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Abstract

Background: Composition of microbial communities can be location-specific, and the different abundance of
taxon within location could help us to unravel city-specific signature and predict the sample origin locations
accurately. In this study, the whole genome shotgun (WGS) metagenomics data from samples across 16 cities
around the world and samples from another 8 cities were provided as the main and mystery datasets respectively
as the part of the CAMDA 2019 MetaSUB “Forensic Challenge”. The feature selecting, normalization, three methods
of machine learning, PCoA (Principal Coordinates Analysis) and ANCOM (Analysis of composition of microbiomes)
were conducted for both the main and mystery datasets.

Results: Features selecting, combined with the machines learning methods, revealed that the combination of the
common features was effective for predicting the origin of the samples. The average error rates of 11.93 and
30.37% of three machine learning methods were obtained for main and mystery datasets respectively. Using the
samples from main dataset to predict the labels of samples from mystery dataset, nearly 89.98% of the test samples
could be correctly labeled as “mystery” samples. PCoA showed that nearly 60% of the total variability of the data
could be explained by the first two PCoA axes. Although many cities overlapped, the separation of some cities was
found in PCoA. The results of ANCOM, combined with importance score from the Random Forest, indicated that
the common “family”, “order” of the main-dataset and the common “order” of the mystery dataset provided the
most efficient information for prediction respectively.

Conclusions: The results of the classification suggested that the composition of the microbiomes was distinctive
across the cities, which could be used to identify the sample origins. This was also supported by the results from
ANCOM and importance score from the RF. In addition, the accuracy of the prediction could be improved by more
samples and better sequencing depth.
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Background
The advent of next generation sequencing (NGS) tech-
nologies for metagenomics has experienced a tremen-
dous improvement, which allows the generation of large
sequence datasets derived from diverse ecosystems, such
as the human body, soil, and ocean water [1]. The use of
whole genome sequencing (WGS) has been reported to
have multiple advantages when compared with the 16S
rRNA amplicon data [2]. As the composition of micro-
bial communities can be location specific [3], studying
the microbiome from different cities improves our un-
derstanding of city-specific microbes and their contribu-
tions to ecosystem composition and diversity.
This work could be regarded as a continuation of the

work presented as part of the 2018 CAMDA MetaSUB
challenge [4], we aimed to unravel city-specific signature
and find the appropriate features for identifying and pre-
dicting the origin location of samples from different
areas. In the 2018 CAMDA MetaSUB challenge, 12 cities
were included with an unbalanced sample size design
ranging from 5 to 60. By comparison, the current ver-
sion data was much better with more cities included and
more balanced sample size for each city. The main data-
set covered 16 cities across the globe with sample sizes
ranging from 10 to 26. Moreover, one dataset with 8
additional cities was provided as the mystery set. How-
ever, for the mystery dataset, the sample sizes for most
of the cities were still limited with sample sizes of 6 out
of 8 cities were below 10. The true city-information of
the mystery data was provided much later in the process.
All datasets in this work were provided by MetaSUB
(http://camda2019.bioinf.jku.at/doku.php/contest_data-
set), which aimed to build an international metagenomic
map of urban spaces, based on extensive sampling of
mass-transit system and other public areas around the
world. They partnered with CAMDA for an early release
of microbiome data obtained from global City Sampling
Days, comprising the WGS metagenomics data. Accord-
ing to the open-reference picking, we included all OTUs
with quality score greater than 0.5 (Please refer to Bio-
informatics and data preparation section in the Methods
section for more details). OTUs were aggregated as
counts and selected taxonomic ranks, i.e. “order”, “fam-
ily” and “species”, were used independently. Table 1 pre-
sented a tabulated insight of the data for all the cities.

Results
Selecting common features
As the composition of microbial communities can be
location-specific, it would be helpful for us to unravel
city-specific signature by investigating the composition
of the common features. Based on the results from the
open-reference OTU picking, 7 species, 9 families and 9
orders that existing across all the 16 cities were selected

respectively. The number of features was limited and
more information about the microbes was needed. To
include more features, some additional rules were imple-
mented: We ordered the “order”, “family” and “species”
respectively based on their ubiquity across cities or sam-
ples and then selected the features with high ubiquity
(Please refer to Selecting common features section in the
Methods section for more details). By doing this way,
more relative common “order”/“family”/“species” could
be obtained respectively. The common features from dif-
ferent ranks were used for the analyses respectively. In
addition, the combination of the common “species”,
“family” and “order” were regarded as the combined fea-
tures. By doing this, missing information of some non-
common features was also included. For example, by
using the features from the rank “family” only, the com-
mon “family” Bacillaceae was used for the analysis.
However, by using combined features of ranks “order”
and “family”, the corresponding “order” of Bacillaceae,
i.e. Bacillales, would also be included. Therefore, more
information about the non-common “family” belong to
the order “Bacillales” would also be included even
though with some information redundancy. Table 2 pre-
sented the details of the features selected based on add-
itional rules. For simplicity, the mystery dataset was
analyzed based on the common features and combined
features. After common features were selected, the ag-
gregated raw counts were normalized to log2-cpm for
guaranteeing that counts were bounded away from zero
to make the logarithm meaningful. Considering not only
the structure of the data, but also the experimental de-
sign and number of samples, the different scale of the
samples from different cities due to the technical vari-
ability could also be mitigated.

