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Abstract

Background: Studies on metagenomic data of environmental microbial samples found that microbial communities
seem to be geolocation-specific, and the microbiome abundance profile can be a differentiating feature to identify
samples’ geolocations. In this paper, we present a machine learning framework to determine the geolocations from
metagenomics profiling of microbial samples.

Results: Our method was applied to the multi-source microbiome data from MetaSUB (The Metagenomics and
Metadesign of Subways and Urban Biomes) International Consortium for the CAMDA 2019 Metagenomic Forensics
Challenge (the Challenge). The goal of the Challenge is to predict the geographical origins of mystery samples by
constructing microbiome fingerprints.
First, we extracted features from metagenomic abundance profiles. We then randomly split the training data into
training and validation sets and trained the prediction models on the training set. Prediction performance was
evaluated on the validation set. By using logistic regression with L2 normalization, the prediction accuracy of the
model reaches 86%, averaged over 100 random splits of training and validation datasets.
The testing data consists of samples from cities that do not occur in the training data. To predict the “mystery” cities
that are not sampled before for the testing data, we first defined biological coordinates for sampled cities based on
the similarity of microbial samples from them. Then we performed affine transform on the map such that the distance
between cities measures their biological difference rather than geographical distance. After that, we derived the
probabilities of a given testing sample from unsampled cities based on its predicted probabilities on sampled cities
using Kriging interpolation. Results show that this method can successfully assign high probabilities to the true
cities-of-origin of testing samples.

Conclusion: Our framework shows good performance in predicting the geographic origin of metagenomic samples
for cities where training data are available. Furthermore, we demonstrate the potential of the proposed method to
predict metagenomic samples’ geolocations for samples from locations that are not in the training dataset.
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Background
The advance of Next Generation Sequencing (NGS) tech-
nologies has made it possible to generate metagenomic
sequencing data from microbiome samples at reason-
able costs. The vast amount of sequencing data and
the modern machine learning tools for data analytics
are driving the advances in microbial ecology. Of the
world’s 7.4 billion people, more than half (57%) live in
urban areas (http://wdi.worldbank.org/table/3.12). With
approximately 30% of urban populations using subways
and buses, public transportation becomes one of the
most shared spaces of the urban environment. Within
this shared space, there exists a rich and diverse world
of unseen organisms in constant interaction with human.
The MetaSUB Consortium studies genetic interactions
and community compositions of mass-transit biomes
through DNA sequencing and computational modeling. It
is well-known that environmental microbial communities
differ in composition and functions across different geo-
graphical locations, possibly due to variations in climate,
rainfall, altitude, soil, as well as the metabolic properties
of their host or energy sources available in the environ-
ment. The MetaSUB Consortium is aiming at improving
city utilization and planning through the detection, mea-
surement, and design of metagenomics within urban envi-
ronments [1]. Furthermore, the study of environmental
metagenomics also brings potentials in new drug develop-
ment as well as forensic applications such as identification
of geographical origins of environmental samples.
In this paper, we focus on the prediction of geolocation,

or city-of-origin, of a given metagenomic sample based on
a training dataset that contains microbial samples from
a set of different cities. We investigate the prediction
problem under two separate but interconnected scenar-
ios. In the first scenario, the city-of-origin of the given
sample occurs in the training dataset, i.e., the city has
been sampled before and the features or biological fin-
gerprints of the city have been learnt. The geolocation
prediction problem in this scenario closely resembles a
classical multi-class classification problem with readily
available solutions from machine learning. In the second
scenario, the metagenomic sample may come from a city
that has not been sampled before (unsampled city), which
is a more unusual setting for machine learning. In such a
case, we first use the prediction model from the first sce-
nario to calculate the probabilities of the samples from
cities in the training set (sampled city). The predicted
probabilities were then used as anchor points to interpo-
late the probabilities of the sample from unsampled cities
based on the continuity assumption on the geographic
distribution of microbial samples on the map.
Previous works on geolocation prediction of metage-

nomic samples in the first problem can be found in [2–5].
Geolocation prediction in those works typically involves

