 32,796 candidates as compe-
titions, or 30.5%, which seems an unrealistic amount. In
contrast, among these 10,016 candidates, NAUTICA
would predict 6674 as non-interactions, 2760 as

Table 2 Recall estimates on testing set TS

Actual class P_NINT P_COMP P_COOP Recall

NINT 21 17 13 41%

COMP 3 3 2 37%

COOP 15 2 46 73%

NINTa 5292 928 145 83%

COMPa 68 49 6 39%

COOPa 154 17 520 75%

Note: Upper - no calibration. Lower - with calibration for recall (also marked
with a). The calibration is described in Recall calibration and evaluation and
is performed by substituting to each prediction (whether correct or not) its
weight. The weight is defined as the ratio between the number of interactions
that have the same N_12 as that prediction and the same count done for the
N12 value that has the least interactions. Note that specificity cannot be
calibrated without some additional assumptions
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competitions and 582 as co-operation. NAUTICA’s cate-
gorizations seem more reasonable than the simple Bio-
GRID decision tree. We also note that the BioGRID
decision tree’s 4% lower recall on NINT results in a sig-
nificant number of mispredictions, as NINTs vastly out-
number the other classes.
The NAUTICA decision tree can use any predictor of

TF-TF interaction instead of TICA. Candidates are, for
instance, CENDIST and TACO. Every predictor has its
own limitations. For instance, by using TACO we would
selectively focus on co-operations (as TACO predicts
dimerization, viz. physical binding, which is most com-
patible with cooperation), while CENDIST requires both
ChIP-seq and a motif database.

CORUM analysis reveals stronger enrichment for COOPs
Finally, we can use protein complex information to further
validate NAUTICA’s predictions. Transcription factors that
cooperate to bind DNA as a single unit should have a higher
likelihood to be found in protein complex databases.
Conversely, competitions and non-interactions should have a
low likelihood to be reported as co-complexes. (Competitors
bind mutual exclusively to a shared partner to form different
complexes. They are thus unlikely---but not completely im-
possible---to bind each other in a third complex.) Thus, we
compare our list of predicted TF-TF interactions to CORUM
[8], a curated database of protein complexes. We use the
human complex database released on September 3rd, 2018
(available at http://mips.helmholtz-muenchen.de/corum/
#download). To estimate the representation of each class in
CORUM, we check for each predicted member of the class
(COOP, COMP, or NINT) whether there is at least one
CORUM complex that contains both constituent TFs. The
ratio between this list and the total number of predicted
interactions in that class is used to compute the enrichment
of that class in CORUM. Note that this is done across the
spectrum of predictions available, as opposed to using only
the test dataset TS. We report in Table 4 the percentage of
COOP, COMP and NINT which are found in CORUM
complexes.

The over-representation of COOP cases in CORUM is
consistent with and validates our hypothesis. In particu-
lar, only 2.9% of our COMP+NINT pairs are in CORUM
complexes, while 26.1% of COOP are in these com-
plexes. The slight enrichment in CORUM of competi-
tions over non-interactions is also consistent with the
expectation that some competing TFs can be members
of the same complex while being mutually exclusive in
other complexes. The somewhat low figure of 26.1% of
predicted co-operations being found in CORUM is also
not unexpected, due to the incompleteness of CORUM.

Investigation of significant cases shows both novel and
known interactions
We manually validated the strongest predictions achieved
from our method. We considered the top 40 predictions of
co-operations as those with higher N12 extracted respect-
ively along the (1) and (0,0) branches of Fig. 4. We then
searched these predictions within PubMed articles. We
found that, out of the said 40 predicted co-operations, 19
were mentioned in articles, and 12 of them (63%) were
mentioned as co-operating or co-binding; out of 40 pre-
dicted competitions, 17 were mentioned in articles, and 5
of them (29%) were mentioned as competitions, whereas
for many of them a classification based on literature review
was not possible. Respectively 21 and 23 pairs out of the
above sets were not mentioned in PubMed, they represent
original predictions of TF-TF co-operation or competition.
The full list is provided in Supplementary Table ST2.

Table 3 Recall estimation versus TICA with respect to testing dataset TS

Actual class TICA (p = 0.2) TICA (p = 0.3) NAUTICA

NINT INT Recall NINT INT Recall NINT INT Recall

NINT 18 33 35% 18 33 35% 21 30 41%

COMP 4 4 50% 3 5 63% 3 5 63%

COOP 25 38 60% 22 41 65% 38 48 76%

NINTa 3868 2497 61% 3868 2497 61% 5259 1106 83%

COMPa 69 54 44% 36 87 71% 68 55 44%

COOPa 248 443 64% 186 500 73% 154 537 77%

Note: COOP and COMP predictions from NAUTICA were collapsed into the general ``interaction” (INT) category for the comparison. Upper: no calibration. Lower:
with calibration (also marked with a). Calibration is done with the same procedure as the general NAUTICA recall analysis (Table 2)

Table 4 Enrichment of NAUTICA predictions in CORUM

Label Percentage
in CORUM

Fold-increase
w.r.t. COOP

Fold-increase
w.r.t. COMP

Fold-increase
w.r.t. NINT

COOP 26.1% – 10.88 52.20

COMP 2.4% 0.09 – 4.80

NINT 0.5% 0.02 0.19 –

Note: Breakdown by class. Fold-increase is the ratio between the two
percentages. In line with the fact that CORUM privileges co-operations, only
2.9% of predicted non-cooperations (COMP+NINT) are supported by CORUM
evidence, whereas 26.1% of predicted co-operations (COOP) are supported
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We also investigated three groups of TFs with known
biological interactions to evaluate the quality of NAU-
TICA predictions. First, the triplet comprised of MAX,
MYC and MNT is known to engage in competitive be-
haviour. Specifically, MYC is competing with MNT to
bind to MAX and form a heterodimer. NAUTICA cor-
rectly predicts both the MAX/MYC and MAX/MNT
(BioGRID and TICA predict interaction) co-operative
behaviour, while the MNT/MYC pair is predicted as
competitive due to the lack of shared BioGRID edges.
This behaviour is confirmed by several experimental
studies. Similar results can be obtained by substituting
SIN3A to MNT [9] [10].
Consider now the cohesin subcomplex RAD21 / SMC1

/ SMC3. Cohesin is involved in DNA looping [11]. NAU-
TICA correctly predicts the co-operation of SMC3 and
RAD21, while predicting the competition of HDAC2 with
SMC3. Since HDAC2 is involved in the chromatin com-
pacting processes caused by DNA deacetylation, it is rea-
sonable that it competes for the same binding spots as
cohesin; RAD21 and HDAC2 are predicted to have no
interaction, which makes sense because RAD21 acts as a
bridge between the SMC subunits of cohesin and bears lit-
tle direct effect on the DNA binding of that complex [12].
Finally, evidence has been found of a competitive be-

haviour between Early Growth Response 1 (EGR1) and
the TATA Box-binding Protein TBP [13]. Although
NAUTICA predicts no interaction between the two (due
to lack of predicted TF interaction), it does predict a
competition between EGR1 and the TBP-Associated Fac-
tor 1 (TAF1), which is required for the formation of the
TFIID complex containing TBP [14]. Thus, it is possible
to hypothesize that EGR1 is in fact competing for the
binding spots of TAF1, and preventing the recruitment
of the same for the formation of the TFIID complex,
resulting in an apparent competition between the two.