Machine learning analysis
Different sets of features obtained were used for ma-
chine learning to find the set with the best performance
on classification. For the main and mystery datasets re-
spectively, three different classifications, i.e. Random for-
est (RF) [5], Support Vector Machine (SVM) [6] and
Linear Discriminant Analysis (LDA) [7], with the leave-
one-out cross-validation (CV) were implemented for all
the selected feature sets. Each sample was selected in
order to serve as the test sample with the remaining
samples as the training dataset. The same training data-
set was used for the three methods, and the same test
sample was predicted by the three classifications. The re-
sults were recorded for each run. Table 3 presented the
details of the classification error rate based on different
rules using the main and mystery datasets respectively.
Based on the results in Table 3, the changing trends of

the error rate of different ranks and methods for the
main dataset were presented in Fig. 1. As seen in Fig. 1a,
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when the features existing in at least N cities were used
for the analysis, a decreased CV error rate was obtained
for RF-species (i.e. qualitied “species” used for RF),
SVM-species, LDA-species, LDA-family and LDA-order
when decreasing the N (increasing the number of fea-
tures). Furthermore, the lowest error rate was obtained
by further decreasing the N. For RF-family and SVM-
family, the error rate hasn’t changed considerably when
we decreased the N at the “family” rank. Therefore,
using the common “family” was better, as we obtained
the low error rate without including too many features.
In addition, for RF-order and SVM-order, the lowest
error rate was obtained using the common “order”. Add-
itionally, according to the Fig. 1b, when top M features
with the highest ubiquity across all the samples were se-
lected for analysis, error rates decreased with the in-
creasing number of features used and then the lowest

error rate was achieved, no matter which machine learn-
ing methods or which kinds of features we used for ana-
lysis. Moreover, for the combined features, the best
performance was achieved using the combination of the
common “species”, “family” and “order” (7 species, 9
families, 9 orders), the error rates obtained from RF,
SVM and LDA were 12.0, 11.5 and 12.3% respectively,
which were also the lowest among all the feature sets.
The CV results using the feature set with the lowest

error rate for the main dataset were presented in Table 4.
It could be inferred from the Table 4 that for the cities
with average error rate < 10%, most of them were with
better sequencing depth such as Bogota, Ilorin, New
York, Offa, Sacramento and Tokyo. The association be-
tween the sequencing depth and the error rate was visu-
alized in Fig. 2. Regarding sequencing depth, we are
referring specifically to the number of reads each sample

Table 1 Number of samples included in the analyses and their corresponding city and country of provenance. Table also showed
the number of “species”, “family”, and “order” existing in each city

City Country Number of samples Number of samples after quality control Species Family Order

The main dataset

Auckland (AKL) New Zealand 14 14 133 43 21

Berlin (BER) Germany 21 21 235 101 51

Bogota (BOG) Colombia 15 15 703 205 138

Hamilton (HAM) New Zealand 16 16 141 39 22

Hong Kong (HGK) China 18 17 289 112 60

Ilorin (ILR) Nigeria 24 24 230 54 29

London (LON) U.K. 24 22 48 29 15

Marseille (MAR) France 10 10 212 85 44

New York (NYC) U.S.A. 26 26 562 159 83

Offa (OFA) Nigeria 20 20 349 85 42

Porto (PXO) Portugal 20 20 286 122 66

Sacramento (SAC) U.S.A. 18 18 554 208 126

Sao Paulo (SAO) Brazil 24 24 227 99 54

Sofia (SOF) Bulgaria 10 10 275 102 49

Stockholm (STO) Sweden 20 20 186 76 42

Tokyo (TOK) Japan 25 25 573 173 103

All cities – 305 302 1047 276 180

The mystery dataset

Brisbane (Bri) Australia 7 6 74 53 32

Doha (Doh) Qatar 3 3 59 38 24

Kiev (Kie) Ukraine 8 7 144 80 45

Oslo (Osl) Norway 12 12 505 148 83

Paris (Par) France 8 6 136 73 41

Rio de Janeiro (Rio) Brasil 12 12 343 109 53

Santiago (San) Chile 6 6 309 113 58

Vienna (Vie) Austria 5 5 167 72 35

All cities – 61 57 700 188 109
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has. Extremely low sequencing depth with only a few mil-
lion reads could yield only a reduced number of OTUs.
Correspondingly, having sequencing data with several
hundreds of million reads is critical to obtain a decent
OTU matrix. Therefore, we used the sum of the counts of
the selected features based on the OTU matrix to repre-
sent sequencing depth for simplicity. From Fig. 2a, we
could see that for the cities with high sequencing depth
such as Offa and New York, consistent low error rates
were obtained (8.33 and 5.13% respectively). For the other
cities, the error rates varied considerably with the median
error rate 14.56%. For example, Auckland and Hamilton,
even though with good sequencing depth, their error
rates were 26.19 and 16.67% respectively. By looking
into the details of the results, we found that 3 samples
in Auckland and 2 samples in Hamilton cannot be pre-
dicted correctly by any of the three methods. In other
words, the microbial composition of these samples

could be different from the other samples in the same
city, making them difficult to be identified, which could
be caused by the technical variability, as data were gen-
erated by many different people, different institutions.
In addition, we found that London, the city with the
poorest sequencing depth showed low error rate. Upon
finding excessive zeros in samples from London, the
samples of London could be easily identified from all
the samples, which resulted in the low error rate of
London. Therefore, the high discriminative power to-
wards London samples could be stem from a technical
artifact rather than a biological signal. Furthermore, ac-
cording to the Table 4, some of the samples from other
cities were predicted to London and another city with
poor sequencing depth and high error rate, i.e. Sao
Paulo, indicating that the sequencing depth of these
samples could be as poor as samples from these cities,
which resulted in misclassification for these samples.