a feature extraction step and a modeling step that per-
forms training and prediction on the extracted features.
As the number of training samples can be very limited
comparing to the large diversity of bacteria strains in each
sample, the prediction problem in this scenario is a typ-
ical “large p, small n” problem with a few data points
and many features. Therefore, feature extraction is a crit-
ical step to avoid the potential overfitting problem that
deteriorates the location prediction performance on test-
ing data. It is intuitive to use bacteria abundance profiles
extracted from the metagenomic data for geolocation pre-
diction. Many metagenomic profiling tools can be used
for this purpose, and some of these tools are reviewed and
evaluated in [6]. Further processing of raw features mainly
targets at dimension reduction by extracting features with
functional significance and differentiating power. In [2],
differentially abundant bacteria are selected as features. In
[3], sequence reads are classified into known taxonomic
groups and per read counts of each taxonomic rank per
sample are used as raw features. In [4], functional profiles,
instead of abundance profiles, are used as features, as their
biological interpretation is more straightforward. Feature
downsampling or dimension reduction can be done by
principal component analysis (PCA), Robust PCA [2], t-
distributed Stochastic Neighbor Embedding (t-SNE), etc.
Once features are extracted, the prediction problem can
be readily solved using a pool of machine learning tools,
e.g., k-NN [7], random forest [8], logistic regression [9],
XGBoost [10], multi-layer perceptrons (MLP) [11], etc.
To determine the geolocation in the second scenario is

more challenging as machine learning algorithms can only
assign the probabilities of a testing sample to the cities in
the training set. Relatively fewer works have been done
in this scenario. In [4], testing datasets with 3 unsam-
pled cities from CAMDA 2018 (http://camda2018.camda.
info/) were used to evaluate the similarity of microbial
samples between cities using bacteria abundance as fea-
tures. Results show the tendency that samples cluster on
the feature space based on their geographic locations, but
outliers exist. The results suggest that geographical dis-
tance is an important factor, and it may be possible to
infer cities-of-origin of samples based on their geograph-
ical distances to the cities in the training set. However,
the geographical distance may not accurately reflect the
biological distance between samples from different cities
by itself. Hence, further modifications are necessary to
mitigate the gap between geographical and biological dis-
tances for more reliable prediction results.

Methods
Data
We downloaded data from the CAMDA 2019 Metage-
nomics Forensic Challenge (http://camda2019.camda.
info/) provided by CAMDA in partnership with MetaSUB

http://wdi.worldbank.org/table/3.12
http://camda2018.camda.info/
http://camda2018.camda.info/
http://camda2019.camda.info/
http://camda2019.camda.info/
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International Consortium. The training dataset com-
poses of 305 samples from 16 cities (Auckland, Berlin,
Bogota, Hamilton, Hong Kong, Ilorin, London, Marseille,
New York, Offa, Porto, Sacramento, Sao Paulo, Sofia,
Stockholm, Tokyo) with unbalanced distribution, and the
testing dataset contains 61 mystery samples from unsam-
pled cities that do not occur in the training dataset.
These datasets provide a unique resource for the study
of biodiversity within and across geographic locations for
metagenomic forensics. All data were Illumina-sequenced
at variable depth values and were provided in compressed
FASTQ format with DSRC tool [12]. Detail of the datasets
is included in Table 1.

Data preprocess
First of all, the raw metagenomic sequencing data were
preprocessed by fastp (v.0.19.4; https://github.com/
OpenGene/fastp) [13] for quality control including auto-
matic filtering, trimming, and error removing. For all
samples used in our experiments, we trimmed the front

of both reads in a pair (for paired-end reads) or the single rea
d (for single-end reads) with options (-f 15 -F 15), and per-
formed per-read cutting-by-quality in the tail (--cut_tail).
After quality control, the reads are filtered against

human reference genome to remove possible contam-
ination. First, the reads are aligned to human refer-
ence genome hg19 [14] using bwa mem (v.0.7.12-r1039;
https://github.com/lh3/bwa.git) [15] with options (-t 44 -
L 200), and the aligned SAM is filtered using samtools
view (v.1.3.1; https://github.com/samtools/samtools.git)
[16] with options (-@44 -F 2316). In this way, we fil-
tered out the reads with exact match to human reference
genome, and the retained reads were used to calculate the
taxonomic abundance profile.