Discussion
In this paper we have presented NAUTICA, a novel
methodology that improves upon our TICA framework
(and other similar framework based on TF binding-
position information), and aims at enriching the previ-
ous model by classifying predicted interactions as co-
operations or competitions. It also corrects previous ex-
amples of false positives, by eliminating non-interacting
TF pairs which were reported by ChIP-Seq to bind in
the same promoters; this might be because the ChIP-Seq
experiments were conducted on individual TFs separ-
ately and hence peaks located on near-by positions
might not be on the same instances. Although we per-
formed all validations using TICA as a reference frame-
work for TF-TF interaction, the NAUTICA model can
be used with other similar frameworks based on TF
binding-position information. Examples of these are

TACO and CENTDIST. We did not incorporate these
into NAUTICA as we do not own these tools.
To the best of our knowledge there is no method that

performs wide-ranging TF interaction classification, so
NAUTICA is a new contribution to the field. Several
methods perform predictions on TF-TF cooperation,
such as [15], but these methods require TF binding
motif predictions and/or knockdown experiments, mak-
ing comparison difficult.
NAUTICA shows good levels of recall with respect to

all different interaction classes, especially after calibra-
tion with respect to the density of each N12 bin, making
it a powerful tool for TF-TF interaction classification. It
works well in separating co-operating from competing
TFs (cf. Table 2), which is of interest since (to the best
of our knowledge) there is no other computational
method that makes the same distinction. The enrich-
ment of co-operation predictions with respect to
CORUM complexes is consistent with biological intu-
ition, further supporting our claim that NAUTICA can
correctly distinguish between co-operations and compe-
titions. Our estimation of precision, while penalized by
the scarcity of known TF-TF competition cases in the
literature, is still significant at 45%, which is some two-
folds better than random guessing under the assumption
that the ratio NINT:COOP:COMP is 8:1:1. Moreover,
the smaller the faction of interacting TF pairs is among
all possible TF pairs in real life, the better this improve-
ment over random is.
Even when one is not interested in the distinction be-

tween co-operating and competing TFs, NAUTICA pre-
dictions are still very useful. Table 2 reveals that
noninteracting TF pairs which are mis-predicted by
TICA as interacting are about 6 folds (= 928/145) more
likely to be mis-predicted as competing than as co-
operating pairs. Hence large fractions of false-positive
interacting TF pairs from TICA predictions can be elim-
inated by dropping those that NAUTICA classifies as
noninteracting or competing.
The choice of parameters used for NAUTICA is sup-

ported by the distribution of the number of shared inter-
actions N12 across the various bins we defined, which
marks an over-representation of co-operating TF-TF
pairs for high values of N12 and conversely an under-
representation at smaller N12. The relatively high count
of co-operating TF-TF pairs at N12 = 0 (and other very
small N12 values) is likely due to incompleteness of the
PPI network. The results are nonetheless consistent with
our model assumptions and indicate that NAUTICA is
using sensible parameters in its decision points. Bins 0,
8, 9 and 10+ are highly significant, providing further evi-
dence to our claims. We note that bins 1, 2, 3, 4 and 5
are not significant according to the χ2 test, indicating
that the co-operation claim in those bins is harder to
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support (though the existence of direct PPI edges in Bio-
GRID and positive TICA predictions help resolve cases
in these bins). Details on the χ2 test and the relative risk/
odds ratio analysis of N12 bins are given in Supplemen-
tary File 1.
Validation for NAUTICA classification is easily done

with respect to the co-operation class, for which litera-
ture is more readily available, but trickier for the compe-
tition cases. It is indeed harder to find direct
competition evidence in the literature. However, by
using indirect evidence such as CORUM, we show that
NAUTICA has solid biological premises and distin-
guishes the competitive and co-operative cases.
There is an interaction type that can be classified as

between COMP and NINT, and is worth discussing in
further detail. Let X and Y be two competing TFs and
let Z be a third TF such that X recruits Z and Y does
not recruit Z. Assume that Z is unlikely to bind certain
promoters without recruitment by X. Thus, when X
binds those promoters, Z also binds; and when Y binds
those promoters, Z does not bind. In this case, strictly
speaking, (Y, Z) is not a COMP interaction by our defin-
ition of COMP; yet (Y, Z) may have characteristics simi-
lar to genuine COMP pairs. In particular, (Y, Z) is likely
to bind to the same (or close-by) spots in a mutually ex-
clusive manner. Yet experimentally, Z cannot be shown
to block Y (i.e., over-expressing Z does not prevent Y
from binding promoters.) An example of this dynamics
is HDAC1/TBP where AP4 competes with TBP and AP4
recruits HDAC1 [16]. Based on this, we can divide the
COMP class into two mutually exclusive subclasses:
COMP+, which are supported by TICA and likely com-
pete for the same binding spots; and COMP-, TFs that
are members of different complexes that in turn com-
pete for binding spots in DNA, though the two TFs do
not compete directly for the same binding spots. We
hypothesize that this last group can be found in the bot-
tom left branch of Fig. 4, with HDAC1/TBP corroborat-
ing this idea, but further investigation will be required.
Some caveats have to highlighted however. Our use of

the term “transcription factor” is more lax than the clas-
sical definition, as mentioned in Background. The same
can be said for our use of the terms “cooperation” and
“competition” among TFs, since we include interactions
happening in the binding scaffold(s) of transcription fac-
tors. Moreover, some TFs may co-operate and compete
in different contexts from the ones mentioned above,
but the current model is not suitable to predict these
cases. It should also be noted that the NAUTICA deci-
sion tree is based on data from BioGRID, but BioGRID
data originated from articles which refer to different
conditions and organisms. Moreover, both BioGRID and
CORUM might be biased towards well-studied proteins.
Finally, the NINT:COOP:COMP split that we use in

providing precision estimates is just an educated guess;
there is no compiled resource that reports the real ratio
of COOP, COMP, and NINT in cells.

Conclusions
We propose NAUTICA, an improved version of our exist-
ing TICA framework. It leverages protein-protein inter-
action network information (specifically, the number of
shared interactors between two TFs in the network) for
further classifying current TF-TF interaction predictions
into co-operations and competitions. NAUTICA predic-
tions are supported by both existing protein-complex da-
tabases, literature validation, and improve on the
performance of TICA. NAUTICA is a novel, effective tool
for interaction classification that does not require motif
prediction, and is robust with respect to the incomplete-
ness of the reference PPI network (in our case, BioGRID).