Table 2 The number of the features selected based on additional rules

Rules Number of Features
selected

Species Family Order

i) Features existing in at least N cities (Top features with the highest ubiquity across all the
cities)

The main dataset

N = 15 13 23 17

N = 14 26 31 19

N = 13 52 43 23

N = 12 75 54 29

N = 11 110 64 33

N = 10 150 73 36

N = 9 188 86 43

N = 8 234 97 48

ii) Top M features with the highest ubiquity across all the samples M = 10 10 10 10

M = 20 20 20 20

M = 30 30 30 30

M = 50 50 50 50

M = 100 100 100 100

M = 150 150 150 150

iii) Combination of the common features “species”, “family” and
“order”

25 (7 species, 9 families,
9 orders)

“species” and “family” 16 (7 species, 9 families)

“species” and “order” 16 (7 species, 9 orders)

“family” and “order” 18 (9 families, 9 orders)

The mystery dataset

“species”, “family” and
“order”

41 (8 species, 18 families,
15 orders)

“species” and “family” 26 (8 species, 18
families)

“species” and “order” 23 (8 species, 15 orders)

“family” and “order” 33 (18 families, 15
orders)
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The same procedures were implemented for the mys-
tery dataset, the lowest average error rate was obtained
when we used the combined features with 8 species and
15 orders. The error rates were 30.4, 32.1 and 28.6% for
RF, SVM and LDA respectively. Compared to the results
of the main dataset, the higher error rate was obtained
using the mystery dataset, even though with less cities
included. The possible reasons could be the limited

sample size and the poorer sequencing depth for the
whole mystery dataset. As seen in Fig. 2b, the cities with
a high sequencing depth including Rio de Janeiro and
Oslo showed the lower error rates (13.89 and 8.33% re-
spectively) among all the cities. For the other cities, the
high variability of error rates was also observed with me-
dian error rate 47.22%. The evidence from Fig. 2 that cit-
ies with high sequencing depth had consistent lower

Table 3 The error rate with the leave-one-out cross-validation based on different rules. The number of features selected was
retained in brackets

Methods Random Forest Support Vector Machine Linear Discriminant Analysis

Rules Species Family Order Species Family Order Species Family Order

The main dataset

Common features 0.588 (7) 0.306 (9) 0.253 (9) 0.571 (7) 0.296 (9) 0.270 (9) 0.615 (7) 0.323 (9) 0.340 (9)

i) Features existing in at least N cities (Top features with the highest ubiquity across all the cities)

N = 15 0.459 (13) 0.365 (23) 0.375 (17) 0.463 (13) 0.365 (23) 0.355 (17) 0.512 (13) 0.372 (23) 0.379 (17)

N = 14 0.394 (26) 0.332 (31) 0.342 (19) 0.363 (26) 0.319 (31) 0.355 (19) 0.370 (26) 0.302 (31) 0.382 (19)

N = 13 0.359 (52) 0.292 (43) 0.295 (23) 0.356 (52) 0.302 (43) 0.295 (23) 0.353 (52) 0.286 (43) 0.294 (23)

N = 12 0.365 (75) 0.309 (54) 0.285 (29) 0.348 (75) 0.289 (54) 0.295 (29) 0.321 (75) 0.249 (54) 0.242 (29)

N = 11 0.360
(110)

0.296 (64) 0.295 (33) 0.333
(110)

0.282 (64) 0.291 (33) 0.323
(110)

0.256 (64) 0.219 (33)

N = 10 0.357
(150)

0.299 (73) 0.285 (36) 0.340
(150)

0.289 (73) 0.271 (36) 0.357
(150)

0.282 (73) 0.212 (36)

N = 9 0.317
(188)

0.292 (86) 0.311 (43) 0.317
(188)

0.302 (86) 0.281 (43) 0.393
(188)

0.262 (86) 0.199 (43)

N = 8 0.337
(234)

0.302 (97) 0.201 (48) 0.327
(234)

0.316 (97) 0.275 (48) 0.503
(234)

0.279 (97) 0.195 (48)

ii) Top M features with the highest ubiquity across all the samples

M= 10 0.486 (10) 0.421 (10) 0.425 (10) 0.500 (10) 0.435 (10) 0.439 (10) 0.524 (10) 0.475 (10) 0.455 (10)

M = 20 0.385 (20) 0.328 (20) 0.341 (20) 0.381 (20) 0.351 (20) 0.338 (20) 0.388 (20) 0.318 (20) 0.321 (20)

M = 30 0.371 (30) 0.285 (30) 0.288 (30) 0.350 (30) 0.312 (30) 0.285 (30) 0.347 (30) 0.292 (30) 0.235 (30)

M = 50 0.291 (50) 0.309 (50) 0.271 (50) 0.288 (50) 0.286 (50) 0.265 (50) 0.271 (50) 0.256 (50) 0.195 (50)

M = 100 0.284
(100)

0.309
(100)

0.301
(100)

0.304
(100)

0.317
(100)

0.305
(100)

0.241
(100)

0.256
(100)