Feature extraction
For each sample, we estimated its clade-abundance using
MetaPhlAn2 (v.2.7.5; http://huttenhower.sph.harvard.
edu/metaphlan) [17] and Kraken2 (v.2.0.8-beta; https://
ccb.jhu.edu/software/kraken2/) [18]. Each taxonomic

Table 1 MetaSUB metagenomic dataset description

Set City Country Sample count

Training Set Auckland (AKL) New Zealand 14

Berlin (BER) Germany 21

Bogota (BOG) Colombia 15

Hamilton (HAM) New Zealand 16

Hong Kong (HGK) China 18

Ilorin (ILR) Nigeria 24

London (LON) U.K. 24

Marseille (MAR) France 10

New York (NYC) U.S.A. 26

Offa (OFA) Nigeria 20

Porto (PXO) Portugal 20

Sacramento (SAC) U.S.A. 18

Sao Paulo (SAO) Brazil 24

Sofia (SOF) Bulgaria 10

Stockholm (STO) Sweden 20

Tokyo (TOK) Japan 25

Total size 779 Gb

Testing Set Rio de Janerio Brazil 12

Santiago de Chile Chile 6

Kiev Ukraine 8

Brisbane Australia 7

Vienna Austria 5

Doha Qatar 3

Pairs France 8

Oslo Norway 12

Total size 219 Gb

https://github.com/OpenGene/fastp
https://github.com/OpenGene/fastp
https://github.com/lh3/bwa.git
https://github.com/samtools/samtools.git
http://huttenhower.sph.harvard.edu/metaphlan
http://huttenhower.sph.harvard.edu/metaphlan
https://ccb.jhu.edu/software/kraken2/
https://ccb.jhu.edu/software/kraken2/


Huang et al. Biology Direct           (2020) 15:27 Page 4 of 12

Fig. 1 Testing samples were geotagged with longitude and latitude coordinates via global positioning system (GPS). After that, we used affine
transformation to transform geographic points to biological points, and applied Kriging interpolation to predict the probabilities of the testing
samples from unsampled cities

classification tool provides the relative abundance of all
detected clades in the microbiome sample as percentages
from kingdom level to species level. We used all taxo-
nomic level abundances as our starting point for further
feature selection. Since not all taxonomies are present in
all cities, missing taxonomies were filled with zero so that
all cities have an equal number of features.

Note that the number of samples per city varies between
10 and 26 (Table 1). Due to the scarcity of training sam-
ples, we used the following methods to avoid potential
overfitting in training the prediction model.
First, we discretized the abundance profile data by bin-

ning the abundance profiles to ternary values {-1,0,1}.
Data discretization can prevent the predictionmodel from

Fig. 2 The flowchart of the proposed framework
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predicting the target using trivial small variations in the
input feature vectors. The binning operation is based on
the sample-wise percentile of the abundance profiles of
all training samples. Particularly, we used the following
equation

f (x) =
⎧
⎨

⎩

−1, if x < P25
0, if P25 ≤ x < P75
1, if x ≥ P75

(1)

to discretize the abundance profile, where P25 and P75
represent the 25th and 75th percentile, respectively. In this

way, only salient differences among samples from different
cities could be recognized as features in training.
Secondly, we applied Recursive Feature Elimination

(RFE) to select a subset of features that provides good dif-
ferentiation power for target identification from the orig-
inal abundance profile. RFE selects features by repeatedly
constructing prediction models with decreasing number
of features, and then choose the best model based on the
prediction performance on the validation set. In this work,
we used the REF function provided by the scikit-learn
package of Python with step size 5 (step = 5) to perform
RFE [19].