Methods
Conceptual description
To address the problem of TF-TF interaction classifica-
tion, we propose using information contained in PPI
interaction networks to augment the already significant
discerning power of TICA (although other TF inter-
action prediction tools based on binding site information
could be used as well in its place). NAUTICA is based
on the following considerations: TF-TF co-operation
usually [17] (although not always) entails one of the two
interactors recruiting its cognate partners to the same
binding location, whether because the binding of the
first is a catalyst of the second or because they bind
DNA as a single macromolecule. Therefore, if two tran-
scription factors are cooperating, they tend to be a part
of the same transcriptional complex; also, these com-
plexes tend to be large and composed of several subunits
working together [18]. Therefore, two co-operating TFs
are likely to share quite a few common interactions in a
PPI network and are likely observed to have direct inter-
action in a PPI network.
In contrast, TFs that compete for a shared partner

generally attempt and bind a transactivation domain on
the target partner, most often to the exclusion of each
other. Similarly, two TFs that compete for the same site
on the promoter of a target gene also exclude each other
[19]. This means that they are unlikely to directly bind
each other. Furthermore, as a consequence of the previ-
ous point, factors that compete for the same partner or
site tend not to share many common interactions in a
PPI network (since they are unlikely to belong to the
same complexes). On the other hand, if two TFs share a
high number of common interactions in a PPI network
and yet are not observed to have a direct interaction in
the PPI network, a possible explanation is that they are
competing for these shared interactions.
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Yet, the number of shared interactions in a PPI net-
work is a not a clear predictor of the nature of the inter-
action. This due to two reasons: first, human PPI
networks are incomplete [20]; second, the more interac-
tions one of the two TFs has, the more likely it is to
share some partners with any other TF due to sheer co-
incidence. Moreover, it is also difficult to distinguish
competitive TF-TF interactions from non-interacting
pairs of TFs based on the number of shared interactions
in a PPI network alone, since both kinds of TF pairs are
likely to have a low number of shared interactions.
While the first and second considerations above can

be tackled using PPI network information alone, the
third one by definition requires other information to
compensate for the former’s deficiencies.

Protein-protein interaction network
Our reference PPI network for this work is BioGRID [5],
a resource which organizes and archives genetic and
protein interaction data from several model organisms
(including humans). We use the database consisting of
all human interactions, version 3.4.162, available at
http://thebiogrid.org/download.php. We only consider
physical and multi-validated (cf. https://wiki.thebiogrid.
org/doku.php/biogrid_mv) interactions in BioGRID. The
resulting network contains 8590 human proteins con-
nected by 34,907 edges. Of these proteins, 763 are
known human transcription factors.

We restrict our attention to nodes that are TFs and
have degree at least equal to 3 in the full network. This
is done is order to filter out all those TFs that are iso-
lated due to the incompleteness of the network, and to
remove any disconnected 2-node islands that are likely
to be 1-to-1 binding without relation to the other pro-
teins, or are in regions of the PPI network that are likely
more incomplete; also, TFs with too few edges cannot
have a significant number of shared edges with their
neighbours, limiting the effectiveness of this feature (see
below).
After filtering, we are left with 375 human transcrip-

tion factors, having an average degree of 4.5. In Fig. 1 we
show the distribution of the number of TF-TF interac-
tions in the network, viz. the number of TF-TF only
edges in the filtered network consisting entirely of these
TFs and their interactions. The degree distribution ex-
hibits a power law-like shape, which is typical of scale-
free networks [21].
Let N12 be the number of shared interactions between

two proteins in the PPI network. To visualise the nature
of this measure, imagine that two proteins are two col-
leagues in the same work network and an edge exists be-
tween them if they collaborated in at least one project.
Then N12 can be thought of as the number of shared co-
workers that two colleagues have. The higher this num-
ber, the more likely is that the two are working on the
same project and/or they share common interests. This
approach is reminiscent of co-citations used in link

Fig. 1 Degree distribution of TF-TF interactions in the human, physical, multi-validated BioGRID network. The distribution demonstrates a power
law-like shape. Note that we eliminate from the complete network (viz., including non-TF proteins) those nodes with less than 3 interactions;
however, in this graph restricted to TF-TF edges only, fewer (1, 2) interactions are possible
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analysis [22]. In Fig. 2 we compare the shared neigh-
bours of two prominent TF pairs: MAX/MYC (left), a
known dimerising pair, and FOS/NRF1, a competing
one.
We show in Fig. 3 the distribution of N12 across TFs

in the filtered BioGRID network; it also exhibits a power
law-like shape. Note that N12 is computed considering
edges connecting TFs to both TF and non-TF proteins
in the general network, since TFs can sometimes interact
with non-TF proteins [23].
Observing the distribution in Fig. 3, we notice that for

N12 ≥ 10 there is a drop in the number of edges having
high values of N12. As there is no standard way to define
the beginning of a distribution’s right tail, we define the
tail of the distribution (viz., the portion of the distribu-
tion which is significantly different from the rest) to start

at N12 = 10. Thus, we collapse the tail and split the PPI
shared-interactor distribution into eleven bins: N12 = 0,
N12 = 1, …, N12 = 9, and N12 = 10 + .

TF-TF interaction prediction
In our previous work [2] we presented TICA, a statistical
algorithm for predicting whether two transcription
factors interact based on positional information from
ChIP-Seq experiments. We use TICA here as a source of
TF-TF interaction candidates for NAUTICA; any other
TF-TF interaction prediction tool can be used for this
purpose.
TICA is based on the concept of minimal distance

couple. Briefly, binding sites from ENCODE narrowPeak
datasets are reduced to their 1 bp point source, and their
positioning is compared across promoters of active

Fig. 2 Comparison of the neighbourhood of MAX and MYC with that of FOS and NRF1 in BioGRID. Blue line denotes direct connection in BioGRID
between MAX and MYC. Note the batch of shared interactions between MAX and MYC (left) as opposed to the single CSNK2A1 being shared by
FOS and NRF1 (right)
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genes. Whenever two binding sites of two candidate in-
teractions are found to be the closest to each other and
below a significance threshold, they are paired and form
a minimal distance couple (or mindist couple). Each
mindist couple defines a mindist couple distance (dis-
tance between the two closest ends), and all mindist
couples generate a distance distribution that is associ-
ated to the two candidates. This distribution is used to
infer interaction by using statistical tests: its median,
average, median absolute deviation and right tail size are
compared to those of the null distribution for the con-
text cell lines. If at least 3 of these measures are signifi-
cantly closer to 0 with respect to the null distribution,
the TF pair is predicted to be interacting.
In the context of NAUTICA, TICA is used with the

following parameters: P value 0.3 on all four tests, of
which at least 3 are required to call a prediction, based
on null distributions that must have at least 1% mindist
couples located in promoters.

