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Abstract

Background: Many hypotheses have been proposed for how sexual reproduction may facilitate an increase in the
population mean fitness, such as the Fisher-Muller theory, Muller’s ratchet and others. According to the recently
proposed mixability theory, however, sexual recombination shifts the focus of natural selection away from favoring
particular genetic combinations of high fitness towards favoring alleles that perform well across different genetic
combinations. Mixability theory shows that, in finite populations, because sex essentially randomizes genetic
combinations, if one allele performs better than another across the existing combinations of alleles, that allele will
likely also perform better overall across a vast space of untested potential genotypes. However, this superiority has
been established only for a single-locus diploid model.

Results: We show that, in both haploids and diploids, the power of randomization by sex extends to the multilocus
case, and becomes substantially stronger with increasing numbers of loci. In addition, we make an explicit comparison
between the sexual and asexual cases, showing that sexual recombination is the cause of the randomization effect.

Conclusions: That the randomization effect applies to the multilocus case and becomes stronger with increasing
numbers of loci suggests that it holds under realistic conditions. One may expect, therefore, that in nature the ability
of an allele to perform well in interaction with existing genetic combinations is indicative of how well it will perform in
a far larger space of potential combinations that have not yet materialized and been tested. Randomization plays a
similar role in a statistical test, where it allows one to draw an inference from the outcome of the test in a small sample
about its expected outcome in a larger space of possibilities—i.e., to generalize. Our results are relevant to recent
theories examining evolution as a learning process.

Reviewers: This article was reviewed by David Ardell and Brian Golding.

Keywords: Random sampling, Sex and recombination, Epistasis, Randomized algorithms, Multilocus models,
Interaction-based evolution

Background
Theory concerning the evolution of sex and recombina-
tion has developed along two main lines. One, modifier
theory, examines the evolutionary change in the frequen-
cies of alleles that control the rate of recombination
[1–16]. The other focuses on the role of sex in evolu-
tion assuming that sex is already present (e.g., [17–20]).
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According to the mixability theory for the role of sex in
evolution, in the presence of sexual reproduction, nat-
ural selection favors not the best specific combinations
of genes; i.e., not those genotypes of highest fitness, but
rather alleles that perform well in interaction with a wide
variety of different genetic combinations — “mixable alle-
les” [21]. This theory offers an alternative view on the role
of sex in evolution to the more familiar lines of work on
this topic from the 20th century, such as the Fisher-Muller
theory [17, 18], the deterministic mutation hypothesis
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[20], the parasite hypothesis [19, 22] and other approaches
[23–27], as well as newer lines of theory (e.g., [11, 28, 29]).
Mixability theory has already had an unexpected conse-
quence in the interdisciplinary realm: it has served as a
motivation in the development of a key advance [30, 31]
that contributed to the phenomenal leap of deep learning
in 2012 [32, p.440] and thus to the global artificial intelli-
gence revolution (e.g., [33]). Previous theory in evolution
and in particular on the role of sexual reproduction has
inspired developments in computing through the genetic
algorithm work of John Holland [34], while mixability
theory has inspired innovation in the science of deep
learning.
Mixability theory has drawn a connection between

sex and genetic evolutionary modularity [35], and has
inspired work on the connection between the population
genetic equations for the updates of allele frequencies in
the presence of sex and natural selection with the power-
ful Multiplicative Weight Updates Algorithm [36], known
in multiple fields under different names [37]. The mixa-
bility effect, shown initially through numerical iterations
[21, 35], has also been demonstrated in a simple analytical
model [38].
However, while our previous studies [21, 35, 38] have

focused mostly on mixability in an infinite popula-
tion context, in finite populations, an intriguing effect
emerges: even though the current, finite population rep-
resents just a small sample of the space of potential
genotypes [39], how well an allele performs overall in
interaction with various different combinations of genetic
partners in this population is indicative of how well it
will perform overall in potential combinations that have
not yet materialized and been tested. In other words, the
interaction of natural selection and sexual recombination
makes it possible for an observer to draw an inference
from the success in terms of an allele’s mixability in the
finite population about its potential success in an untested
space of many potential genotypes [40].
Central to this effect is the idea of sex as random-

ization: while natural selection tests the performance of
an allele as an interactant across different genetic com-
binations in the finite population, sexual recombination
entails that the genotypes carrying that allele constitute an
essentially random and thus unbiased sample of the vastly
larger space of potential genotypes. Hence the outcome of
natural selection in the finite population is indicative of
which allele will be more mixable in a vast number of yet
unseen genetic combinations [40]. Randomization plays a
related role in statistical tests. In the evolutionary mod-
els described here and in statistical tests, randomization
makes an outcome that is based on a small sample indica-
tive of an outcome that would have been based on a much
larger space of possibilities. In statistical testing randomi-

zation is viewed as allowing for inference-making and
generalization.
This power of randomization has to date been demon-

strated only in a one-locus diploid model, where interac-
tion is between two alleles at one locus [40]. Here, we test
this effect using numerical analysis of both haploid and
diploid multi-locus models and demonstrate the power
of randomization. In both haploid and diploid models, as
the number of loci increases, selection acting on an ever
smaller fraction of the space of potential genotypes suf-
fices to infer with ever increasing accuracy which allele
has the greater mixability in the space of untested poten-
tial genotypes.
Since in reality sexual species have many recombin-

ing loci—many more than can be iterated on the com-
puter while keeping track of the space of all potential
genotypes—our present results suggest that in nature alle-
les that are favored due to the interaction of sex and natu-
ral selection are expected to perform better as interactants
in the space of yet untested genotypes.

Results
Multilocus models allow us to examine the sexual shuf-
fling of the genes due to recombination and/or segrega-
tion and independent assortment of chromosomes. In the
haploid case, themixability of an allele depends on its abil-
ity to interact well with a wide variety of combinations
of alleles at other loci. In the diploid case, it can depend
also on its ability to interact with a variety of alleles in
the same locus. Here, we will consider multilocus haploid
and diploid models with discrete generations, panmixia
and no mutation. We will examine change across one
generation only.
Consider N individuals, L loci and n alleles per locus.

The number of possible genotypes is nL in the haploid case
and

(
n(n+1)

2

)L
in the diploid case. Let the fitness of geno-

type G, wG, be its probability of survival (we assume here
for simplicity that viability, but not fertility, is genetic).
Our simulations start with uniform allele frequencies,
as in [40]. A starting population of N parents is gener-
ated by drawing at random one (haploid) or two (diploid)
alleles per locus. Unless stated otherwise, the individ-
uals can be thought of as hermaphrodites capable of
selfing.
The mixability of an allele is defined as the average fit-

ness of the genotypes carrying this allele, unweighted by
their genotypic frequencies (in contrast to the marginal
fitness). Formal definition of allelic mixability is given
below and contrasts with fitness measures as shown in
[21]. We expect that under an assumption of different
mixabilities of alleles, the allele that is moremixable across
all possible genotypes will increase in frequency more
than the other allele, even though only a small fraction



Vasylenko et al. Biology Direct           (2020) 15:26 Page 3 of 29

of all possible genotypes is materialized and tested by
selection.