Model training
With the extracted features from the abundance profiles,
the problem of determining the geolocation of a sample
can be solved as a multi-class classification problem if the
testing sample is from a sampled city in the training set.
In our framework, we trained a logistic regression

model with L2 regularization using the one-vs.-rest
approach to produce a multi-class classifier. For a test
sample, the trained model will produce 16 probability
values, indicating the possibility of this sample coming
from each of the 16 cities, respectively. For each sampled
city, the output from the logistic prediction model can be
represented as:

�p = 1

1 + e−
(
wT �x+�θ

) , (2)

where �x denotes the input features extracted from the
sample, �p denotes the output probability of the sample on
sampled cities, w and �θ are learnt model parameters.
We also tested tree-based classification algorithms

that natively support multi-class classification, such as
XGBoost and Random Forest. Their performance is very
close to the logistic regression algorithm on the provided
dataset.

Fig. 3 Prediction performance on validation set v.s. number of features used for training on the corresponding training data. Prediction
performance is measured by averaging the prediction accuracy over 1000 random shuffle-splits of training and validation sets on the training
dataset provided by the Challenge
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Fig. 4 Two-dimensional hierarchical clustering of abundance profiles on the 50 selected features for all training samples. Abundance profiles are
shown after log10(value+1e-6) operation

Kriging interpolation
In some cases, peoplemay be interested to check the prob-
ability of a testing sample from a city not sampled before
if they know a priori that the city-of-origin of that sam-
ple is not included in the training set. The multi-class
classifier only gives the probabilities of a testing sam-
ple from sampled cities. To derive its probabilities from
unsampled cities, we propose to interpolate from pre-

dicted probabilities on sampled cities under a continu-
ity assumption on the distribution of abundance profile
on the map. For this purpose, we used Kriging interpo-
lation [20] originated from geostatistics to estimate the
“fill-in” probabilities of spatial locations between sampled
cities. Kriging interpolation produces the optimal lin-
ear unbiased prediction of intermediate values under the
assumption of wide sense stationary of covariance on the

Fig. 5 The total number of raw features is 5503, including 4, 48, 73, 160, 344, 913 and 3961 for Kingdom, Phylum, Class, Order, Family, Genus and
Species clade levels, respectively. After feature selection, we retained 4 clade levels including Order, Family, Genus and Species. Species has the
highest number of features (41) and Order has the lowest number of features (1)
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map. Using Kriging interpolation, the probability p̂o that a
sample is from an unsampled city at coordinate (xo, yo) is
given by:

p̂o =
n∑

i=1
λo,i · pi (3)

where pi denotes the predicted probability that the sample
is from city i, and λo,i denotes the weight for city i calcu-
lated w.r.t. target coordinate (xo, yo). λo,i can be obtained
by solving the following contrained optimzation problem

λo,i = min
λ

E
(
p̂o − po

)2 , (4)

Fig. 6 t-SNE visualization (a) before and (b) after feature binning. Before feature binning, it is very difficult to separate the cities. After binning, most
cities can be clearly separated from others
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subject to

E
(
p̂o − po

) = 0. (5)

Here, E(·) denotes statistical expectation. The detailed
mathematical derivation of the solutions can be found in
[21], and we used the PyKriging toolbox (http://pykriging.
com) in our implementation.

Biological coordinate system
By using Kriging interpolation to determine the probabili-
ties of testing samples from unsampled cities, we assumed
that the spatial distribution of abundance profile from dif-
ferent cities follows Tobler’s First Law of Geography, i.e.,
“everything is related to everything else, but near things
are more related than distant things” [22]. However, this
assumption may not always be valid. In some cases, cities
that are geographically further away may have more simi-
lar abundance profiles, comparing to cities that are closer
[4]. To overcome this limitation, we defined a biolog-
ical coordinate system on which the distance between
cities better reflects their similarity in terms of biological
differences.
The biological coordinate systemwas derived as follows.