NAUTICA classification rules
Neither a pure PPI network analysis nor the TICA
framework (or other binding-site position-based frame-
works) provide enough evidence for a clean-cut classifi-
cation of TF-TF interactions. We present the NAUTICA
set of decision rules to tackle this task.

Class nomenclature
A pair of TFs which is submitted for classification is
called an interaction candidate pair, and the two TFs in

the pair are called interaction candidates. An interaction
candidate pair can be predicted as one of three classes.
Co-operations (COOP) identify TFs that bind the DNA
as a single macromolecule, or those where one interactor
binds the DNA first and then recruits the other for bind-
ing; competitions (COMP) identify TFs that compete for
the same binding spots in the DNA, or that compete to
bind in a mutually exclusive way to the same partner
and subsequently bind the DNA in the same (or close)
spots; and finally, non-interactions (NINT) are TF pairs
do not interact with each other in any physical way -
they neither compete nor attempt to bind with each
other to form complexes.
An interaction candidate pair which is either predicted

as COOP or COMP is referred more in general as an
interaction prediction. This is useful when comparing
NAUTICA with tools that predict TF-TF interactions
but not the nature of interactions on the same test
set(s).

Decision tree explanation
NAUTICA’s set of decision rules is summarized by the
decision tree in Fig. 4. NAUTICA’s decision tree is the
result of several attempts at feature definition and qual-
ity measure estimation. Among others, different func-
tions of the number of shared interactions N12 have
been studied, such as the CD distance [24] and the Jac-
card Index of shared interactions (which we define as
the number of shared interactions between two candi-
date TFs divided by the union of all interactors of the

Fig. 3 Distribution of the number of shared interactions between TFs in the human, physical, multi-validated BioGRID network. The number of
shared interactions between two TFs is denoted N12. The red line denotes N12 = 10, which we consider the beginning of the distribution tail
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same). We evaluated the separation power of the fea-
tures by using the reference training dataset (cf. Model
Training). However, the current decision tree proved to
be the best so far, with the additional benefit of simpli-
city, as we show in the following.
The three main components of these decision rules

are the interaction prediction value, a Boolean value
equal to 1 if and only if a direct interaction is predicted
by the supporting interaction prediction tool – for this
study, we use TICA predictions in any of three available
cell lines, HepG2, GM12878 and K562 (multiple cell
lines do not offer additional support); the existence of a
BioGRID direct edge, a Boolean value equal to 1 if and
only if a direct edge is found in BioGRID between the
two interaction candidates; and the number of shared in-
teractions N12. Recall that an interacting protein is
shared between two TFs if there is a direct edge between
said protein and both members of the candidate pair.
These features are proposed based on the following

reasoning: TICA predicts physically interacting factors
with high reliability. The number of shared interactions
in the PPI network parameterizes the size and number
of putative common regulatory modules they belong to;
a large number of shared interactions suggests being in
the same complex and thus co-operation, whereas a
small number of shared interactions suggests the oppos-
ite. Adding in BioGRID direct edges augments the recall
of the model, accounting for any interactions which
evade detection by binding-site location analysis by
TICA; and also provides evidence of being in the same
complex, a sign of co-operation.

Model training
As shown in Fig. 4, NAUTICA considers three decision
features; viz. the interaction prediction by TICA (or in
principle, any tool), the direct edge in BioGRID, plus a
fitted two-tiered thresholding τL and τH on the number
of shared interactions in BioGRID, N12.
To fit the two thresholds τL and τH in NAUTICA, we

curated an initial training set (denoted TR) of 110 TF in-
teractions by sampling the list of possible TF pairs for
which interaction prediction data is available. The sam-
pling was done by randomly choosing groups of 10 TF
pairs, each having a number of shared interactions N12

belonging to a different bin described in Protein-pro-
tein interaction network. Each sampled pair was la-
belled (as COOP, COMP, or NINT) by manually
checking current literature. Too few of these turned out
to be competition interactions, so we fleshed out the list
with additional TF pairs mentioned in the papers that
we read while doing the manual checking above, and cu-
rated the nature of their interaction as well. We also en-
sured that the set of TF pairs sampled from each bin has
equal representation of pairs having direct PPI edge and
pairs having no direct PPI edge. The complete training
set consists of 175 labelled TF-TF interactions (full list
provided in Supplementary Table ST3.1). Out of these
175, 28 were found to be competitions, 112 as co-
operations and 32 as non-interactions. Three interac-
tions (JUN / JUND, EGR1 / SP1 and RELA / SP1) could
be classified into multiple categories based on available
evidence, and thus were excluded from the threshold-
fitting process. This proportion of co-operations to com-
petitions to non-interactions is not representative of the
expected distribution of such interactions and non-
interactions in vivo; thus, we implemented a calibration
system to better estimate the quality of our predictions
in light of the relative density of shared interactions (cf.
below).
Of the two different values fitted, τL is used to distin-

guish between co-operation and competition in the case
of interaction evidence while τH is instead used in the
case where no interaction is predicted by TICA and/or
BioGRID. Some leeway has been given to the thresholds
in order to avoid overfitting to TR.

Recall calibration and evaluation
To test the set of NAUTICA decision rules, a different
set of TF interactions is curated, denoted TS.
TS is used to evaluate the recall of NAUTICA. We cu-

rated a separate list of 164 test cases, by sampling uni-
formly across the different values of N12 (using the same
procedure described in Section Model training, above;
the full list is provided in Supplementary Table ST3.2).
No member of this test set is shared with TR. For each
test case in TS, we investigated the literature for

Fig. 4 NAUTICA’s decision tree. Input data consists of interaction
prediction labels, BioGRID edge extraction and number of shared
interactions for a give TF interaction candidate. τL is the threshold
on N12 that separates NINT from COOP predictions for interactions
supported by BioGRID only, and similarly separates COOP and COMP
predictions in pairs supported by the interactions predictor only. τH
is a different N12 threshold that separates NINT from COMP in the
event that no direct interaction evidence is found
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evidence of interaction and the nature of it; this resulted
in 13 competitions, 95 co-operations, and 55 non-
interactions. We do not, however, have ChIP-Seq data
available for some of these curated examples (which are
required for TICA predictions in NAUTICA). Thus, TS
contains 51 non-interactions, 8 competitions and 64 co-
operations - those for which data is available.
NINT (non-interactions) cases are expected to be the

majority of predictions [25], but they are also the most
difficult to validate due to lack of experimental reports
on them. As such, a face-value evaluation of the recall
on the NINT (as well all other classes) would be strongly
misleading; to solve this problem, we implemented a
calibration system to estimate the number of correct/in-
correct prediction based on an expected distribution of
each class, details as follows.
Figure 5 shows the binned distribution of N12 in Bio-