Multilocus haploid model
Let wi1,i2,...,iL be the fitness of a genotype with alleles i1 at
locus 1, i2 at locus 2, etc. For the nL genotypes of the hap-
loid multi-locus model with L loci and n alleles per locus,
for each trial of the simulation, we randomized the fit-
ness values wi1,i2,...,iL such that the two alleles of interest î
and ĵ at the first locus with mixabilities defined as μî =
1

nL−1
∑

i2,...,iL
wî,i2,...,iL and μĵ = 1

nL−1
∑

i2,...,iL
wĵ,i2,...,iL , respec-

tively, had a mixability ratio ofμî/μĵ equal to a pre-chosen
value dîĵ, following [40]. In this case, the mixabilities of
alleles are equivalent to their marginal fitnesses because
the allele frequency distribution is uniform, although
allelic mixability in general is not equivalent to marginal
fitness (for details, see [21]). First, fitness values w̃ were
drawn from the normal distributionN (E, σ)with average
E = 0.7 and standard deviation σ = 0.15. Thus, almost all
fitness values fell in the interval [ 0.1]. Values not in that
interval were replaced with new random numbers from
the same distribution until all values were between 0 and
1. We refer to the resulting distribution as the truncated
normal distribution of fitness values. Next, the fitness
values of alleles î and ĵ were adjusted as follows:

wî,i2,...,iL = w̃î,i2,...,iL

√
dîĵμ̃ĵ

μ̃î
(1)

and

wĵ,i2,...,iL = w̃ĵ,i2,...,iL

√
μ̃î

dîĵμ̃ĵ
, (2)

where μ̃î = 1
nL−1

∑
i2,...,iL

w̃î,i2,...,iL and μ̃ĵ = 1
nL−1

∑
i2,...,iL

w̃ĵ,i2,...,iL . The adjusted values w have a mixability ratio
μî
μĵ

= dîĵ.
Each trial of the simulation consisted of a single gen-

eration of recombination and selection. At the start of
each trial, an initial population of parents was generated
by drawing alleles at each of the L loci at random for
each parent without replacement from a store of alleles at
equal frequencies. Next, an offspring was generated from
two random parents using the Poisson model of recom-
bination [41, 42], according to which a crossover occurs
between neighboring positions with probability p ≤ 1/2,
independently of crossovers at other positions. Finally, an
offspring survived with probability wi1,i2,...,iL . This pro-
cedure was repeated until N surviving individuals were
obtained. At the same time, the number of unique geno-
types that materialized in the process—namely the num-
ber of genotypes that were tested at least once, whether

they survived or not—was recorded. Finally, for each mix-
ability ratio dîĵ, number of alleles n, number of loci L and
population size N, multiple independent trials were run,
and the following two measurements were made: a) the
across-trials average fraction of all possible genotypes that
materialized and were tested by the population, g(N , L, n),
and b) the fraction of trials in which, of the particular
allele pair î and ĵ, the allele that was more mixable (had
a higher μ) across all possible genotypes increased in fre-
quency more than the allele that was less mixable across
all possible genotypes, P(N , L, n) (ties in this measure
were counted as “half a point” for each allele).
For clarity, we note that our results capture the fact that

sex promotes the ability of alleles to perform well in the
many combinations of alleles across loci that have not yet
materialized, where these combinations are composed of
present alleles. They do not capture the ability of alleles to
perform well in interaction with alleles that have not yet
been created through mutation.
Figure 1 shows the results of such a simulation for a

population size of N = 2000 haploids, dîĵ values ranging
from about 1.01 to 1.11, n = 2 per locus and 100 indepen-
dent trials for each parameter combination. As expected,
in each panel we see that the allele that is more mixable
across all possible genotypes is the one more likely to win,
even though only a small fraction of all possible genotypes
is actually tested. This effect increases with dîĵ (P rises
across panels) and remains at the same strength when the
space of potential genotypes is increased (P is flat within
panels).
To facilitate comparisons, in all panels the green line

highlights the results for the 16 locus case. On the left side
of each panel, the number of loci is small, and all possi-
ble genotypes get tested. On the right side, the number of
possible genotypes is large relative to the population size
(220 ≈ 1.05E6) and only a small fraction of all possible
genotypes is tested. Thus, the distance between P and g
increases both with dîĵ (owing to the increase in P) and
with L (owing to the decrease in g). This demonstrates
that sex enables random sampling in selecting for mixa-
bility: in reality, the number of loci (L) is large, and thus
the population size becomes small relative to the num-
ber of possible genotypes, while the probability of correct
evaluation remains high.
From the statistical point of view, we are comparing two

distributions of fitness values (for allele î and for allele ĵ).
Sex and natural selection perform the non-trivial task of
distinguishing between these distributions correctly at a
high probability with only a small fraction of observations
drawn from these distributions and for any number of loci.
In the above, we assumed free recombination in

hermaphrodites capable of selfing. To examine the case
of two mating types, we divided the starting population
into two separate types, “type 1” and “type 2,” and allowed
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Fig. 1 Random sampling in a multi-locus haploid model. Fitness values were drawn from the normal distributionN (0.7, 0.15). In each panel, results
are shown for a population size of 2000, a varying number of loci from 2 to 20 and 2 alleles per locus. In each panel, for each number of loci, based
on 100 independent trials, the red line shows g, the average fraction of all possible genotypes that actually materialized and were tested by the
population. For each such genotype, at least one individual was born with that genotype and either survived or did not. The blue line shows P, the
fraction of trials in which the allele that is more mixable across all possible genotypes increased in frequency more than the allele that is less mixable
across all possible genotypes. Bars for the 4, 8, 12 and 16 loci cases represent a 95% confidence interval for P based on 80 values, each of which was
obtained based on 100 independent trials

mating only between types. Since the 95% confidence
intervals for the two-mating-types results overlap with
those of Fig. 1 almost entirely, we conclude that there is
no substantial difference between hermaphrodites capa-
ble of selfing and two mating types (see Appendix Fig. 7),
as in [40].
An important cause of random deviations from correct

inference of mixabilities is random genetic drift due to
the sampling of parents and of alleles within parents with
replacement. This sampling creates random variation in
the parents’ fertilities as well as in the transmission suc-
cess of alleles within a parent. For a pedagogical purpose,
to observe the pure effect of random sampling of geno-
types by sex (which is our focus here), free of these effects
of drift, one can remove drift by running the same simula-
tions while ensuring that each haploid individual appears

in exactly one mating event and produces two offspring
and that each allele is transmitted exactly once. To keep
the simulation simple, this scenario forces us to forgo the
constant population size: instead of generating new indi-
viduals until N of them survive, we repeat the simulation
now until N (even) parents have appeared in N/2 mating
events, where each of these events creates two offspring
that are complementary to each other in terms of allele
transmission.
The results with random genetic drift removed (Fig. 2)

are clearly stronger than those of Fig. 1. For example, with
a population size of 2000, 2 alleles, 16 loci, and mixability
ratio dîĵ = 1.0112 (green line, top left panel), while in Fig. 1
selection makes the correct mixability evaluation 58% of
the times by testing 4.3% of all possible genotypes, in Fig. 2
selection makes the correct evaluation 59% of the times
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Fig. 2 Random sampling in the multi-locus haploid model without random genetic drift. The simulation conditions are as described in Fig. 1, except
that now parents are divided into two mating types, mating can occur only between type 1 and type 2 individuals, each parent participates in
exactly one reproductive event that creates two offspring, and each allele in each parent is transmitted exactly once. The difference between the
present figure and Fig. 1 shows the importance of drift due to the sampling of parents and of alleles with replacement

by testing 3.0% of all possible genotypes. This evaluation
reaches a rate of 98 − 100% correct with dîĵ ≥ 1.08 (all
bottom panels of Fig. 2).

