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Abstract

3D in vitro constructs have gained more and more relevance in tissue engineering and in cancer-modeling. In
recent years, with the development of thicker and more physiologically relevant tissue patches, the integration of a
vascular network has become pivotal, both for sustaining the construct in vitro and to help the integration with the
host tissue once implanted. Since 3D bioprinting is rising to be one of the most versatile methods to create
vascularized constructs, we here briefly review the most promising advances in bioprinting techniques.
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Background
Almost 30 years after Langer [1] introduced the concept
of tissue engineering, the field has seen huge progress;
in vitro-created tissue patches and organs have already
reached clinical use, albeit many challenges are yet to be
overcome. In parallel with tissue engineering, 3D in vitro
models are also invaluable in cancer research [2]. It is
known that the microenvironment plays a crucial role in
tumor growth and development, both at the biochemical
and biophysical level (structural and soluble component,
respectively). Mathematical models strive to capture this
complexity and would greatly benefit from the develop-
ment of novel in vitro systems that better recapitulate
the true in vivo behavior of tumors, thus allowing proper
model validation and parameter tuning [3]. Metastatic
disease is still the cause for > 90% of all cancer-related
deaths, relying on processes such as epithelial-
mesenchymal transition (EMT) [4], extravasation of
stem-like cells from the tumor mass [5], and dependence
on new vessels formation [6]. Once again, key unknown

regulating these phenomena can find answers thanks to
the adoption of better in vitro models.
3D bioprinting has risen as one of the most promising

engineering techniques to manufacture in vitro tissues,
paving the way to create thick cell-laden constructs [7, 8].
Howbeit, with thickness comes a new hurdle: the need for
vasculature to provide nutrients to the cells in the bulk.
Creating vascularized tissue constructs further increased
the complexity of in vitro tissues, requiring refined 3D
bioprinting techniques, more advanced materials and opti-
mized biological protocols. Several different printing
methods fall under the bioprinting category, but only a
few have been effectively employed to obtain vascularized
constructs.

Extrusion bioprinting: sacrificial inks
Extrusion bioprinting is the cheapest and most versatile
technique, not only allowing customization from the en-
gineering perspective (e.g. multi-printheads, coaxial noz-
zles, microfluidic extrusion) [9–11] but also showing
great flexibility in terms of materials choice. Sacrificial
inks are fundamental for the successful bioprinting of
vascularized constructs: they must enable extrusion in
air or in a support bath, and to be liquified and washed
out at some later time, leaving a hollow structure inside
a different surrounding material [12]. Sacrificial inks
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include Pluronic F-127 (PLU) [7, 12–14], carbohydrate-
glass [15], gelatin [16–18], and agarose [19]. As an ex-
ample, Kolesky et al. used PLU to create a series of hollow
channels inside a gelatin methacrylate (GelMA) chip;
these channels were then seeded with human umbilical
vein endothelial cell (HUVEC), obtaining perfusable
endothelialized vascular channels [13]. In a later work by
the same group [7], perfusable constructs with a thick-
ness > 1 cm were realized, showing cell culture and sur-
vival for up to 6 weeks, and demonstrating that PLU can
be successfully printed in air creating stable freestanding
structures with pillars and bridges (Fig. 1a-c). Similarly,
Daly et al. created a vascularized construct printing a sac-
rificial 3D PLU freestanding structure and surrounding it
with cell-laden GelMA (Fig. 1d-g); the construct was im-
planted in a femoral defect in a rat model, showing a
higher host osteoclasts and immune cells invasion com-
pared to a non-vascularized construct [20].

Extrusion bioprinting: support baths
Although these approaches succeeded in obtaining vas-
cularized tissue patches, they are usually constrained to
channel diameters > 200–300 μm and to simple geom-
etries to ensure the stability of the structure. In an effort
to overcome such limitations, several studies focused on
the optimization of the support bath material, allowing
extrusion of more complex 3D vascular networks. High-
ley et al. developed a self-healing bath based on modified
hyaluronic acid which deforms when the nozzle is
inserted but quickly heals around the printed material
[21]. Bhattacharjee et al. used a Carbopol ETD 2020
granular support gel to print channels with features and
internal diameters < 100 μm [22]. Hinton et al. proposed
their freeform reversible embedding of suspended hydro-
gels (FRESH) technique, and developed a slurry contain-
ing gelatin microparticles, enabling printing of hydrogels
such as alginate, collagen type I, Matrigel and fibrin,
which can subsequently be liquified and removed [23].
By bioprinting branched vascular networks and scaled-
down models of heart and brain, this study paved the
way to their more recent work [24] where the gelatin
microparticles diameter was decreased down to ~ 25 μm
while maintaining the polydispersity and sphericity. The
optimized support bath led to an increased resolution –
with printed filaments down to 20 μm in diameter –,
and enabled direct printing of collagen, which usually re-
quires some degree of modification or blending with
other polymers to be successfully extruded [11, 25, 26].
Building on these results, a scaled-down beating ven-
tricle model, a working tri-leaflet heart valve, and a per-
fusable multi-scale vasculature – replicated from MRI
data – were successfully printed (Fig. 1h-k). Concur-
rently, Skylar-Scott et al. [18] developed the so-called
sacrificial writing into functional tissue (SWIFT)

technique, in which a support bath made of dense cellu-
lar spheroids sustains the printing of a gelatin sacrificial
ink. Cellular spheroids from human embryonic or in-
duced pluripotent stem cells (iPSCs) can be either undif-
ferentiated embryoid bodies (EBs) or differentiated
organoids (e.g. cardiac or cerebral). The final result is a
branched hierarchical vascular network, successfully
endothelialized with HUVECs, enclosed in a compacted
tissue construct (Fig. 1l, m). The only limitation was that
to maintain high fidelity the diameter of the sacrificial
filaments needed to be ~ 400 μm, twice the size of the
spheroids. While making a small step back in terms of
printing resolution, using spheroids is a leap forward
from the biological point of view, opening the way to
vascularized constructs made from organoids and multi-
cellular spheroids.