GRID for each TF pair for which TICA has data avail-
able for analysis and satisfying the filters in Protein-
protein interaction network: this is done in order to
not confound the distribution with interaction groups
where many pairs are not available for predictions. We
call this distribution the NINT null distribution, because
most of the TF pairs spanned by this distribution are ex-
pected to be non-interacting pairs.
We use this distribution to derive the relative weight

of TF pairs curated as NINT when used for recall evalu-
ation as follows. Let the bin that contains the least num-
ber of candidates be the “base bin”, and assign it a
weight of 1. Each of the other bins is assigned a weight

which is its population size divided by the population
size of the base bin, rounded down to the closest integer.
Based on the complete distribution in Fig. 5, the base
bin is bin 9. Then each TF pair curated as NINT is
weighted according to the weight of the bin it is in. For
example, a TF pair curated as NINT that has 0 shared
interactor in BioGRID (and thus is in bin 0) is given the
weight of 358. Consequently, if this TF pair is correctly
predicted as NINT, this counts as 358 correct predic-
tions; on the other hand, if it is incorrectly predicted as
anything else, this counts as 358 wrong predictions.
There are too few COMP cases to form a null distribu-

tion of their own, and it is very difficult to find clearly
documented cases of direct TF-TF competition in litera-
ture. We have already observed (cf. Conceptual descrip-
tion) that competing TFs tend to not be part of the
same modules, due to having opposite effects. It follows
that in general, proteins that exhibit competitive behav-
iour should have fewer (if any) shared interactors than
those that exhibit cooperative behaviour. Thus their N12

distribution should be closer to the one of NINT pairs.
So we also use the NINT null distribution to weight TF
pairs curated as COMP interactions.
As for the COOP null distribution, 86 out of 112 co-

operation cases in TR have TICA datasets available; this
is good enough for a representative COOP null distribu-
tion (presented in Fig. 6). Bins 6 is the smallest for the
purpose of weights. As we suspected, there is a large dif-
ference from the NINT null distribution with regards to
both distribution shape and weights for all bins, which

Fig. 5 Binned NINT null distribution of N12. The NINT null distribution of the number of shared interactions in BioGRID between TFs for which
TICA has information for analysis. On each bar, we report the relative bin weight computed with respect to bin 9 (the smallest)
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confirms the necessity of a different null distribution for
calibrating the weight of TF pairs curated as COOP
interactions.
These distributions are useful in correctly estimating

the sensitivity of NAUTICA. Recall that sensitivity for
each class is defined by the number of edges correctly
predicted to it divided by the total number of edges hav-
ing that class in the database. However, it is not sound
to consider each edge as having the same weight. This is
because, due to chemical and physical constraint, two
random proteins are more likely to not have any shared
edges than the opposite. Moreover, recall that our train-
ing dataset is obtained from a uniform sampling of each
N12 bin, whereas the real population size of N12 bins is
not uniform (the population size of these bins are well
known to follow power law-like distributions.) So our
training dataset does not reflect the underlying distribu-
tion of N12 across all different proteins. Thus, if we as-
sume the underlying distributions of N12 shown in
Figs. 5 and 6 are roughly consistent with what can be
found in nature, which they seem to be, then we can ex-
pect each correct prediction to correspond to n correct
predictions in a more complete database that is fidel to
the real population size distribution of N12 bins, where n
is the relative size of the bin with the respect to the
smallest (assumed to be 1, as it is the closest to what we
have in our training set). Recall can then be estimated in
a calibrated manner. The weight of a TF pair (in the
dataset TS) that has n shared interactions is calibrated as
follows: if its curated label is COOP, then its weight is
the weight of bin n in the COOP null distribution;

analogously, if its curated label is COMP or NINT, then
its weight is the weight of bin n in the NINT null distri-
bution. Say the assigned weight of a TF pair is m (func-
tion of its bin). Then NAUTICA’s prediction on this TF
pair is counted as m predictions. Thus, if this prediction
is correct, it is counted as m correct predictions; and if it
is wrong, it is counted as m wrong predictions. For ex-
ample, let’s assume that a curated non-interaction is in
fact predicted as cooperation and has 0 shared interactor
in BioGRID. Based on the NINT null distribution shown
in Fig. 5, we would add 358 predictions to the confusion
matrix entry matching “actual NINT, predicted COOP”
(which, incidentally, is a false negative for the NINT
class and a false positive for the COOP class).

Precision evaluation
There are some subtleties that have to be considered
when comparing precision values between different pre-
dictors. The weights calibration derived from the bin-
ning on the number of shared interactions in BioGRID
(cf. above) are class specific, i.e. they say nothing about
how many more times COOP or COMP pairs there are
in any given bin with respect to NINT pairs. Since preci-
sion is a measure based on two classes (e.g. COOP vs
non-COOP), it cannot be directly applied if the two clas-
ses have different weight calibration.
To tackle this issue, we perform a theoretical estimate

of precision from TS using the calibrated recall, based
on some additional assumptions. Let M be the total
number of test candidates to be analysed (in our case,
this means those TF-TF pairs that have ChIP-Seq data

Fig. 6 Binned COOP null distribution of N12. The COOP null distribution of shared interactions between cooperating TFs from the training set,
restricted to TFs studied by TICA. On each bar, we report the relative bin weight computed with respect to bin 6 and 7 (tied for smallest)
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for TICA analysis and where both members have at least
3 interactions in BioGRID). Suppose an 80/20 split be-
tween non-interacting and interacting TF-TF pairs, and
a further 50/50 split of interacting pairs in co-operations
and competitions, for a final 80/10/10 split. This means
that we have 0.8 ·M non-interacting pairs, 0.1 ·M co-
operating pairs and 0.1 ·M competing pairs. Given cali-
brated recalls Ri (i being any of the three classes, NINT,
COOP or COMP), the total number of non-interactions
correctly predicted can be estimated as 0.8 ·M · RNINT

and thus the number of mispredicted non-interactions is
0.8 ·M · (1 − RNINT). Likewise, 0.1 ·M · (1 − RCOOP) co-
operations and 0.1 ·M · (1 − RCOMP) competitions are
correctly predicted as such. Thus we can estimate the
precision (defined as the number of true positive per
predicted positive, TP

TPþFP ) of interaction (either co-
operations or competitions) as

PINT ¼ 0:1 �M � RCOOP þ 0:1 �M � RCOMP

0:1 �M � RCOOP þ 0:1 �M � RCOMP þ 0:8 �M � 1 − RNINTð Þ :

The NINT:COOP:COMP split of 80:10:10 in the for-
mula above is just an educated guess. Precision under
other reasonable splits of NINT:COMP:COOP can be
calculated analogously.