First, we performed PCA on the abundance profiles of all

samples from the training set, which gave us a 2D vector(�xi, �yi
)
for each sample. We then calculated the centroid of

all samples from city c as the biological coordinates of city
c, i.e.,

{
xc = ∑n

i=1 xci/n,
yc = ∑n

i=1 yci/n,
(6)

where n is the total number of samples from city c in
the training set, and

(
xci , yci

)
, (i = 1, . . . , n) denotes their

locations in the biological coordinate system.
Finally, based on the biological coordinates of all sam-

pled cities, the biological coordinates of unsampled cities
can be derived by applying affine transformation [23]
between the biological and geographical coordinate sys-
tems, using the coordinates of sampled cities as anchor
points as follows:

[
x y 1

] ×
⎡

⎣
m11 m12 0
m21 m22 0
tx ty 1

⎤

⎦ = [
x′ y′ 1

]
. (7)

Here, (x, y) and
(
x′ , y′) are, respectively, the locations of a

city in its geographical and biological coordinates, andm’s
and t’s are the affine transform parameters obtained from

Fig. 7 The confusion matrix of the training dataset calculated using binned abundance profiles. All cities are highly distinguishable except for
Hamilton and Auckland. Both cities are well separated from the other cities, but it is relatively difficult to distinguish between these two cities

http://pykriging.com
http://pykriging.com
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the anchor points based on least squares fit [24]. Krig-
ing interpolation was further performed on the biological
coordinate system to derive the probabilities of the testing
samples on unsampled cities (Fig. 1). The flowchart of the
proposed framework is in Fig. 2.

Results and discussion
Feature selection
Data preprocessing is applied to all training samples
as described in “Methods” section. We generated 2762
raw abundance profiles using MetaPhlAn2 and 5503
raw abundance profiles using Kraken2. We then per-
formed a binning operation on the raw abundance pro-
files. We compared the prediction performance based
on MethPhlAn2- and Kraken2-derived features with 100
times random shuffle-split of training and validation sets
on the provided data. In each random split, RFE was per-
formed on the training dataset to select most important
features, and the performance was evaluated based on the
average accuracy on the validation set.

We observed that classification performance increases
with an increasing number of selected features from RFE
(Fig. 3). However, the rate of performance increment slows
down when the number of features exceeds 50. There-
fore, we limited the number of features to 50 to prevent
overfitting. In addition, as the average accuracy perfor-
mance when using Kraken2-derived features is slightly
better than that when using MetaPhlAn2-derived fea-
tures, Kraken2-derived features were used in the subse-
quent experiments.
We performed unsupervised clustering of samples in the

data based on the top 50 Kraken2 features derived using
RFE. In general, samples from one city cluster into one
distinct group, and different cities like Sacramento, Offa,
Tokyo, Stockholm, New York, form separate groups with
distinct species patterns (Fig. 4). In addition, we found
that features at species level play a significant role in the
selected features (41 out of 50 features are at species level;
see Fig. 5). Nearly half of the selected features (38%) are
human pathogens and bacterial phytopathogens enriched

Fig. 8 The probabilities were interpolated from the other 9 European cities except Stockholm using the proposed framework. Kriging interpolation
is performed on the biological coordinates. For each sample, the probability on the left side is resulted from original training data and those on the
right side are from permuted training samples. P-values for significant differences are noted
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at species, including Salmonella enterica subsp. enterica
serovar Choleraesuis, Staphylococcus capitis subsp. capi-
tis, Fusobacterium hwasookii, Bacillus flexus and Strep-
tococcus salivarius. Other prevalent bacterial clades are
involved in carbon and nitrogen of metabolism, includ-
ing Lactobacillus delbrueckii subsp. bulgaricus, Rubrobac-
ter xylanophilus DSM 9941, Cellulomonas flavigena and
Comamonas aquatica.
We also observed that when the same set of features

were used, cities can be separated better with the binning
operation. We visualized all the training samples based
on the selected features using t-SNE (Fig. 6), which shows
that the cities can be more clearly separated from others
based on extracted features after feature binning. Further
analysis from the confusion matrix shows that most cities
are highly distinguishable except for two New Zealand
cities, Hamilton and Auckland (Fig. 7), which are difficult
to be separated although both cities, as a whole, can be
separated from other cities.