Extrusion bioprinting: coaxial nozzles
A different way of using extrusion bioprinting to create
hollow channels is integrating two or more coaxial noz-
zles, where an inner needle with a small diameter ex-
trudes a crosslinker liquid solution (e.g. CaCl) while a
concentric larger nozzle extrudes the crosslinkable
hydrogel (e.g. alginate). The hydrogel reticulates while
being printed, thus retaining its cylindrical hollow shape
[9]. Several research papers exploited this technique
[27–29], and Jia et al. showed good endothelialization of
the hollow channels and a 21-days cell culture under
perfusion [30]. More recently, Shao et al. obtained
thicker vascularized constructs – up to 1 cm – and were
able to combine three coaxial nozzles to yield multicellu-
lar tissue matrices [31]. While the main drawback of co-
axial bioprinting is in creating bifurcations, it also shares
a hurdle with the other extrusion printing techniques in
creating hierarchical networks, since vessels are usually
created by a single extrusion of filament.

Stereolithography
Stereolithography, a maskless photolithography, uses
light to crosslink a material with a resolution much
higher than any extrusion technique, thus enabling
the generation of intricate networks of channels with
varying diameters [32, 33]. Customizing a stereolith-
ography apparatus for tissue engineering (SLATE),
Grigoryan et al. [34] produced alveolar models that
were flexible enough to withstand cyclic ventilation of
the hollow internal volumes, while ensuring constant
perfusion of human red blood cells in the surround-
ing branching vascular network (Fig. 1n, o). Their
airway-like models successfully oxygenated the per-
fused blood under cyclic ventilation. To further study
the capabilities of their approach they also engineered
a vascularized hepatic tissue construct (Fig. 1p).
When implanted for 14 days in a rodent model of
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Fig. 1 (See legend on next page.)
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chronic liver injury, these constructs displayed albu-
min activity and promoted invasion of host blood
cells. Moreover, in all their studies they used hydro-
philic food additives as photoabsorbers, avoiding one
of the main drawbacks of the commonly used photo-
absorbers, toxicity.

Conclusions
The vascularization of engineered tissues cannot be
achieved using simple methods. The complexity of the
tissue construct makes fabrication difficult both from
the biological (need for at least two cell types: endothe-
lial and tissue-specific) and the engineering point of
view. It also requires long and complex protocols that
need to be carefully crafted and standardized to obtain
clinically viable and consistent products. A combination
of different printing techniques might be the next step
in the creation of multi-scale channels and hierarchical
branched networks. The choice of materials also plays a
pivotal role, usually being a tradeoff between ease of use
and biocompatibility. While chemical functionalization
and artificial polymers often improve the former, they
often hinder the latter, which is usually guaranteed by
the use of natural polymers or decellularized extracellu-
lar matrices. Several studies have already proven the ef-
fectiveness of both natural polymers and decellularized
extracellular matrices for in vitro constructs [35, 36], but
their use in bioprinting is still limited and requires
highly engineered set-ups [24], mainly due to their vis-
cosity and mechanical properties. Interesting results
could also be obtained developing and using bioactive
materials in combination with stem cells, as in the so-
called 4D bioprinting, the printing of materials that can
undergo conformational changes as a response to certain
stimuli or to the action of cells [37]. Ultimately, surpass-
ing these challenges will ensure the development of fast
and consistent bioengineering strategies, scaling up the
dimensions, and shifting from producing tissue patches
to creating whole organs.
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Fig. 1 a-c “Thick perfusable construct” (adapted from Kolesky et al., 2016). a Schematic representation of the printed tissue composed of: i. sacrificial ink to
fabricate the vasculature network (red circles), ii. human mesenchymal stem cell (hMSC) laden hydrogel (blue squares), and iii. The surrounding hydrogel
containing human neonatal dermal fibroblasts (hNDF, green dots); b picture of the final bioreactor containing the tissue construct; c confocal image of a
cross-section after 30 days of perfusion; the construct is densely populated by viable cells (hMSCs, DAPI and actin marking nuclei and cytoskeleton) with a
higher osteocalcin expression the closer they are to the channels; HUVECs surrounding the internal cavity of the channels are also visible. d-g “Implantable
vascularized construct for bone repair” (adapted from Daly et al., 2018). d Schematic representation of the vascularized construct; e freestanding filament
network printed with PLU; f final GelMA construct after PLU wash out; g fluorescence image showing live/dead (green/red) MSCs 24 h after fabrication,
scale bar 500 μm. H-K. “Multi-scale MRI-derived vascular network” (adapted from Lee et al., 2019). h Computational representation of left ventricle
vasculature; i subregion chosen for 3D bioprinting; j perfusion of the final structure with magnified detail in k. l-m “Branched vascular network printed in a
spheroid support bath” (adapted from Skylar-Scott et al., 2019) l images at different timepoints during printing of the branching vascular network in a
spheroid-based matrix, scale bar 10mm;m fluorescence images at different sections (dashed lines) after 12 h of perfusion, showing live/dead (green/red)
iPSCs forming the spheroids. n-p “Vascularized alveolar and hepatic tissue models” (adapted from Grigoryan et al., 2019). n, o Printed alveolar models,
characterized by a central air sac surrounded by a blood perfused vascular network, scale bars 1mm; p schematic representation and fluorescence
imaging of a hydrogel loaded with hepatic cells (green) and supported by a vascular network (red)
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