Reviewer comments
1) Zoltán Hegedüs
Reviewer Recommendation Term: Endorse publication
Quality of written English: Acceptable
Reviewer summary
This manuscript describes an algorithm called

NAUTICA (Network-Augmented Transcriptional Inter-
action and Coregulation Analyser) that was primarily
designed to work as a supplement of TICA software.
TICA (Transcriptional Interaction and Coregulation
Analyzer) is a previous development of the same lab,
performs ChIP-seq based predictions concerning the
physical interactions of transcription factors (TF). While
TICA makes predictions only about the existence of TF-
TF interactions NAUTICA was designed to further re-
fine these results and classify the interactions based on
their predicted competitive or co-operational behaviour.
NAUTICA predictions are based on protein-protein
interaction data derived from BioGRID database. The
number of the shared protein interaction partners of the
investigated TF pair members are used in a decision tree
classification algorithm. Investigations made on manu-
ally collected literature based data sets (Fig5 and 6)
clearly demonstrates that the number of shared neigh-
bours indeed correlates with the cooperating behaviour
of TF pairs, so applying them in functional predictions
might be a progressive innovation.
RESP: We are grateful for the correct description and

positive evaluation.

Reviewer recommendations to authors
Major comments
1)------------- The manuscript describes NAUTICA al-

gorithm but no software implementation of the algo-
rithm available, so there is no direct way to check or
reproduce the published results. TICA web service is
also unavailable under http://geco.deib.polimi.it/tica/.
When I tried to access it I always got "502 Bad Gateway"
error message.
RESP: TICA is a Web application and it relies on a

server, which was offline for long time during space relo-
cations in our department at Politecnico di Milano. It is
now available.
2)------------- In NINT class NAUTICA could produce

better classification efficiency if the decision tree output
was "calibrated" according to the relative size of the N12
bins (Table 2). However, it was not clarified in the manu-
script what theoretical assumptions led to the choice of
this approach. It should be explained why one prediction
event is more important (get more weight after "calibra-
tion") than another in the sensitivity (recall) calculation
that will finally produce an overall measure of prediction
efficiency. If the different N12 bins considered to have
some special characteristics affecting the prediction effi-
ciency of the decision tree, separate sensitivity (recall)
values could be calculated for each of them reflecting the
success rate of the algorithm in that particular bin.
RESP: We agree on the need of commenting on our

calibration; thus we added an explanation of the need
for calibration. Firstly, two random proteins cannot be
assumed to have equal probability of having/not having
a connecting edge. Secondly, the population size of differ-
ent N12 bins is observed to be rather different. Thirdly,
the proportion of COOP/COMP/NINT is rather different
in different N12 bins. Due to practical limitations, we are
unable to collect a separate test set that faithfully follows
these observed population distributions. Instead, we cali-
brate/weight each test sample so that the calibrated/
weighted test set follows the observed population distribu-
tions. We have now explained this in more details in
“Methods – Recall calibration and evaluation” Section).
Ensuring a test set’s fidelity to actual population distri-

butions is an important methodological point that is
often overlooked. If a test set is not faithful to actual
population distributions, accuracy/precision/etc. perform-
ance measures determined from the test set may consid-
erably deviate on real data. For example, let’s say we
have a well-trained classifier C with 90% sensitivity and
90% specificity. On a test set A where the positive sam-
ples fully reflect the properties of positive samples and
negative samples fully reflect the properties of negative
samples but the proportion of positive to negative is 100:
1000, the precision of this classifier C on test set A will be
90/(90+100) = 47%. On a test set B where the positive
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samples fully reflect the properties of positive samples
and negative samples fully reflect the properties of nega-
tive samples but the proportion of positive to negative is
1000:100, the precision of this classifier C on test set B
will be 900/(900+10) = 99%. As you can see, the perform-
ance changes dramatically on different class proportion.
If the actual population distribution is 1000:100, the per-
formance on test set B is one which will give us a better
sense of what the performance of classifier C will be on
real data, whereas the performance on test set A will
completely mislead us. Given an actual 1000:100 popula-
tion distribution, test set A can be calibrated, so that
every positive sample counts as 100, while every negative
sample counts as 1 post this calibration, the “proportion”
of positive to negative in test A becomes 100*100:1000 (=
10000:1000 = 1000:100), faithful to the actual popula-
tion, and the calibrated precision becomes 99%, more
closely reflecting the performance of classifier C that one
can expect on real data (assuming the positive and nega-
tive samples in test set A are indeed respectively repre-
sentative of the positive and negative populations.)
3)---(p7 l25)--- "Also note that in NAUTICA we have

relaxed our TICA statistical threshold (to 0.3) to in-
crease recall (since NAUTICA is able to filter the corre-
sponding increase in false positives from TICA): the
comparison here is done against TICA alone with its de-
fault statistical threshold (which is 0.2)." The added value
of NAUTICA approach could exactly be evaluated only
if TICA is used with the same statistical threshold in
both case.
RESP: When people use TICA, they will use TICA with

its standard/recommended threshold. Hence it is appro-
priate to compare NAUTICA to standard TICA. We thus
should provide results comparing to standard TICA.
However to clarify this doubt (which is reasonable) from
the reviewer, we provide also a comparison of NAUTICA
to TICA with the more relaxed 0.3 threshold. Of note is
the fact that using TICA alone with this 0.3 threshold sig-
nificantly lowers its performance in practice when com-
pared to NAUTICA and to TICA alone with its standard
0.2 threshold, as at the lax 0.3 threshold TICA misclassi-
fies many more NINTs as COMPs and COOPs (Data not
shown).
4) ---(p8 l1)--- "Table 3. NAUTICA has double the re-

call of TICA when used to predict noninteractions on
dataset TS," In Table 3. the noninteracting recall data
are as follows: no calibration TICA 35% NAUTICA 41%
with calibration TICA 61% NAUTICA 83% Both are far
from doubling in TICA-NAUTICA relation.
RESP: This section was unclear. We intended to say

that calibration gives to TICA and to NAUTICA, inde-
pendently considered, about a doubling of recall. I.e. both
TICA and NAUTICA’s recall on NINT become doubled
post calibration. We have rewritten the paragraph

describing Table 3 (see: ”Results - Comparison with…”
Section)
5) ---(p8 l20)--- "The calibration of parameters is

shown in Supplementary Table ST1.2;" There is no
Table ST1.2 in the submitted manuscript, however the
SM1.1 and SM1.2 tables which aren't referenced in the
text at all, contains similar information. This sentence is
about the calibration of L and H parameters where the
SM1.2 table should be referenced. The calibration pro-
cedure of TH and TL parameters (SM1.1 table) isn't
mentioned in the manuscript at all. Authors should also
discuss why the TH = 8 and TL = 5 and the H = 8 and
L = 1 parameter thresholds were finally chosen for the
classification procedures. Based on the SM1.1 and
SM1.2 tables it also appears that only part of the pos-
sible parameter combinations were tested (e.g. L(1-8)
with H(8) and L(1) with H(5-11), but a comprehensive
test of all possible parameter pair values would be neces-
sary for the unambiguous determination of the optimal
classification thresholds.
RESP: We corrected table references, and Table ST1.1