All loci
Above we have tracked two alleles at one locus. How do
the results change if we track two alleles at all L loci
simultaneously?
Let us initialize the fitness matrix with random values

as before fromN (0.7, 0.15) and change these values using
Eqs. (1) and (2) for all loci one after the other from 1st
to L-th in order to obtain mixability ratios between two
particular alleles at each locus nearly equal to some pre-
defined value dîĵ that is, for simplicity, equal across loci.
Namely, let îl and ĵl be pairs of alleles at the l-th locus,
where 1 ≤ l ≤ L. Eqs. (1) and (2) are first applied to
the first locus, where w̃ and w are rewritten as w0 and
w1 respectively (and similarly for the μs). Then the same
transformation is applied to the second locus:

w2
i1,î2,...,iL

= w1
i1,î2,...,iL

√√√√√√
dîĵ

∑
i1,i3,...,iL

w1
i1,ĵ2,...,iL

∑
i1,i3,...,iL

w1
i1,î2,...,iL

= w1
i1,î2,...,iL

√√√√√
dîĵμ

1
ĵ2

μ1
î2

and

w2
i1,ĵ2,...,iL

= w1
i1,ĵ2,...,iL

√√√√√
μ1
î2

dîĵμ
1
ĵ2

.

This procedure is repeated until finally the last locus fit-
ness values are adjusted. The mixability ratio for alleles îL
and ĵL is now precisely equal to the predefined value dîĵ,
and it has been verified by simulation that the mixability
ratios for alleles at other loci are approximately equal to
this value.
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We now let P be the sum across loci of the number
of trials in which, for the particular allele pair îl and ĵl
at each locus, the allele that was more mixable across all
possible genotypes increased in frequency more than the
other allele, divided by the product of L and the number
of trials. Results further underscore the power of the mix-
ability effect: it is obtained for all loci simultaneously (see
Appendix Fig. 8).

Sex vs. asex in the haploid model
Previously it was shown that selection for mixability
occurs in sexual and not in asexual populations [21, 35].
However, to actually observe this difference properly in a
simulation is not a trivial task. That is, to draw a compar-
ison one must start these sexual and asexual populations
from the same initial conditions. Then, if mixability is
measured in a multigenerational process, it takes time
for the populations to diverge and begin to show a con-
sistent difference in mixability, while at the same time
the mixability measure becomes a proxy that loses power
over time. Thus, the difference in mixability between sex
and asex is best observed during the evolutionary tran-
sient [21]. Here and in [40] we use a different method
that is based on a single generational analysis, in which
starting the populations from equal beginnings poses a
different but related problem: the usual way to gener-
ate an initial population would be to draw genotypes at
random, but randomness is precisely the element that is
supposed to be controlled for. In other words, starting at
linkage equilibrium makes the asexual population, when
observed through a timewindow of one generation, essen-
tially a sexual one (that just lost its the ability to reproduce
sexually, and hence is still at linkage equilibrium). One
way of overcoming this problem is to start at perfect
linkage disequilibrium—start with several clones, and in
the sexual case allow only for mating between clones. In
the asexual case, reproduction will copy the genotypes
of the given initial clones. In the sexual case, the shuf-
fling of the genes will produce more combinations than
the initial ones, with g increasing with the recombination
rate.
Figure 3 demonstrates the result of such a simulation

for a population size of 2000 haploids, dîĵ values ranging
from approximately 1.01 to 1.11, number of alleles n = 2
per locus, 12 loci and 100 independent trials for each
parameter combination. The starting population consists
of two clones; that is, let 0l and 1l be the first and second
alleles, respectively, at locus l ∈ (1, . . . L). In this nota-
tion, the first clone is (01, 02, . . . , 0L) and the second is
(11, 12, . . . , 1L). In the top-left panel, where dîĵ = 1.0112,
the alleles are almost equally mixable, and P varies from
0.52 in the asexual case (no recombination; left end of
panel) to 0.60 in the free recombination sexual case (right
end of panel). The difference stands out in the central-left

panel, where dîĵ = 1.0465 (it increases from 0.56 in the
asexual case to 0.82 in the free recombination case) and
reaches its maximum in the bottom-right panel, where
dîĵ = 1.1111, (from 0.64 in the asexual case to 0.99 in
the sexual one). Understandably, the number of tested
genotypes, g, increases with the recombination rate.
As the population size increases, P increases for the sex-

ual population but remains the same for the asexual one
(Fig. 4). As the standard deviation of the fitness distribu-
tions is increased, P decreases much faster for the asexual
than for the sexual population (Appendix Fig. 9). These
results clearly demonstrate the power of randomization
due to sex.

Comparison of the simulation with theoretical
probabilities in the haploid model
The probability P can also be examined from a statistical
perspective where we are dealing with two distributions:
one for the fitness values of the genotypes carrying one
allele, and another for the other allele (distributions that
would partly overlap in the diploid case). The question
then is howwell natural selection can distinguish correctly
which distribution has the higher mean: in the sex case,
based on comparing small random samples from these
distributions, and in the asex case simulated above, based
on one observation from each distribution. In the latter
case, it makes the correct evaluation if the observation
(clone) with higher fitness belongs to the distribution with
the higher mean. Thus, the asexual probability of correct
evaluation, P, can be directly calculated if the joint dis-
tribution of the random variables is known, a calculation
which is greatly simplified when those random variables
are independent. Thus, let X and Y be independent ran-
dom variables with probability density functions fX(x) and
fY (y), representing the fitness value distributions of geno-
types carrying allele î and allele ĵ, respectively. Since they
are independent, their joint probability density function
is the product of their individual probability density func-
tions: fX,Y (x, y) = fX(x) · fY (y), and the probability that one
random variable is greater than another is

P(X<Y ) =
∫∫

x<y

fX,Y (x, y)dxdy =
∫∫

x<y

fX(x)fY (y)dxdy. (3)

In the sexual case, in contrast, averages of N points
from each distribution are compared. Specifically, let
X1,X2, . . . ,XN be independent random variables with
the common density function fX and Y1,Y2, . . . ,YN be
independent random variables with the common den-
sity function fY . Let EX ,EY , σX , σY be the expectations
and standard deviations of X and Y, respectively, AN =
X1+X2+···+XN

N , BN = Y1+Y2+···+YN
N , and fA and fB be the

probability density functions of the normal distributions
NA = N

(
EX , σX/

√
N

)
and NB = N

(
EY , σY /

√
N

)
,
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Fig. 3 Comparison of sampling made by sex and asex in a multi-locus haploid model. Fitness values were drawn from the normal distribution
N (0.7, 0.15) as described in the text. The starting population consists of two clones. In each panel, for each recombination rate from 0 (asex) to 0.5
(sex, free recombination case) on the x-axis, a population size of 2000, 12 loci and 2 alleles per locus, based on 100 independent trials the red line
shows g, the blue solid line shows P, and the blue dashed line demarcates the 95% confidence interval of P, as in Fig. 1

respectively. Then, by the central limit theorem (CLT), for
sufficiently large N, the random variable AN has approx-
imately the distribution NA and the random variable BN
has approximately the distributionNB, and the probability
that the average of N randomly selected points from one
distribution is bigger than average ofN randomly selected
points from another can be calculated as follows:

P(AN < BN ) =
∫∫

a<b

fA,B(a, b) da db

=
∫∫

a<b

fA(a)fB(b) da db.
(4)

A comparison shows that, as the population size is
increased (2000 and bigger), the simulated P comes closer
to the theoretical P in Eq. (4) (Fig. 4 and Table 1).