0.281
(100)

M = 150 0.283
(150)

0.312
(150)

0.308
(150)

0.297
(150)

0.336
(150)

0.348
(150)

0.303
(150)

0.292
(150)

0.411
(150)

iii) Combination of the common features

7 species, 9 families, 9 orders 0.120 (25) 0.115 (25) 0.123 (25)

7 species, 9 families 0.289 (16) 0.215 (16) 0.259 (16)

7 species, 9 orders 0.210 (16) 0.189 (16) 0.237 (16)

9 families, 9 orders 0.140 (18) 0.118 (18) 0.137 (18)

The mystery dataset

Common features 0.582 (8) 0.339 (18) 0.304 (15) 0.618 (8) 0.429 (18) 0.339 (15) 0.655 (8) 0.304 (18) 0.321 (15)

iii) Combination of the common features

8 species, 18 families, 15
orders

0.268 (41) 0.339 (41) 0.446 (41)

8 species, 18 families 0.375 (26) 0.464 (26) 0.411 (26)

8 species, 15 orders 0.304 (23) 0.321 (23) 0.286 (23)

18 families, 15 orders 0.250 (33) 0.339 (33) 0.339 (33)
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error rates indicated the necessary of deep sequencing
for successfully predicting the provenance of samples.
Additionally, to test the consistency of the performance,

20% of the samples from each city in the main dataset
were randomly selected as the test set, the remaining sam-
ples were used to do the leave-one-out CV and predict the
labels of the test samples using the feature set with the
lowest error rate. The CV error rates of leave-one-out for
the three methods were 13.33, 13.75 and 13.75% respect-
ively, and the test error rates were 11.67, 10 and 15%,
which were close to our previous CV results.
In addition to the analyses based on the main and

mystery datasets respectively, we have used the models
built based on the main dataset and part of the mystery
dataset to predict the remaining samples from the mys-
tery dataset. Knowing that the main dataset and the
mystery dataset had no cities in common, using the
main dataset only to correctly predict the samples from
the mystery dataset was impossible due to a lack of in-
formation about the mystery dataset. Therefore, 50% of
the samples of each city from the mystery dataset were
randomly sampled and added to the main dataset to
serve as part of the training dataset, the remaining mys-
tery samples were used as the test samples. In the train-
ing dataset, the samples from the mystery dataset were
given a new label “mystery”. The feature set used for the
classifications were the common “family” (5 families)
and “order” (6 orders), as there were no common “spe-
cies” between the main and mystery dataset. Random
samplings along with the three different methods were
conducted for 1000 times independently. The test sam-
ples were correctly predicted as the “mystery” with the

average error rates of 10.48%, 9,21 and 10.36% for RF,
SVM and LDA respectively, indicating that the mystery
samples could be effectively identified from the samples
of main dataset. In other words, although with the lim-
ited information about the mystery samples, we could
still make the inference if the mystery samples belong to
the cities we have in our training model.
The following analyses were based on the feature set

with the lowest error rate.

Principal coordinates analysis
The results of PCoA [8] were presented in Fig. 3. Figure 3a
illustrated the main dataset with 58.4% of total variability
of the data explained by the first two PCoA axes. A separ-
ation of the cities could be referred from the plot. Specific-
ally, London was separated from most cities and on the
rightmost site, which was corresponding to the results
from machine learning methods, as the poor qualify of
samples from London made them different from most of
the samples. In addition, the samples from Ilorin and Offa
(both the cities of Nigeria) were away from the most sam-
ples and showed a massive overlap in the upper left cor-
ner, which was corresponding to the results of Table 4
that some of the samples from these two cities were pre-
dicted to each other. Furthermore, more overlaps were
observed among the other cities, making them more
difficult to be identified. The result of the mystery
dataset was given in Fig. 3b. The first two PCoA axes
explained 65.4% of the total variability of the data,
which was comparable with the percentage explained
in the main dataset. Although many cities overlapped,
samples of Oslo were clustered together and

Fig. 1 The changing trends of the error rate of different ranks and methods for the main dataset based on results of Table 2
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Table 4 The cross-validation results using the feature set with the lowest error rate for the main dataset

True AKL BER BOG HAM HGK ILR LON MAR NYC OFA PXO SAC SAO SOF STO TOK

Predict

RF

AKL 11 1 1 1

BER 19 1

BOG 14 1

HAM 14

HGK 15

ILR 1 23 1 1

LON 18 1 2 2

MAR 9

NYC 1 25 1 1 1 1

OFA 18

PXO 1 16 1

SAC 1 18

SAO 1 1 1 1 1 18 2

SOF 7

STO 1 1 1 1 16 1

TOK 1 1 1 23

Error rate (%) 21.43 9.52 6.67 12.50 6.25 4.17 18.18 10.00 3.85 10.00 20.00 0.00 25.00 30.00 15.79 8.00

SVM

AKL 11 1 1 1 1

BER 17 1 2 1 1

BOG 14

HAM 1 13

HGK 16

ILR 1 23 1

LON 22 1 2 2

MAR 8

NYC 1 25 1 1

OFA 19 1

PXO 1 1 16 1

SAC 17

SAO 1 1 1 19 4

SOF 1 5

STO 1 1 1 16

TOK 1 1 24

Error rate (%) 21.43 19.05 6.67 18.75 0.00 4.17 0.00 20.00 3.85 5.00 20.00 5.56 20.83 50.00 15.79 4.00

LDA

AKL 9 1 1

BER 19 1 1 1 1

BOG 13

HAM 13

HGK 1 16 1

ILR 22 1 1
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distributed at the top of the plot, separating from the
most samples. This was also corresponding to the low
error rate from the previous analysis. Moreover, the
Fig. 3c presented the PCoA based on the mix of the
main and mystery datasets, we could see that most of
the samples from the mystery dataset located at the
left side of the plot, however, the separation between
the two datasets was not obvious.