is now referenced in the text. Regarding complete calibra-
tion, we acknowledge the reviewer’s point. At the time of
submission we did run a more comprehensive analysis of
the L-H parameter space. However, selecting a parameter
based on maximizing recall and/or precision is not
straightforward. Indeed, H and L are by nature of the
model in opposition to each in terms of prediction cap-
ability of different classes. In other words, by increase re-
call in say, COOP, one must sacrifice recall in NINT. In
this situation, selecting the optimal threshold proved im-
possible. We chose instead the numbers 8,5 which have
an acceptable recall among all classes. In parameter S1.1
we report a subsample of this analysis, to illustrate how
this phenomenon pans out.
6)---(p11 l31)--- "In this paper we present NAUTICA,

a novel methodology that improves upon our TICA
framework (and other similar framework based on TF
binding-position information)," The statement in the
brackets wasn't investigated and proved in the manu-
script. It is mentioned in other part of the manuscript
that NAUTICA can be used with different preliminary
interaction predictors like CENDIST and TACO, how-
ever the decision tree parameters were optimized only
for input originated from TICA, so there is no informa-
tion about its efficiency with other upstream software.
RESP: The observation is correct; we clarified in the

text that we did our comparisons only with TICA. It is
possible to use NAUTICA with any other framework for
predicting interaction, and TACO and CENDIST are just
examples. However, we did not use them in this work (see
changes at the beginning of the Discussion Section).
The choice of focusing only on TICA was dictated by

two main factors: first of all, the CENTDIST software is

Perna et al. Biology Direct           (2020) 15:13 Page 14 of 18



not available anymore (the URL provided in the original
manuscript http://compbio.ddns.comp.nus.edu.sg/~chip-
seq/centdist/ is not reachable on 07 Feb. 2020); TACO is
still available but we cannot guarantee any maintenance
of its software. Secondly, we plan to release our software
either as a stand-alone package or as a web application,
and in both cases we do not have the ownership of the
two aforementioned tools.
7) ---(p17 l24)--- "We estimate the tail of the distribu-

tion (viz., the portion of the distribution which is signifi-
cantly different from the rest) to start at N12=10. Thus,
we collapse the tail and split the PPI shared-interactor
distribution into eleven bins: N12 = 0, N12= 1, …, N12
= 9, and N12=10+." What statistical method was used to
assess significance?
RESP: There is no standard definition of the right tail

of a distribution; rather than using quantiles, we empiric-
ally observed that, if we consider nodes with N12 less
than 10, then there is a large drop in their number. Thus,
10 appears a good threshold to delimit the right tail in
the N12 distribution.
8) ---(p22 l31)--- "There are too few COMP cases to

form a null distribution of their own. However, we be-
lieve this distribution is close to the NINT null distribu-
tion, so we also use the NINT null distribution to weight
TF pairs curated as COMP interactions." Authors should
also present the theoretical considerations behind the as-
sumption that the COMP and NINT distributions are
close to each other.
RESP: Our theoretical considerations were added to the

text (see “Methods: Recall calibration and evaluation”
Section)
Minor comments
1) -------------- The authors often use the shared

edges, shared connections, shared interactions expres-
sions with the same meaning as shared neighbor, shared
interactor, shared partner, however from network point
this two expression groups describes different objects.
The first group of expressions corresponds to edges that
directly connect the two nodes in question, while the
second delineates a topology with a third node which is
connected to both investigated nodes by discrete edges.
In the manuscript the expressions from the first group is
often used in inappropriate context that can be confus-
ing for the readers.
2)---(p6 l8)--- "τH = 8 and τH = 5." Both are TH. I

think the correct form is: TH = 8 and TL = 5
3)---(p14 l11)--- "...this last group can be found in the

bottom left branch of Fig. 3," Fig. 4,
4)---(p16 l23)--- "We restrict our attention to edges

that are TFs and have degree at least equal to 3 in the
full network." We restrict our attention to nodes...
5)---(p17 l11)--- "Then N12 can be thought of as the

number of coworkers that two colleagues have." Then

N12 can be thought of as the number of shared co-
workers that two colleagues have.
6)---(p30 l13)--- " "Figure 3 Distribution of the number

of shared interactions (“co-citations”) between TFs in
the human, physical, multi-validated BioGRID network."
In the text the "co-citations" example was appropriate
which well explained and illustrated the network top-
ology of interest, however mentioning it in the figure le-
gend is rather confusing as no co-citation data is plotted
in Fig. 3.
7)-------------- The citation of the TICA publication

appears in the paper in a truncated form under reference
number 2.
8)-------------- Resolution of Fig. 4 is poor.
9)-------------- There are no axis labels on charts

shown in Fig. 5 and Fig. 6.
RESP: All minor comments (1-9) were addressed
10) -------------- Table ST2 What sort of data the

PID_NUM column contains? What KO means in man-
ual_validation column?
RESP: PID_NUM corresponds to the number of

PUBMED ID pertaining to papers that cite both tran-
scription factors. It has been renamed to PID_NUM_CO-
CITED for clarity. KO means that the authors could not
confirm by reading through the specific papers that the
interactions belong to the corresponding label (COOP or
COMP). This is most often due to the fact that the papers
mention the interactions but do not provide evidence
either way.
2) Endre Barta
Reviewer Recommendation Term: Reject as unsound

science
Quality of written English: Acceptable
Reviewer summary: The manuscript by Perna et al de-

scribes a new method aiming at classifying transcription
factor interactions into three categories (COOP, COMP,
NINT). The whole project is the extension of the authors’
previous TICA framework. The idea that using the Bio-
GRID protein-protein interaction data allows the annota-
tion of interaction types of co-localized proteins in the
DNA is new and promising. For this annotation, the TICA
framework provides the list of protein couples. Despite
the novelty of the method and the intriguing promise of
knowing the nature of interactions of two proteins localiz-
ing to the same spot on the DNA, the manuscript in this
form is not suitable for publication in the Biology Direct.
Reviewer recommendations to authors
There are serious conceptual problems in the manu-