Multilocus diploid model
In our diploid model, there are no position effects; hence
the fitness of a genotype with alleles (i, j) at the l-th locus

has the same fitness value as a genotype with alleles (j, i)
at that locus, yielding

(
n(n+1)

2

)L
different genotypes. For

each trial of the simulation, we randomize the fitness val-
ues wi1j1,i2j2,...,iLjL such that the two alleles of interest î
and ĵ from the first locus with mixabilities defined as
μî = 1

n·
(
n(n+1)

2

)L−1 × ∑
k,i2,j2,...,iL,jL

wîk,i2j2,...,iLjL and μĵ =
1

n·
(
n(n+1)

2

)L−1 × ∑
k,i2,j2,...,iL,jL

wĵk,i2j2,...,iLjL , respectively, have a

mixability ratio of μî/μĵ almost equal to a pre-chosen
value dîĵ. Due to computational restrictions, the simula-
tion was performed for n = 2 alleles per locus. As in
the haploid model, fitness values w̃ were first drawn from
N (0.7, 0.15) and then truncated. Then, the fitness values
of alleles î and ĵ were adjusted as follows:

wîk,i2 j2,...,iLjL
= w̃îk,i2 j2,...,iLjL

√√√√√√√√√

(
2dîĵ − 1

) ∑
l �=î;i2,j2,...,iL ,jL

w̃ĵl,i2 j2,...,iLjL
∑

l �=ĵ;i2,j2,...,iL ,jL
w̃îl,i2 j2,...,iLjL

(5)
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Fig. 4 Comparison of sampling by sex and by asex in the multi-locus haploid model for different population sizes. The simulation conditions are as
described in Fig. 3, except that now the population size varies on the x-axes and only two recombination rates values are used, r = 0 (asex, cyan
solid line; 95% C.I. cyan dashed lines) and r = 0.5 (sex, blue solid line; 95% C.I. blue dashed lines). The probability that the more mixable allele across
all possible genotypes was favored, P, is markedly higher in the sexual case. Furthermore, as the population size is increased, P increases in the
sexual population but not in the asexual one. This figure shows that with increasing population size, selection for mixability becomes stronger only
in the sexual population

and

wĵk,i2 j2,...,iLjL
= w̃ĵk,i2 j2,...,iLjL

√√√√√√√√√

∑
l �=ĵ;i2,j2,...,iL ,jL

w̃îl,i2 j2,...,iLjL
(
2dîĵ − 1

) ∑
l �=î;i2,j2,...,iL ,jL

w̃ĵl,i2 j2,...,iLjL

(6)

(see the Appendix “Obtaining mixability ratios in the
diploid case” section).
Figure 5 shows that the diploid case results are stronger

than the haploid ones. For example, the 95% confidence
interval for P over all loci tested here is included in

Table 1 Comparison of theoretical and simulated probabilities, haploid case

P in the sex case P in the asex case

d Simulated 95% confidence interval Theoretical value Simulated 95% confidence interval Theoretical value

With genetic drift Without genetic drift

1.0112 (0.50, 0.69) (0.56, 0.71) 0.88 (0.42, 0.61) 0.5064

1.0588 (0.80, 0.93) (0.94, 1.00) 1 − 1.7e−10 (0.51, 0.66) 0.5691

1.1111 (0.96, 1.00) (0.99, 1.00) 1 − 1.0e−31 (0.56, 0.72) 0.6327

The comparison uses a population size of 2000 haploids, 12 loci and 2 alleles per locus.
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Fig. 5 Random sampling in a multi-locus diploid model. The results were produced and presented in a manner analogous to Fig. 1, the difference
being that this model is diploid and number of loci ranges from 2 to 16. Results are much stronger than in the haploid case

0.56 − 0.72 for the diploid vs. 0.52 − 0.68 for the hap-
loid for dîĵ = 1.0112; 0.92 − 0.98 diploid vs. 0.84 − 0.95
haploid for dîĵ = 1.0588; and 0.99 − 1 vs. 0.96 − 1 for
dîĵ = 1.1111. P increases with d and varies little across
panels. Results for two mating types are similar to Fig. 5
(see Appendix Fig. 10), and much stronger with random
genetic drift removed (Appendix Fig. 11). However, the
reason that the diploid results are stronger appears to be
that in the diploid model the fitness difference between
the homozygotes at a given locus is bigger than that the
fitness difference between two alleles at a given haploid
locus for the samemixability ratio because of the existence
of the heterozygote genotype in the former, and only the
homozygotes îî and ĵĵ contribute to P (the P that relates to
î and ĵ at the given locus). This effect decreases with the
number of alleles (Appendix Fig. 12).

Sex vs. asex in the diploid model
Given the two alleles 0l and 1l at each locus 1 ≤ l ≤
L and the homozygous clones (0101; 0202; . . . ; 0L0L) and

(1111; 1212; . . . ; 1L1L), any sexual mating between clones
will produce the same F1 genotype (0111; 0212; . . . ; 0L1L).
Therefore, to compare sex and asex in the diploid case,
we simulated two generations and compared the starting
population with the second generation’s population.
Results of this simulation for a population size of 2000

diploid individuals, dîĵ values ranging from 1.01 to 1.11,
number of alleles n = 2 per locus, 8 loci and 100 indepen-
dent trials for each parameter combination are presented
in Fig. 6. In comparison to Fig. 3, P is larger for both
the asex and free recombination cases across panels. The
difference in P between sex and asex in Fig. 6 increases
faster with d than in Fig. 3 (first 5 panels) and then
decreases due to a ceiling effect. As in the haploid case, P
increases with the population size for the sexual popula-
tion but remains the same for the asexual one (Appendix
Fig. 13). Again as in the haploid case, as the standard devi-
ation of the fitness distributions is increased, P decreases
much faster for the asexual than for the sexual population
(Appendix Fig. 14).
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Fig. 6 Comparison of sampling by sex and by asex in a multi-locus diploid model. Fitness values were drawn from the normal distribution
N (0.7, 0.15). In each panel, results are shown for a population size of 2000, 8 loci and 2 alleles per locus. The simulation conditions are as described
in Fig. 3, the difference being that this model is diploid

Comparison of the simulation with theoretical
probabilities for the diploid case
The probability P in the asexual case can be calculated the-
oretically, if the joint distribution of random variables X
and Y from expression (3) is known. However, the fitness
value distributions for two alleles of interest overlap in the
diploid case, hence they are not independent and the sim-
plification in the second equation of (3) can not be used.
Consider the distributions of fitness values for homozy-
gotes at the first locus for genotypes with two alleles per
locus. Let X̃ and Ỹ be random variables from the distribu-
tions fX̃ and fỸ of genotypes with îî and ĵĵ respectively at
the first locus, which are independent. Now,

P
(
X̃< Ỹ

) =
∫∫

x<y

fX̃,Ỹ (x, y)dxdy =
∫∫

x<y

fX̃(x)fỸ (y)dxdy

(7)

(see the Appendix “Derivation of expression (7)” section).
The ratio between the expectations of X̃ and Ỹ is equal
to 2dîĵ − 1 (see Eqs. (5), (6)). It is greater than that

between the expectations of X and Y, which is equal to dîĵ,
because of the heterozygous genotype (see the Appendix
“Obtaining mixability ratios in the diploid case” section
for details). Therefore, the difference between sex and asex
in the diploid case is greater than in the haploid case.
Appendix Fig. 14 shows that it increases with σ . By the
CLT, the mean of N points from one distribution has the
distribution N (E, σ/

√
N) for large enough N. Therefore,

equation (4) can be used here. In Table 2 it is shown that
the simulated P value is close to the theoretical one.