Analysis of composition of microbiomes
The results from the analysis of composition of micro-
biomes (ANCOM) [9] were presented in Fig. 4. The rela-
tive abundances of the features were used to conduct
the pair-wise comparisons among all the cities. Upon
the significance of the features, the differentially abun-
dant features were found. The features on the right were
ordered by the number of times the relative abundance

Table 4 The cross-validation results using the feature set with the lowest error rate for the main dataset (Continued)

True AKL BER BOG HAM HGK ILR LON MAR NYC OFA PXO SAC SAO SOF STO TOK

Predict

LON 1 22 2 4 2

MAR 9 1

NYC 24 1

OFA 2 18

PXO 1 1 1 17

SAC 1 17

SAO 1 1 1 17 1

SOF 1 1 8

STO 16 1

TOK 1 2 23

Error rate (%) 35.71 9.52 13.33 18.75 0.00 8.33 0.00 10.00 7.69 10.00 15.00 5.56 29.17 20.00 15.79 8.00

Three methods

City AKL BER BOG HAM HGK ILR LON MAR NYC OFA PXO SAC SAO SOF STO TOK

Average error rate (%) 26.19 12.69 8.89 16.67 2.08 5.56 6.06 13.33 5.13 8.33 18.33 3.70 25.00 33.33 15.79 6.67

Fig. 2 The association between the sequencing depth and the error rate, the x-axis is the sum of the count of the selected features, the y-axis is
the error rate
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was significantly different in the pair-wise comparisons.
As presented in Fig. 4a, Bacillaceae, Bacillales, Actino-
mycetales, Sphingomonadaceae, Pseudomonadaceae,
Pseudomonas.spp, Sphingomonadales, Lactobacillales,
streptococcaceae and Enterobacteriaceae were the top 10
features with the highest counts among all the compari-
sons for the main dataset. Interestingly, the top 1 signifi-
cant feature for the Sacramento, i.e. Flavobacteriaceae,
which was found to be significantly different in 12 out of
15 comparisons, was not in the top 10 features, indicat-
ing the uniqueness of Flavobacteriaceae for Sacramento
as it could be the city-specific signature, helping identify
the Sacramento samples from other samples. In Fig. 4b,
the top 10 features were Bacillales, Clostridiales, Pseudo-
monadales, Staphylococcus.epidermidis, Lactobacillales,
Rhodospirillales, Flavobacteriales, Streptophyta, Burkhol-
deriales and Enterobacteriales for the mystery dataset.
Little change was seen from the importance score order
(Fig. 5) derived from the Random Forest. It could be in-
ferred from Fig. 5a that Bacillales, Actinomycetales,
Sphingomonadales, Sphingomonadaceae, Enterobacteria-
ceae and streptococcaceae were also in the top 10 fea-
tures. Similarly, for the mystery dataset, Bacillales,
Streptophyta, Rhodospirillales, Enterobacteriales, Lacto-
bacillales, Clostridiales and Pseudomonadales were in
the top 10 of both lists. In summary, the common “fam-
ily” and “order” of the OTU provided the most inform-
ative data for predicting the origins of the samples from
the main dataset, which was also corresponding to the
results of machine learning that the error rate of using
common “family” or “order” only was much lower than
the error rate of using common “species”. For the mys-
tery dataset, the common “order” dominated the
prediction.

Discussion and conclusions
For the CAMDA challenge MetaSUB data of this year,
16 cities were included and 10 or more samples were

collected for each city in the main dataset. Selecting
common features, normalization, three methods of ma-
chine learning algorithms, PCoA and ANCOM were
conducted for both the main and mystery datasets.
Common features selecting along with the machine

learning methods showed that the combination of the
common features could be the effective microbial finger-
print for unraveling city-specific signature and identify-
ing sample origin locations. Therefore, more taxonomic
ranks of microbiomes such as “genus” could be added to
the combination to investigate the performance of the
prediction in the future works. Using the common fea-
tures may help us to unravel the composition of micro-
bial community of each city. In addition, by using the
common features, the low error rates were obtained
without including too many features for both datasets.
However, some city-specific features might be ignored
by doing this way as these features existed in a specific
city and will be removed by the procedure. In our previ-
ous CAMDA experience, we have tried to select sets of
data focusing on the city-specific features that were dif-
ferentially present across the cities, the resulting data
was loaded with lots of zeros that some analyses such as
PCA and variance estimations were not at all behaving
in a good manner. It’s worth investigating to see whether
combining the common features with city-specific fea-
tures will provide a more powerful prediction in our fu-
ture work, as including the city-specific features provides
us more information about the specific city.
Additionally, according to the results from machine

learning, the cities with high sequencing depth generally
seem to have lower error rate, indicating the necessity of
the decent sequencing depth for the prediction. How-
ever, for the cities with relatively poor sequencing depth,
the error rates varied considerably. For example, on one
hand, cities with poor sequencing depth such as Sofia
and Sao Paulo in the main dataset and Doha, Kiev and
Brisbane in the mystery dataset were showed to have