Geolocation prediction on sampled cities
We applied several widely used multi-class classification
algorithms on the binned features to predict the probabil-
ities of metagenomic samples belonging to cities from the
training data. For quantitative evaluation, we performed
k-fold stratified shuffle split for cross validation in model
training with k = 100. We used 70% of the training data
for training and the remaining 30% for validation with
random split. In each random split, the top 50 Kraken2
features derived from the training data were used as the
prediction features. The average accuracy on validation
sets reaches 86% by Logistic Regression, 81% by Random
Forest [25], 83% by XGBoost and 80% by k-NN. Based on
the performance, the final model was built using Logistic
Regression classifier.

Geolocation prediction on unsampled cities
To calculate the probability of a mystery sample from a
city not sampled before, we performed Kriging interpola-

Fig. 9 The predicted probabilities on nine cities from the training set and the interpolated probabilities of four samples from Stockholm shown on
biological coordinate. The circle size indicates the probability
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tion based on its predicted probabilities on sampled cities.
As the underlying principle behind Kriging interpolation
assumes certain geographic proximity among observed
values, we used only sampled cities from Europe for inter-
polation as other cities are scattering around the world.
Similarly, we used only mystery samples from European
cities in our evaluation. Since there are only 6 European
cities in the training set which is far from sufficient for
interpolation, we combined with all samples from the
European cities in the provided testing dataset, result-
ing in 10 European cities in total. Then, for each city, we
interpolated the probabilities of testing samples from this
city based on their predicted probabilities on the other 9
European cities. Note that in predicting the probability of
a given testing sample, only data from other cities were
used in training the multi-class classifier and perform-
ing Kriging interpolationwith affine transform. Therefore,
there was no information leaking on the ground truth
geolocation when individual samples were tested in our
validation.
We observed that our geolocation prediction frame-

work successfully assigned a certain number of samples
to their cities-of-origin with high probabilities (illustrated
in Fig. 8 using Stockholm as an example). To assess
whether the high probabilities could have been generated
by chance, we permuted the training samples 1000 times
and performed our algorithm again on the permuted sam-
ples to regenerate the probabilities of the testing samples
on their ground truth cities. It can be seen that for samples
achieving high probabilities on their ground truth cities,
the resulting distribution is significantly lower than those
obtained from real training data (Fig. 8, Supplementary
Fig. S1 to Fig. S9). Particularly, interpolation results from
biological coordinates showmuch higher confidence com-
pared to those from geographic coordinates, suggesting
that biological coordinates could better reflect the devia-
tion of the abundance profiles of metagenomic samples of
different locations for inferring geolocation of unsampled
sites.
The results also show that the algorithm performs

poorly on some testing samples, which could be pos-
sibly due to the limited number of cities from the
training set compared to the size of the geographic
coverage of those cities, as well as the small number
of available training samples for each city, which may
not cover all potential microbial from the city. To fur-
ther illustrate this limitation, we showed the predicted
and the interpolated probabilities of four different sam-
ples from Stockholm in Fig. 9. As can be seen from
this figure, the probability of a sample from Stockholm
will be largely determined by its predicted probabilities
from cities nearby Stockholm in the biological coor-
dinate, which is as expected. On the other hand, for
samples that are not assigned with high probabilities to

cities near Stockholm, the prediction performance would
be poor since the interpolated probabilities will be low
(STO-018, STO-019).

Conclusion
In this work, we developed a framework using abun-
dance profiles to predict the geolocation of metagenomic
samples. The proposed method provides accurate predic-
tions of geolocation of microbial samples using selected
abundance profiles as features when the ground truth
cities are sampled in the training dataset. For more chal-
lenging tasks where the ground truth cities are not sam-
pled, the framework interpolates the probabilities of the
testing samples from different cities based on their pre-
dicted probabilities on sampled cities. Note that although
the interpolated probabilities may not be decisive as other
surrounding cities may have the same or even higher
probabilities than the city-of-origin, the derived probabili-
ties are still useful for forensic applications where evidence
from other sources could be combined to identify the true
location under Bayesian framework. The effectiveness of
the proposed framework was validated using the CAMDA
2019 dataset, while only partially due to limited avail-
able training data. It is envisioned that the performance of
the proposed framework could be further validated once
larger databases with more microbial samples and denser
distribution of sampling cities become available in the
future.
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