Discussion
In both haploid and diploid cases, we find that sex has
the power of randomization: by essentially randomizing
genetic combinations, the allele that is favored by natu-
ral selection in its interactions with the existing genetic
combinations in a current, finite population is also likely
to perform better overall across the much larger space of
untested, potential genotypes. The results extend our pre-
vious studies [40] to the multilocus case. Indeed, increas-
ing the number of loci substantially strengthens the effect:



Vasylenko et al. Biology Direct           (2020) 15:26 Page 11 of 29

Table 2 Comparison of theoretical and simulated probabilities, diploid case

P in the sex case P in the asex case

d Simulated 95% confidence interval Theoretical value Simulated 95% confidence interval Theoretical value

With genetic drift Without genetic drift

1.0112 (0.55, 0.70) (0.62, 0.78) 0.9901 (0.45, 0.63) 0.5236

1.0588 (0.91, 0.99) (0.96, 1.00) 1 − 2.2e−35 (0.55, 0.73) 0.6393

1.1111 (0.99, 1.00) (1.00, 1.00) 1 − 5.4e−107 (0.66, 0.83) 0.6918

The comparison uses a population size of 2000 diploids, 8 loci and 2 alleles per locus.

as the number of loci increases, an ever smaller fraction
of the space of potential genotypes needs to be tested
in order for selection to favor the allele that will most
likely also be mixable across the many untested poten-
tial genotypes, with ever increasing accuracy. In addition,
we demonstrate the power of randomization due to sex
by directly comparing sex and asex, showing that selec-
tion favors the more mixable alleles substantially more
in the sexual population, more so for larger populations
and intermediate fitness variance. For sufficiently small σ ,
even one randomly selected point is sufficient to distin-
guish two distributions, i.e. the accuracy in the asexual
case is high and is therefore close to the sexual one. For
sufficiently large σ , the distributions are very close, and
even many randomly selected points are not enough to
distinguish these distributions, i.e. the accuracy in the
sexual case is low, close to the asexual one.
To better understand the idea of sex as randomiza-

tion, it is useful to contrast it with previous theories,
such as the Fisher-Muller theory of the benefit of sex
[17, 18]. In the latter, sex allows for parallel as opposed
to serial accumulation of beneficial mutations: beneficial
mutations at different loci that originated in different indi-
viduals can be combined into one individual, whereas in
an asexual population, such mutations must occur serially
in the same clone in order to accumulate under natural
selection [17, 18, 43, 44]. However, that theory assumes
a priori that a beneficial allele is favored over the wild-
type no matter what genetic combination it is in—it is
“beneficial” in the sense that it has a value of its own,
independent of alleles at other loci, and once it arises,
it spreads to fixation because of this rather independent
effect [17, 18, 43, 44]. In that framework, there is no
need for selection to explore the value of an allele over
the generations, because the allele is understood to be
beneficial from the start, independently of the genetic
context. In the present analysis our focus is on the mix-
ability of alleles as the measure of interest, rather than
the population mean fitness, while allowing for genetic
interactions.
Another surprising implication of the results is as fol-

lows. Both in the case where genes do not interact, and in

the case where they do interact but in a random fashion
(where the fitness of a genotype is a random function of
its constituent alleles—the most complex function in the
Kolmogorov complexity sense [45]), there is no informa-
tion to be gained on the mixability of alleles by random
sampling of potential genotypes and their fitnesses [40].
Therefore, if the power of randomization by sex is impor-
tant in nature, then genetic interactions must be com-
mon and structured—they must be not overly complex
[40]. This implication further underscores the difference
between the idea of sex as harnessing the power of ran-
domness [40] and previous theories on the role of sexual
reproduction in evolution. For example, the deterministic
mutation hypothesis requires a more restrictive form of
genetic interaction [20].
In evolutionary theory, randomness has been seen as

a force that leads directly to new genetic information:
Randommutation represents random change in the infor-
mation that is stored in the genome, a change that may
sometimes contribute to a beneficial phenotypic change.
A recombination event can result in a beneficial change
to the extent that it can create a lasting beneficial com-
bination of alleles, for example as in the Shifting-Balance
Theory [46, 47]. Here we show a very different way by
which randomness can be important in evolution: it can
be harnessed in an effective way, not as a force that leads
to new genetic information directly, but as an element of
a larger system. In our case, it makes natural selection in
a finite population act in a manner indicative of the abil-
ity of alleles to perform well as interactants in the space
of untested potential genotypes [40]. Indeed, the fact that
randomization can be harnessed very effectively as a part
of a bigger system is well known. In the experimental
sciences, it is used for random sampling or random assign-
ment to conditions. In computer science, many algorithms
have been created that use randomization in an effec-
tive way, from testing whether an algebraic identity is
correct, to encrypting messages, to testing software, to
sorting large files, and more [48, 49]. However, this well-
known effect of randomization has not previously been
proposed as a possibly important element in the process of
evolution.
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A better understanding of sexual reproduction may be
relevant not only to population genetics but also to com-
puter science. It is well known that a simple hypothesis
that explains many different facts is a good hypothesis
[45]—it does not suffer from over-fitting and is more likely
to be correct. Mixable alleles are alleles that work well
in many different genetic contexts, and can be viewed as
simple modules [21, 30, 31, 35]. In this light, sex may be
seen as a phenomenon that decomposes the genome into
recombining loci where a mixable allele represents a good,
simple “hypothesis” about what genetic information at a
given locus will work well in interaction with the genetic
information at other loci.
Viewing mixability as nature’s way of simplifying inter-

actions between genes, Hinton and colleagues designed
an analogous method for the training of deep learning
neural networks [30, 31] called “dropout,” where 50% of
the units in the network are chosen at random and tem-
porarily dropped out of the network at each instance
of training. This prevents the appearance over time of
units that work well only in the context of specific other
units, and favors instead the appearance of units that
perform well across different contexts, as in the mixa-
bility effect of sex on alleles [30, 31]. This serves as a
form of simplification of the interactions between units
and as a means of preventing over-fitting while creat-
ing robust units [30, 31]. The resulting algorithm was
described as one of four breakthroughs that allowed for
the comeback of artificial neural networks through deep
learning in 2012 [32, p. 440], which in turn has been a key
part of the recent global artificial intelligence revolution
(e.g., [33]).
Relatedly, because the interaction of sex and natural