Fig. 3 The PCoA plot with the first and the second axes: main dataset in a and mystery dataset in b
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Fig. 4 The analysis of composition of microbiomes across all pair-wise comparisons of cities: main dataset in a and mystery dataset in b. The
significant features are denoted by deep blue, the features that are not significantly different in two cities are denoted by light blue
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high error rates. On the other hand, for cities such as
Hong Kong in the main dataset and Paris in the mystery
dataset, low error rates were obtained even though with
poor sequencing for these cities. The high variability in
error could be caused by other sources rather than the
low coverage such as technical variability, as the data
was generated by different institutions from different
countries. Therefore, in addition to improving the se-
quencing depth, the prediction could be further im-
proved by reducing the possible technical variability to
make the data generation unified. Totally eliminating the
technical variability could be a hard task, however, by
doing the normalization, technical variability between
different cities such as different scales could be mitigated
to some extent. Additionally, the difference of the micro-
bial composition of samples within the same city, such
as samples from Auckland and Hamilton, could also be
caused by the technical variability, which hinders the
ability of classifier for predicting.
Moreover, we have used the main dataset and half of

mystery samples as our training dataset to predict the la-
bels of another half of mystery samples. The error rates
were 10.48, 9.21 and 10.36% for RF, SVM and LDA re-
spectively, most of the samples from mystery dataset
could be identified correctly by the classification.
PCoA analysis for both datasets showed that nearly

60% of the total variability of the data could be explained
by the first two PCoA axes, most cities overlapped with
each other. However, some cities such as Offa, Ilorin
and Oslo were separated from most cities, indicating the
unique composition of microbiomes in these cities,

which was corresponding to the low error rates in ma-
chine learning analysis.
The heatmaps of ANCOM revealed that some of the

features, such as the common “family” and “order” in the
main dataset and the common “order” in mystery dataset,
were significantly different in pair-wise comparisons, and
these features were also given high importance score in
RF, indicating the effectiveness of these features for the
prediction. Additionally, this was also supported by the re-
sults of the machine learning analysis, as we obtained the
similar error rate compared to the lowest error rate using
a combination of common “family” and “order” for the
main dataset and the common “order” only for the mys-
tery datasets. Furthermore, ANCOM analysis helped us to
find the marker feature, in other words, even though Fla-
vobacteriaceae existed in all the 16 cities of the main data-
set, the relative abundance of Flavobacteriaceae in
Sacramento was significantly different from most of the
other cities. Therefore, Flavobacteriaceae could be used as
the marker for identifying the samples from Sacramento.
The members of the Flavobacteriaceae family are found in
a wide variety of marine, freshwater, and soil habitats, and
some are also associated with animals or plants [10]. In
addition to the microbial data, some other city-specific
data such as weather data could be considered including
for future work, as microbial composition could be af-
fected by different environments.
In summary, the results presented in this work showed

an effective method to process, and classify the samples
by origin, but there is still much to be improved, worth
investigating in future work.

Fig. 5 The importance of features obtained from the RF: main dataset in a and mystery dataset in b. The features are ordered by the importance
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Methods
The design of the analysis was motivated by the experi-
ence from the CAMDA 2017 and CAMDA 2018 Meta-
SUB Challenges [4, 11]. Compared to date from previous
MeteSUB challenges, the data this year was with higher
quality and deeper sequencing depth. As we have more
cities included this year, the common features shared by
all the cities were further limited. Therefore, the features
selection was implemented this year to help us obtain the
qualitied features for classification. Finally, unsupervised
and supervised techniques were used for the analyses. A
more detailed description of the implementations was
supplemented in the following sections.

Bioinformatics and data preparation
The Bioinformatics and data preparation was based on
our previous paper [4]. Samples were Illumina-
sequenced at different depths and delivered as FASTQ
format for further analysis. Subsequent bioinformatics
processing and data preparation were conducted in the
“HyperGator2” high-performance cluster at the University
of Florida. The supercomputer cluster includes 46,000
CPUs each with 4GB of RAM. Regarding the samples data
processing, generally the bioinformatic part was not highly
demanding of computer power, but OTU calling with
QIIME required on an average approximately 500 CPU
hours, running in 24 processors. This running time was
largely driven by the size of the raw FASTQ files. Phred
score filtering was implemented with FASTX-Toolkit
(version 0.0.14 released Jan-05-2014) [12] for preliminary
quality control, the parameters used in the filtering were
q = 38 as a minimum Phred score to keep and p = 50 to
set a minimum percentage of the bases that must have a
quality score of 38. After quality control, samples
with the poor sequencing depth were removed and
the data was then transformed in a FASTA format
for performing open reference OTU picking with
QIIME with default setting [13]. After OTU picking,
all the counts with mapping quality scores calculated
by the RDP taxonomy classifier [14] < 0.5 were re-
moved from further analyses. All further data process-
ing and analyses in this study were conducted in R
[15]. The R-code for the analyses will be available on
https://susmdatta.github.io/software.html.