script. Some of them originated from the TICA frame-
work. The manuscript (and the TICA webpage) speaks
about transcription factors, but in my view TF is a protein
that has its cognate binding site on the DNA and it binds
specifically to it (https://en.wikipedia.org/wiki/Transcrip-
tion_factor). SMC3, EP300, HDAC1 and many others in
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the TR-TS lists are not transcription factors. It is an im-
portant distinction because they do not bind directly to
the DNA, thus they cannot compete with a real TF for the
binding to the DNA double helix. Also, their positions in
the DNA not necessarily depend on a TF, which is already
bound to the DNA double helix. In case of TF couples we
may also speak about different scenarios. For example,
there are composite elements like the DR1 (PPARg and
RXRA) or the GATA-1 TAL1. PPARg and RXR recognize
the same DR element, therefore if only one DR element is
present or the spacer is different (like at DR5), they may
compete for this binding site, but otherwise they bind to
the DR1 composite element cooperatively. There are tran-
scription factor families, which recognize the same con-
sensus sequences. A good example is the E-box family or
the nuclear receptors. The members of these families may
compete for their cognate binding sites if the given TFs
are expressed and present in the nucleus at the proper
form. There are transcription factor binding sites, which
are close together to be involved in the analysis but far
enough for avoiding the direct physical contact between
the bound proteins. It is not written in the manuscript,
but at the TICA website as much as 2200 bp is allowed
for the maximum distance between the couples. Is it pos-
sible to have any physical interaction between two TFs sit-
ting on the DNA in 2000 bp distance? The described
method should have analyzed separately the competitions
where two TF compete for the same binding site, and
where two proteins compete for binding to a third (TF)
protein. The BioGRID annotations are coming from dif-
ferent articles. They are sometimes very old, many times
they represent a very different situation and many times
they are from a different organism. I do not think that
these data are suitable for inferring general rules. Of
course, in many cases the data from BioGRID can be ap-
plied for certain protein couples (like those that were spe-
cifically mentioned in the manuscript), but surely not in
all cases. The method described in the manuscript raises
questions as well. Basically, it is not convincing enough
that there were any benefits against just considering the
shared and direct interactions from the BioGRID. Both
the TR and TS are built from the same data trio (inter-
action prediction labels, BioGRID edge extraction and the
number of shared interactions). Among these the most
important is the number of the shared interactions, which
is just a number, therefore the authors can operate only
with their distributions in the TR for deciding the thresh-
olds. The BioGRID annotations are heavily biased. For ex-
ample, proteins that have medical importance and thus
they are more frequently studied, will have more interac-
tions than the others. The authors provide only one “ex-
ternal” evidence. Namely, they show that the COOP cases
are over-represented in the CORUM complexes. It is con-
vincing, but one should also consider that most likely the

CORUM database uses the same publications as the
BioGRID. It is not clarified why the distance values
between the couples are not used in the analysis. If two
proteins on the DNA are closer to each other (in bp), they
are more likely interacting to each other. Of course, it also
depends on whether they are both TFs or not, or whether
they have similar TFBS etc.
RESP: We thank the reviewer for the detailed analysis of

our paper. In particular, we acknowledge that the reviewer
used a stricter definition of Transcription Factor than the
one we used in our work. We added a paragraph in our
manuscript clarifying we include proteins that bind other
TFs in binding pockets. We also incorporated the points
above as caveats in the Discussion section.
The reviewer’s comments seem to imply that interaction

prediction and BioGRID edge existence are not as import-
ant as N12. This impression is incorrect. The interaction
prediction label is in some cases critical for correct label
prediction (for instance SPI1/TBP, a known cooperation
case with 0 reported edges in BioGRID. If NAUTICA did
not use the TICA prediction label, it would be mispre-
dicted as a competition or noninteraction.)
We agree that CORUM might have bias towards well-

studied proteins. Nevertheless, we have not found a better
substitute. We further provide evidence (albeit potential
bias towards well-studied proteins remains) additional to
CORUM by manually curating predicted interaction
using existing literature (subsection Investigation of sig-
nificant cases shows both novel and known interac-
tions), which is both external and not related to
CORUM.
On the reviewer’s comments that the distance values

between the couples are not used, it is actually not en-
tirely correct. Recall that NAUTICA takes TICA’s predic-
tions as its starting point. TICA makes its predictions on
interaction between transcription factors by doing statis-
tical tests on the distribution of the distance between cou-
ples. Therefore, NAUTICA actually uses the distance
between couples, albeit indirectly.
Minor issues
It is not clear whether the TICA interactions were from

only promoter regions or also from enhancers. Did the au-
thors consider the long-range interactions (where two TFs
are bound to the DNA far from each other but interacting
directly or through other proteins via a chromatin loop)?
The TICA data are restricted for three cell lines but the
BioGRID annotations based on experiments also from
other types of cells or from in vitro data. It seems (al-
though it is not totally clear) that in the initial decision
tree all the TICA cases are considered not only those
where there is a topological association. Similarly, couples
missing from the TICA list were analyzed in the training
set as well. Why is it necessary to use TICA at all (consid-
ering also that the distances between the couples are not
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used in the analysis)? Is it possible that two protein being
very close together on the DNA and they are not interact-
ing at all (annotated as NINT)? Relying on the ratio of the
COOP, COMP and NINT cases at the TR and TS seems
to be arbitrary. How would we know the in vivo ratios in
the cells? The manuscript is too long and it is very difficult
to read and understand. Some important information are
missing. For example, nothing is mentioned about the na-
ture of the TICA input data and no supplementary table
for it. There is a training set and a test set available as a
supplementary table, but no list, no statistics about the re-
sult from the whole TICA data. In this form, the described
method is not reproducible. Numbering the pages could
help a lot during the reviewing.
RESP: We recommend the reader reviews the TICA

paper for a correct understanding of the methodology. In
TF-TF interaction prediction, we point out the follow-
ing: “TICA is based on the concept of minimal distance
couple. Briefly, binding sites from ENCODE narrowPeak
datasets are reduced to their 1bp point source, and their
positioning is compared across promoters of active genes.”
We agree that we are summarizing TICA as opposed to
explaining its details. We do this because the manuscript
is already very dense (as the reviewer points out) and
TICA is already described in its own paper.
We emphasize here that, by using the TICA interaction

label in the model as a feature, we are using (an aggrega-
tion of) the distance between binding site couple (see pre-
vious response). Also, we do not use couples in the
training and test datasets where TICA data is not avail-
able (cf. Model training – “To fit the two thresholds […]
sampling the list of possible TF pairs for which data is
available.”). We acknowledge that this might not be evi-
dent from the wording, so we added a clarification.
To the best of our knowledge there is no compiled re-

source that reports an estimation of the ratio of COOP,
COMP, and NINT in in-vivo cells. We make a hopefully
not-too-wild guess of this ratio. We will be most glad to
use better information if we learn of any. In any case, it
is easy to show that when NINT:COOP:COMP is y:x:x
where y + 2x = 1, the precision is at least two folds better
than random when x < 0.14 (i.e. when no more than
28% of random TF pairs are COOP or COMP, which
seems a safe assumption); and this improvement mono-
tonically increases as x decreases.
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