selection acts in a manner that is indicative of the per-
formance of alleles in future genetic combinations, and
because inference-making is a central aspect of learn-
ing, our finding naturally connects with recent work
proposing that evolution can be viewed as a learning
process (e.g., [36, 50–54]). Both the theory of Interaction-
based Evolution [51, 54] and Evolutionary Connectionism
[52, 53] recognize the importance of simplification in
learning processes but approach simplification in biologi-
cal evolution in different ways. According to Interaction-
based Evolution (IBE) theory, simplification can be imple-
mented directly by mechanisms of genetic change [54].
Therefore, parsimony can serve as a central force in evo-
lution, and natural selection on the one hand and genetic
mechanisms of simplification on the other can interact
and allow for evolution by the combination of parsimony
and fit [54]. In contrast, the evolutionary connection-
ist approach took methods of simplification known in
machine-learning and introduced them into evolutionary
simulations of gene-regulatory networks (GRNs) to some
beneficial effect [55] but did not ground this simplification

biologically in a way that would explore its relevance and
importance to biological evolution.
The present results exemplify this difference. One way

by which simplification is forced into the simulations of
the evolutionary connectionist approach is by introducing
Gaussian noise to the “target phenotype” at each gener-
ation [55]. Interestingly, however, the authors of ref. [55]
connect their approach to dropout: “Masking spurious
details in the training set by adding noise to the training
samples during the training phase is a general method to
combat the problem of over-fitting in learning systems.
This technique is known as ‘training with noise’ or ‘jitter-
ing’... and is closely related to the use of intrinsic noise in
deep neural networks; a technique known as ‘dropout’ ”
[55, p.9]. However, note that a) dropout was motivated by
mixability theory [31]; b) from the point of view of mix-
ability, sexual recombination was seen as nature’s way of
simplifying interactions between loci [21, 30, 31, 35]; and
c) sexual recombination is a quintessential example of a
mechanism of genetic change. Thus, the quote from ref.
[55] actually returns us to the position of IBE [51, 54],
which focuses on the centrality of mechanisms of genetic
change. That is, we have demonstrated that randomiza-
tion is directly inserted into the evolutionary process in
nature by sexual recombination itself. Sexual recombina-
tion decomposes the genome into simple units ormodules
[21, 30, 31, 35], where an allele will be favored at a focal
locus if it is a better, simple, generalizable hypothesis
about what information will work well with other pieces
of information at other loci. Thus, simplification in evo-
lution can be implemented by mechanisms of genetic
change. Indeed, both in the cases of evolution and statis-
tical tests, randomization allows for an outcome based on
a small sample to be indicative of the outcome that would
emerge from a far larger space of possibilities. In the case
of evolution, it allows selection to act as a signal of the
mixability of an allele in future genetic combinations. In
the case of statistical tests, randomization allows for infer-
ence and generalization, which are key aspects of learning
processes.

Conclusions
The theoretical study of the role of sex in evolution tra-
ditionally focused on the question of how sex might facil-
itate the increase in population mean fitness. However,
this focus is insufficient to explain the evolution of this
complex adaptation because the mean fitness does not
necessarily capture complex biological structure. Mixabil-
ity theory takes an alternative approach that focuses on
the ability of alleles to perform well as interactants across
a wide variety of different genetic combinations and how
the sexual shuffling of the genes affects this performance.
We found that in both haploid and diploid multilocus sys-
tems, alleles that performs better across existing genetic
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combinations are also the ones most likely to perform bet-
ter across the much larger space of untested genotypes.
Thus, under realistic conditions, the interaction of sex
and natural selection makes the success of an allele due
to its mixability in the current finite population indica-
tive of its success as an interactant in future genetic
combinations.

Appendix
Obtaining mixability ratios in the diploid case

In the diploid multi-locus model, for the
(
n(n+1)

2

)L
geno-

types with n alleles and L loci, for each trial of the
simulation, fitness values, w̃i1j1,i2j2,...,iLjL are drawn from
the normal distribution N (E, σ) with average E = 0.7
and standard deviation σ = 0.15 and then truncated as
described in the main text. If the fitness values of alleles î
and ĵ were adjusted as follows,

wîk,i2j2,...,iLjL = w̃îk,i2j2,...,iLjL

√√√√√√√

dîĵ
∑

k �=î;i2,j2,...,iL,jL
w̃ĵk,i2j2,...,iLjL

∑
k �=ĵ;i2,j2,...,iL,jL

w̃îk,i2j2,...,iLjL

(8)

and

wĵk,i2j2,...,iLjL = w̃ĵk,i2j2,...,iLjL

√√√√√√√

∑
k �=ĵ;i2,j2,...,iL,jL

w̃îk,i2j2,...,iLjL

dîĵ
∑

k �=î;i2,j2,...,iL,jL
w̃ĵk,i2j2,...,iLjL

,

(9)

then the mixability ratio between î and ĵ would have been
nearly equal to dîĵ if the number of alleles n were suffi-
ciently large. Due to computational restrictions, however,
we run simulations for n = 2, hence Eqs. (8) and (9) need
to be changed to make the mixability ratio between î and
ĵ precisely equal to dîĵ. In this case, for L loci, the fitness

matrix has
(
n(n+1)

2

)L = 3L values. Notice that, for alleles
î and ĵ at the first locus, expression (8) increases the fit-
ness of genotypes with îî and îĵ at the first locus at some
given rate, and expression (9) decreases the fitness values
of genotypes with îĵ and ĵĵ at the first locus at the same rate.
Thus, the fitness values of genotypes with îĵ at the first
locus will be the same as in the beginning, and the ratio
between the mixabilities of the pairs îî and ĵĵ (see [35] for
the definition of mixability for k-tuples of interacting alle-
les) will be precisely dîĵ. However, we need to get the ratio
between the mixabilities of îî + îĵ and îĵ + ĵĵ to be equal
to dîĵ. Thus, to get the predefined mixability ratio dîĵ, the

fitness values of genotypes with îî and ĵĵ at the first locus
should be adjusted differently.
Let ai be the fitness values of genotypes with îî, bi be

the fitness values of genotypes with îĵ, and ci be the fitness
values of genotypes with ĵĵ at the first locus, and let dîĵ be a
predefinedmixability ratio. From Eqs. (8) and (9) it follows
that

∑
ai∑
ci

= dîĵ.

We would like to obtain

∑
ai + ∑

bi∑
bi + ∑

ci
= dîĵ.

This is equivalent to
∑

ai∑
ci

= dîĵ +
∑

bi∑
ci

(
dîĵ − 1

)
.

Since bi and ci are drawn from the same distribution
N (0.7, 0.15), which implies that

∑
bi = ∑

ci, we get∑
ai∑
ci

= 2dîĵ − 1.