Selecting common features
For the main dataset, the common features existing
across all the 16 cities from a specific rank (“species”,
“family” or “order”) were selected. To obtain more com-
mon features, two additional rules were implemented for
the features from a specific rank: i) features existing in
at least N cities were selected (Top features with the
highest ubiquity across all the cities). N was set to 15,
14, 13, 12, 11, 10, 9 and 8 respectively, the count of the

feature did not exist in the city was marked as zero. ii)
features were reordered based on their ubiquity across
all the samples, the top M features with the highest ubi-
quity were selected. M was set to 10, 20, 30, 50, 100, 150
respectively. In addition to using the selected feature sets
of different ranks independently, the common features
from different ranks were combined and regarded as the
combined common features for the analyses. In other
words, features from different ranks were used together
as the input for the analyses. For example, the combined
features with common “species” and “family” indicate
that the common features from rank “species” along
with the common features from rank “family” will be
used together rather than independent for the analyses.
The mystery dataset was analyzed based on the common
features and combined features for simplicity. The data
were then normalized to generate log2-cpm to make the
data meaningful using the function “voom” [16] in R
package “limma” [17] for further analysis.

Machine learning analysis
Three classification algorithms were implemented at this
stage for both the main and mystery datasets: Random
Forest (RF) [5], Support Vector Machine (SVM) [6] and
Linear Discriminant Analysis (LDA) [18]. Leave-one-out
cross validation was conducted, the test sample was se-
lected in order for each run with other samples served
as the training set, and three methods were then imple-
mented based on the same data. The results of predic-
tion of three classifications for each sample was
obtained. The overall error rate and the error rate for
each city were calculated based on the results from each
run. RF was conducted using the R package “random-
Forest”, 1000 trees were used and the count of variables
chosen at each split was equivalent to the square root of
the number of features in the dataset. The variable im-
portance score [19] computed by the RF was also re-
corded. The SVM classifier was implemented using the
R function “best.svm” in package “e1071” [20]. The two
important parameters in SVM, i.e. gamma and c-value,
affected the fitting of the models. The SVM model with
the appropriate parameters was obtained by testing the
performance of models with different parameters for
each run independently. The LDA was conducted in a
similar manner using the R package “MASS” [21].
When the models based on the main dataset were

used to predict the labels of samples from mystery data-
set. 50% of the samples of each city were randomly sam-
pled from mystery dataset and added to the main
dataset with the labels of “mystery” to serve as the part
of the training dataset, the rest of the samples were
served as the test samples. The sampling and the predic-
tion were implemented for 1000 times. For each run, the
predicted labels of test samples were checked with the
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real labels, a good prediction meant all test samples
could be labeled as “mystery” by the classification.

Principal coordinates analysis
Principal coordinates analysis (PCoA) [8] of normalized data
was conducted using the R package “vegan” [22] and “ape”
[23]. Firstly, the Bray-Cruits dissimilarity matrix was con-
structed. Then, the dissimilarity matrix was used for PCoA
and a set of uncorrelated axes was generated to summarize
the variability in the dataset. The two-dimensional plot was
generated for assessing the separation of the cities.

Analysis of composition of microbiomes
Analysis of composition of microbiomes for the normalized
data was conducted using the R package “ANCOM” [9],
which accounted for the underlying structure in the micro-
bial data and was used for comparing the composition of
microbiomes in two or more populations. For the main and
mystery datasets, ANCOM across all pair-wise comparisons
in each dataset was implemented. The 120 and 28 pair-wise
comparisons were made for the combination of all cities in
the main and mystery datasets respectively. And the output
of the ANCOM was a set of differentially abundant features
between the two cities for each comparison at the signifi-
cance level of 0.05. The heatmap was made based on the
output for investigating the difference of microbial compos-
ition between different cities. Additionally, the results of
ANCOM were compared with the importance score de-
rived by the RF method.

Abbreviations
NGS: Next Generation Sequencing; WGS: Whole genome sequencing;
OTU: Operational Taxonomic Unit; RF: Random Forest; SVM: Support Vector
Machine; LDA: Linear Discriminant Analysis; CV: Cross Validation;
PCoA: Principal Coordinates Analysis; ANCOM: Analysis of composition of
microbiomes

Acknowledgements
The samples were provided to the CAMDA 2019 competition by the
MetaSUB Consortium.

Authors’ contributions
SD reviewed the manuscript and provided theoretical support when
required, RZ and ARW designed, run the analyses, RZ wrote the manuscript.
All the authors have read and approved the final manuscript.

Funding
Datta, S. was partially supported by NIH grant 1UL1TR000064 from the
National Center for Advancing Translational Sciences.

Availability of data and materials
The datasets supporting the conclusions of this article can be obtained from
the CAMDA 2019 website http://camda2019.bioinf.jku.at/doku.php/contest_
dataset.

Ethics approval and consent to participate
Not Applicable.

Consent for publication
Not Applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Biostatistics, University of Florida, 2004 Mowry Rd,
Gainesville, FL 32610, USA. 2Department of Oral Biology, University of Florida,
1395 Center Drive, Gainesville, FL 32610, USA.

Received: 9 January 2020 Accepted: 1 December 2020

References
1. Simon C, Daniel R. Metagenomic analyses: past and future trends. Appl

Environ Microbiol. 2011;77(4):1153–61. https://doi.org/10.1128/aem.02345-10.
2. Ranjan R, Rani A, Metwally A, McGee HS, Perkins DL. Analysis of the

microbiome: advantages of whole genome shotgun versus 16S amplicon
sequencing. Biochem Biophys Res Commun. 2016;469(4):967–77. https://doi.
org/10.1016/j.bbrc.2015.12.083.

3. Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A,
Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N. A global atlas of
the dominant bacteria found in soil. Science. 2018;359(6373):320–5. https://
doi.org/10.1126/science.aap9516.

4. Walker AR, Datta S. Identification of city specific important bacterial
signature for the MetaSUB CAMDA challenge microbiome data. Biol Direct.
2019;14(1):11. https://doi.org/10.1186/s13062-019-0243-z.

5. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. https://doi.org/10.
1023/a:1010933404324.

6. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–97.
https://doi.org/10.1007/bf00994018.

7. Balakrishnama S, Ganapathiraju A. Linear discriminant analysis-a brief
tutorial. Institute Signal Information Processing. 1998;18:1–8.

8. Borg I, Groenen P. Modern multidimensional scaling: theory and
applications. J Educ Meas. 2003;40(3):277–80. https://doi.org/10.1111/j.1745-
3984.2003.tb01108.x.

9. Mandal S, Van Treuren W, White RA, Eggesbo M, Knight R, Peddada SD.
Analysis of composition of microbiomes: a novel method for studying
microbial composition. Microb Ecol Health Dis. 2015;26:27663. https://doi.
org/10.3402/mehd.v26.27663.

10. McBride MJ. The Family Flavobacteriaceae. In: Rosenberg E, De Long EF,
Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes: Other Major
Lineages of Bacteria and The Archaea. Berlin: Springer Berlin Heidelberg;
2014. p. 643–76.

11. Walker AR, Grimes TL, Datta S, Datta S. Unraveling bacterial fingerprints of
city subways from microbiome 16S gene profiles. Biol Direct. 2018;13(1):10.
https://doi.org/10.1186/s13062-018-0215-8.

12. Patel RK, Jain M. NGS QC toolkit: a toolkit for quality control of next
generation sequencing data. PLoS One. 2012;7(2):e30619.

13. Kuczynski J, Stombaugh J, Walters WA, Gonzalez A, Caporaso JG, Knight R:
Using QIIME to analyze 16S rRNA gene sequences from microbial
communities. Curr Protoc Bioinformatics 2011, Chapter 10:Unit 10.7. doi:
https://doi.org/10.1002/0471250953.bi1007s36.

14. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid
assignment of rRNA sequences into the new bacterial taxonomy. Appl
Environ Microbiol. 2007;73(16):5261–7.

15. Team RC. R: a language and environment for statistical computing. R
foundation for Statistical Computing. 2018.

16. Law CW, Chen Y, Shi W. Smyth GK: voom: precision weights unlock linear
model analysis tools for RNA-seq read counts. Genome Biol. 2014;15(2):R29.
https://doi.org/10.1186/gb-2014-15-2-r29.

17. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma
powers differential expression analyses for RNA-sequencing and microarray
studies. Nucleic Acids Research. 2015;43(7):e47-e. https://doi.org/10.1093/
nar/gkv007.

18. Balakrishnama S, Ganapathiraju A: Linear Discriminant Analysis—A Brief
Tutorial, vol. 11; 1998.

19. Strobl C, Boulesteix AL, Zeileis A, Hothorn T. Bias in random forest variable
importance measures: illustrations, sources and a solution. BMC
Bioinformatics. 2007;8:25. https://doi.org/10.1186/1471-2105-8-25.

20. Dimitriadou E, Hornik K, Leisch F, Meyer D, Weingessel A. Misc functions of
the Department of Statistics (e1071), TU Wien. R package. 2008;1:5–24.

Zhang et al. Biology Direct            (2021) 16:1 Page 13 of 14

http://camda2019.bioinf.jku.at/doku.php/contest_dataset
http://camda2019.bioinf.jku.at/doku.php/contest_dataset
https://doi.org/10.1128/aem.02345-10
https://doi.org/10.1016/j.bbrc.2015.12.083
https://doi.org/10.1016/j.bbrc.2015.12.083
https://doi.org/10.1126/science.aap9516
https://doi.org/10.1126/science.aap9516
https://doi.org/10.1186/s13062-019-0243-z
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1007/bf00994018
https://doi.org/10.1111/j.1745-3984.2003.tb01108.x
https://doi.org/10.1111/j.1745-3984.2003.tb01108.x
https://doi.org/10.3402/mehd.v26.27663
https://doi.org/10.3402/mehd.v26.27663
https://doi.org/10.1186/s13062-018-0215-8
https://doi.org/10.1002/0471250953.bi1007s36
https://doi.org/10.1186/gb-2014-15-2-r29
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1186/1471-2105-8-25


21. Ripley B. MASS: support functions and datasets for Venables and Ripley’s
MASS. R Package Version. 2011:7.3–29.

22. Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ,
Suggests M. The vegan package. Community Ecol Package. 2007;10:631–7.

23. Paradis E, Blomberg S, Bolker B, Brown J, Claude J, Cuong HS, Desper R:
Package ‘ape’. Analyses of phylogenetics and evolution, version 2019, 2(4).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Zhang et al. Biology Direct            (2021) 16:1 Page 14 of 14


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Selecting common features
	Machine learning analysis
	Principal coordinates analysis
	Analysis of composition of microbiomes

	Discussion and conclusions
	Methods
	Bioinformatics and data preparation
	Selecting common features
	Machine learning analysis
	Principal coordinates analysis
	Analysis of composition of microbiomes
	Abbreviations

	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