Hence, (8) and (9) are adjusted to

wîk,i2 j2,...,iLjL
= w̃îk,i2 j2,...,iLjL

√√√√√√√√√

(
2dîĵ − 1

) ∑
k �=î;i2,j2,...,iL ,jL

w̃ĵk,i2 j2,...,iLjL
∑

k �=ĵ;i2,j2,...,iL ,jL
w̃îk,i2 j2,...,iLjL

(10)

and

wĵk,i2 j2,...,iLjL
= w̃ĵk,i2 j2,...,iLjL

√√√√√√√√√

∑
k �=ĵ;i2,j2,...,iL ,jL

w̃îk,i2 j2,...,iLjL
(
2dîĵ − 1

) ∑
k �=î;i2,j2,...,iL ,jL

w̃ĵk,i2 j2,...,iLjL

. (11)

Derivation of expression (7)
As before, the theoretical probability of correct infer-
ence in the diploid multilocus model can be calculated as
follows:

P(X < Y ) =
∫∫

x<y

fX,Y (x, y)dxdy,

where X and Y are random variables with joint probability
density function fX,Y (x, y). Recall that X is drawn from the
distribution of fitness values of genotypes that contain one
allele of interest, î, and Y is drawn from the distribution of
fitness values of genotypes that contain another one, ĵ. The
difficulty here is that these distributions are not indepen-
dent because of the existence of a genotype that contains
both alleles of interest.
Considering the case of two alleles per locus, let the

genotypes at the first locus be îî, ĵĵ and îĵ, and the fit-
ness value distributions for each be the same as those of X̃
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(for îî), Ỹ (for ĵĵ) and Z̃ (for îĵ). These three random vari-
ables are pairwise independent. We have, X = X̃ + Z̃ and
Y = Ỹ + Z̃. Therefore,

P(X < Y ) = P (x < y|x ∈ X, y ∈ Y )

= P
(
x̃ + z̃ < ỹ + z̃|x̃ ∈ X̃, ỹ ∈ Ỹ , z̃ ∈ Z̃

)

= P
(
x̃ < ỹ|x̃ ∈ X̃, ỹ ∈ Ỹ

) = P
(
X̃ < Ỹ

)
,

where X̃ and Ỹ are independent.

Multilocus binary models
Multilocus haploid binarymodel
One of the causes of random deviations from “correct
evaluation” ofmixabilities in themultilocus haploidmodel
was the probabilistic nature of survival. Here, we carry out
a similar simulation with binary fitness values, such that
the values of each genotype can be either 0 or 1. Now the
mixability of an allele is calculated by dividing the number
of genotypes of fitness 1 that carry this allele by the total
number of genotypes that carry this allele. dîĵ is equal to
the ratio of these fractions for the two alleles of interest.
The starting population consists of concrete genotypes

as in the main haploid model, but here we must ensure
that all parents that survived to replicate have fitness 1
(i.e., there is no genotype with fitness 0 in the starting
population), and that the mixabilities of the two alleles of
interest (î and ĵ) at the first locus closely approximate some
predefined values. One way to do so, is to place zeros and
ones in the fitness matrix at the rate that would lead to the
mixability ratio, dîĵ, chosen for the given simulation.
Note that, if the number of loci L is small relative to

the population size and the starting allele frequencies are
equal, then the set of parents may include too many possi-
ble genotypes, leaving no room for enough zero values in
the fitness matrix. Therefore, we can run the simulation
of discrete fitness values for haploid multilocus model for
sufficiently large values of L, depending on the population
size N and the number of alleles per locus n.
Appendix Fig. 15 shows the result of such a simulation

for a population size of 2000 haploids, dîĵ values rang-
ing from approximately 1.01 to 1.11, n = 2 alleles per
locus and 100 independent trials for each parameter com-
bination. For the selected population size and number of
alleles, the number of loci L is L ≥ 11. Results are anal-
ogous to those of Fig. 1: the number of tested genotypes
is similar across all panels, P is increasing with dîĵ but not
with L, and the confidence intervals are similar. For exam-
ple, for 16 loci, the confidence interval of P increases from
(0.47, 0.67) for dîĵ = 1.0112 to (0.95, 1) for dîĵ = 1.1111 in
Appendix Fig. 15 and from (0.49, 0.67) for dîĵ = 1.0112 to
(0.96, 1) for dîĵ = 1.1111 in Fig. 1.
Bar plots for distributions of fitness values for the two

alleles of interest in the case of 18 loci and three values of

dîĵ: 1.0112, 1.0227 and 1.0345 are shown in Appendix Fig.
16. We see that the difference between these distributions
is increasing with the mixability ratio. Also, the mixabil-
ities of given alleles are precisely equal to the predefined
values (0.9 for the more mixable allele and from 0.89 to
0.87 for the less mixable one).
As in themainmultilocus haploidmodel, we have exam-

ined not only hermaphrodites capable of selfing but also
the case of two mating types. Results are very similar to
those of Appendix Fig. 15 (not shown). Additionally, we
have performed the sampling of parents and of alleles
within parents without replacement to observe the “pure”
effect of random sampling by sex free of the effects of
drift (Appendix Fig. 17). Results are much stronger than
those in Appendix Fig. 15 and are very similar to those in
Fig. 2.

Sex vs. asex in the haploid binarymodel
Here we examine the mixability prediction for a range of
recombination values and thus are able to compare asex
(r = 0) to sex (r = 0.5 in the free recombination case),
starting at linkage disequilibrium, where the initial pop-
ulation consists of distinct clones, with discrete fitness
values, 0 and 1. Because of this, offspring in the asexual
case always survive. Therefore all alleles of the popula-
tion created in the asexual case during the simulation have
equal frequencies, there is no difference between alleles î
and ĵ, and the fraction of trials, P, in which the allele that
is more mixable across all possible genotypes increases in
frequency more than the allele that is less mixable across
all possible genotypes, is precisely 0.5.
In contrast, in the sexual population, any shuffling of

alleles produces more combinations than existed origi-
nally (and the number of tested genotypes increases with
the recombination rate). Thus P increases substantially
even for small values of r (Appendix Fig. 18).

Multilocus diploid binarymodel
For the multilocus diploid binary model with L loci and
n alleles per locus, each trial run of the simulation is
similar to the haploid binary model. In the beginning,
the starting population of random parents is created
in such a way that all alleles in this population have
equal frequencies. Then a fitness matrix with binary
values is created. This step has some conceptual differ-
ences from the haploid binary model. We have

(
n(n+1)

2

)L

genotypes as in the general diploid case. However, at
the stage of filling the fitness matrix with zeros and
ones at some rate, we should take into account that for
two alleles of interest î and ĵ at the first locus, in the
diploid model we have genotypes that contain both these
alleles.
As in the haploid binary model, the simulation can be

run if the number of loci, L, is relatively large. Appendix
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Fig. 19 shows the results of such a simulation with popu-
lation size N = 2000, number of loci L from 7 to 15 and
two alleles per locus in a manner analogous to Fig. 5. The
results are the same as in the multilocus diploid model,
i.e., stronger than any of the haploid models. Examine the
green lines positioned at 16 loci for the haploid model in
Appendix Fig. 15 and at 12 loci for the diploid model in
Appendix Fig. 19. The 95% confidence interval increases
from (0.47, 0.67) in the haploid and (0.56, 0.73) in diploid
models in the top-left panel to (0.82, 0.94) in the hap-
loid and (0.92, 0.99) in diploid models in the central panel
to (0.95, 1.00) in the haploid and (0.99, 1.00) in diploid
models in the bottom-right panel.

Sex vs. asex in the diploid binarymodel
We compared sex and asex for the binary fitness matrix
in the diploid case. The starting population consists
of two clones, for example, (0101; 0202; . . . ; 0L0L) and
(1111; 1212; . . . ; 1L1L), where 0l and 1l, 1 ≤ l ≤ L are two
alleles, and two generations are computed and tracked.

The results of this simulation are presented in Appendix
Fig. 20 in a manner analogous to Figs. 18 and 6. In com-
parison to the haploid case (see Appendix Fig. 18), the
confidence interval is narrower and higher. Take for exam-
ple a green line drawn in each panel for a recombination
rate of 0.3. For the small mixability ratio d = 1.0112,
the difference between the haploid and diploid cases is
only in the size of 95% confidence interval: while for the
haploid case it is (0.47, 0.66), for the diploid case it is
(0.49, 0.64). This difference becomes stronger in the cen-
tral panel for d = 1.0588: from (0.67, 0.84) for the haploid
case to (0.77, 0.90) for the diploid case. Finally, in the
bottom-right panel, the confidence intervals for the hap-
loid and diploid binary models are different: (0.80, 0.94)
for the haploid vs. (0.93, 0.99) for the diploid. The rea-
son for this difference lies in Eqs. (5) and (6) as explained
earlier.

Appendix figures

Fig. 7 Random sampling in a multi-locus haploid model with two mating types. The simulation conditions are as described in Fig. 1, except that
now the parents are divided into two mating types, so that mating can occur only between type 1 and type 2 individuals
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Fig. 8 Random sampling in a multi-locus haploid model when all loci are tracked simultaneously. In each panel, results are shown for a population
size of 2000, a varying number of loci from 2 to 20, and 2 alleles per locus, based on 100 independent trials. Bars for the 4, 8, 12 and 16 alleles
represent 95% confidence interval for P based on 80 values, each of which was obtained based on 100 independent trials. P now refers to all loci
rather than one (see main text). In comparison to the analysis of the first locus case in Fig. 1, L times more transformations are applied here to the
fitness matrix. This leads to a decrease in both its variance (the reason for the thinner confidence interval of P) and average (the reason for the
increase of g because more genotypes need to be created to obtain N surviving individuals). To facilitate comparison, the green line highlights the
results for 16 loci case in Figs. 1 and 8
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Fig. 9 Comparison of sampling by sex and asex in the multi-locus haploid model for different standard deviations of the initial fitness values
distribution. The simulation conditions are as described in Fig. 4, except that now the population size is fixed (N = 2000) and the standard deviation
of the fitness distribution varies. This figure shows that as the standard deviation increases, P decreases rapidly to almost 0.5 in the asexual
population, while in the sexual population it decreases far more slowly in an apparently linear fashion
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Fig. 10 Random sampling in a multi-locus diploid model with two mating types. The simulation conditions are as described in Fig. 5, except that
now the parents are divided into two mating types, so that mating can occur only between type 1 and type 2 individuals
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Fig. 11 Random sampling in the multi-locus diploid model without random genetic drift. Random sampling in the multi-locus diploid model with
fitness values from the normal distributionN (0.7, 0.15), two mating types and without replacement of parents and alleles. The simulation
conditions are as described in Fig. 5, except that now the parents are divided into two mating types, each parent participates in exactly two
reproductive events, and each allele in each parent is transmitted exactly once. The difference between the present figure and Fig. 5 shows the
importance of drift due to the sampling of parents and of alleles with replacement
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Fig. 12 Random sampling in a diploid model with two loci and a different number of alleles. The simulation conditions are as described in Fig. 5,
except that now the number of loci is fixed (L = 2) and the number of alleles per locus, n, varies. This figure shows that as n increases, P decreases
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Fig. 13 Comparison of sampling made by sex and by asex in the multi-locus diploid model for different population sizes. The simulation conditions
are as described in Fig. 6, except that now the population size varies on the x-axes and only two recombination rate values are used, r = 0 (asex,
cyan solid line; 95% C.I. cyan dashed lines) and r = 0.5 (sex, blue solid line; 95% C.I. blue dashed lines). This figure shows that P is much higher in the
sexual than in the asexual population, and that as the population size is increased, P increases further in the sexual but not in the asexual population
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Fig. 14 Comparison of sampling made by sex and by asex in the multi-locus diploid model for different standard deviations of the initial fitness
distribution. The simulation conditions are as described in Appendix Fig. 13, except that now the population size is fixed (N = 2000) and the
standard deviation of the fitness values, σ , varies. This figure shows that as σ increases, P decreases rapidly in the asexual population to 0.52 − 0.63,
while in the sexual population it decreases slowly in an apparently linear fashion. The maximum difference between P in the sex and asex cases is for
σ of approximately 0.3 − 0.4
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Fig. 15 Random sampling in a multi-locus haploid model with binary fitness values. The fraction of genotypes of fitness 1 out of all possible
genotypes for the more mixable allele is 0.9 for each panel, whereas the fraction of genotypes of fitness 1 out of all possible genotypes for the less
mixable allele decreases from 0.89 to 0.81, producing a range of d values (the ratio between the fractions of genotypes of fitness 1) from 1.0112 to
1.1111

Fig. 16 Distribution of fitness values in the haploid multi-locus model with binary fitness values. Each pair of bars shows the fraction of zeros or ones
in the fitness matrix for one of the alleles of interest, for a population size of 2000, 18 loci and 2 alleles per locus. The fraction of genotypes of fitness
1 for the more mixable allele is 0.9, whereas the fraction of genotypes of fitness 1 for the less mixable allele decreases from 0.89 to 0.87, producing 3
d values. The left bar-chart shows two pairs of bars for alleles whose fractions of genotypes with fitness 1 are equal to 0.9 and 0.89, respectively,
producing a mixability ratio d = 0.9

0.89 ≈ 1.0112. The right bar-chart represents two pairs of bars for alleles whose fractions of genotypes with fitness
1 are equal to 0.9 and 0.87, respectively, producing a mixability ratio d = 0.9

0.87 ≈ 1.0345. The first pair of bars in each panel shows the fraction of zero
values in the fitness matrix and the second pair shows the fraction of ones. Note that the difference between the more mixable allele and the less
mixable allele increases with d
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Fig. 17 Random sampling in the multi-locus haploid model with binary fitness values, two mating types and without replacement of parents and
alleles. The simulation conditions are as described in Appendix Fig. 15, except that now the fitness values are binary and parents are divided into
two mating types, so that mating can occur only between type 1 and type 2 individuals. Each parent participates in exactly one reproductive event,
which creates two offspring, such that each allele in each parent is transmitted exactly once. The difference between the present figure and
Appendix Fig. 15 shows the importance of drift due to the sampling of parents and of alleles with replacement
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Fig. 18 Comparison of sampling made by sex and by asex in a multi-locus haploid model with binary fitness values. The simulation process is similar
to Fig. 3, except that now the fitness values are binary
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Fig. 19 Random sampling in a multi-locus diploid model with binary fitness values. The results are produced in a manner analogous to Appendix
Fig. 15, the difference being that this model is diploid and the number of loci ranges from 7 to 15. The results in this model are much stronger than
in the haploid case
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Fig. 20 Comparison of sampling made by sex and by asex in the multi-locus diploid model with binary fitness values. In each panel, results are
shown for a population size of 2000, 8 loci and for 2 alleles per locus. The simulation conditions are as described in Fig. 6, except that now fitness
values are either 0 or 1
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