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Abstract

Background: Drug-induced liver injury (DILI) is a major concern in drug development, as hepatotoxicity may not be
apparent at early stages but can lead to life threatening consequences. The ability to predict DILI from in vitro data
would be a crucial advantage. In 2018, the Critical Assessment Massive Data Analysis group proposed the CMap Drug
Safety challenge focusing on DILI prediction.

Methods and results: The challenge data included Affymetrix GeneChip expression profiles for the two cancer cell
lines MCF7 and PC3 treated with 276 drug compounds and empty vehicles. Binary DILI labeling and a recommended
train/test split for the development of predictive classification approaches were also provided. We devised three deep
learning architectures for DILI prediction on the challenge data and compared them to random forest and multi-layer
perceptron classifiers. On a subset of the data and for some of the models we additionally tested several strategies for
balancing the two DILI classes and to identify alternative informative train/test splits. All the models were trained with
the MAQC data analysis protocol (DAP), i.e., 10x5 cross-validation over the training set. In all the experiments, the
classification performance in both cross-validation and external validation gave Matthews correlation coefficient
(MCC) values below 0.2. We observed minimal differences between the two cell lines. Notably, deep learning
approaches did not give an advantage on the classification performance.

Discussion: We extensively tested multiple machine learning approaches for the DILI classification task obtaining
poor to mediocre performance. The results suggest that the CMap expression data on the two cell lines MCF7 and
PC3 are not sufficient for accurate DILI label prediction.

Reviewers: This article was reviewed by Maciej Kandula and Paweł P. Labaj.
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Background
Adverse drug reactions (ADRs) are a major threat to
the development of novel drugs and their therapeutic
use [1, 2]. A particular class of ADRs is drug induced
liver injury (DILI), encompassing ADRs that cause liver
damage. The liver is the most common target of ADRs,
because of its crucial role in the metabolism of endoge-
nous and exogenous compounds [3]. Predictive markers
of DILI able to identify susceptible patients would give
an enormous advantage to accelerate safe drug develop-
ment and to prevent severe reactions after approval [4, 5].
DILI poses particular challenges, as pre-clinical testing for
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side effects in animals does not automatically transfer to
clinical trials and then to post-marketing treatment in the
population. Indeed, individual susceptibility may arise in
patients different from those enrolled in trials, or range
from clinically serious to worse as a function of interaction
with other factors [6].
A number of groups have developed approaches and

strategies to predict DILI from different data types, such
as compound chemical structures, gene expression and
genetic data. Modelling based on chemical structures
and molecular descriptors has been broadly used for
DILI prediction (see for example [7–10]). Interestingly,
Xu et al. [11] proposed a deep learning (DL) model that
achieved 86.9% classification accuracy in external valida-
tion after training on a set of 475 samples. Fewer studies
have focused on the of use gene expression signatures
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for ADR or DILI prediction [12–14]. Kohonen and col-
leagues recently proposed a large-scale data-driven mod-
eling approach to build a predictive toxicogenomics space
(PTGS) combining the US Broad Institute Connectivity
Map (CMap [15]) and the US National Cancer Institute
60 tumour cell line screen (NCI-60 [16]). Using the PTGS
they were able to predict clinical exposure levels rais-
ing DILI concerns achieving, in combination with other
hepatocellular-based assays, a positive predictive ability of
72–86%.
The Critical Assessment Massive Data Analysis

(CAMDA) group proposed in 2018 the CMap Drug
Safety Challenge. The challenge task was predicting
human clinical DILI from the gene expression responses
of two cancer cell lines (MCF7 and PC3) to distinct
drug compounds, part of the larger CMap build 02. A
recommended split into train (TR) and test (TS) sets
and corresponding binary DILI response labels for 276
drug compounds were provided. The dataset presents
with a number of technical issues to tackle. The overall
number of samples is small, resulting in a limitation for
training complex models. The two DILI classes are highly
imbalanced, with the largest class including over 70% of
the samples: this is potentially an issue, as most machine
learning algorithms work better when the classes contain
roughly the same number of samples [17]. Finally, the
data includes expression of both compound-treated
and untreated samples, and these need to be taken into
account appropriately. We developed three DL models
to predict DILI on the challenge data and compared
their accuracy with shallow machine learning models
(SL), namely a random forest classifier (RF) and a base-
line multi-layer perceptron (MLP). Models combining
response to both drug and corresponding vehicles were
investigated, as well as strategies for class balancing and
identification of alternative informative TR/TS splits.
The Matthews correlation coefficient (MCC [18, 19]) was
used to assess the performance of our models, as it effec-
tively conveys in a single number the confusion matrix of
a classification task, thus making it possible to evaluate
classifier performance even in presence of unbalanced
classes.

Results
Data production and processing layout are outlined in
Fig. 1. Briefly, the microarray data for compounds and
vehicles was pre-processed, normalized and batch cor-
rected following a standard procedure. Two distinct fea-
ture sets were extracted: ALL (including all 12437 genes
with detectable expression) compared with KH (the 1234-
gene PTGS signature proposed in [14]). All the models
were trained on 187 drugs within a standard data anal-
ysis protocol (DAP) and validated on 79 different drugs,
using as input either the compound expression values or

the log-fold change (logFC) of compounds vs. vehicles.
All processing steps are detailed in the “Methods” section.
Considering our results globally, the general classification
performance for the DILI status was poor. MCC values
in CV ranged from −0.04 to 0.21, while MCC in vali-
dation ranged from −0.16 to 0.11 (details below). These
results are comparable with a random labels experiment
on the same data. We did not identify a model that per-
forms systematically better than the others, nor important
differences in classification performance when consider-
ing separately the two cell lines, the different feature sets
or the different input types. The results of all experiments
performed are collected in Additional file 3.

Deep Learning
We devised three DL architectures of increasing depth,
namely NBM1, NBM2, NBMDeep (Fig. 2; see Methods
for details), with 4, 6, and 13 hidden layers, respec-
tively. All DL models operated in two modes: “single”,
with the logFC values or the expression of each com-
pound as inputs, or “end-to-end”, with the expression
values of each compound concatenated with its corre-
sponding vehicles as inputs. Overall, the classification
performance was poor independently of the architecture,
the DL strategy, and the cell line. In particular, all the DL
models performed poorly on the two cell lines (median
MCCcv,MCF7 = MCCcv,PC3 = 0.02; MCCval,MCF7 = 0,
MCCval,PC3 = −0.02), using the two feature sets or input
types. The MCC values of the DL “end-to-end” experi-
ments were higher in CV than the “single” experiments
(median MCCcv,end-to-end = 0.09, MCCcv,single = 0.01;
Wilcoxon p = 0.003), but close to 0 in validation for
both strategies. Notably, the NBMDeep architecture per-
formed worse than NBM1 and NBM2, achieving median
MCC = 0 both in cross-validation and validation for
each experiment. Qualitatively, NBM1 performed slightly
better than NBM2 in CV (median MCCcv,NBM1 = 0.07,
MCCcv,NBM1 = 0.03; p = 0.31), showing opposite
behavior in validation (median MCCval,NBM1 = −0.06,
MCCval,NBM2 = −0.02; p = 0.25).

Shallowmachine learning
To compare the accuracy of the DL models with a SL
baseline, we trained two shallow machine learning classi-
fiers, namely a RF and an MLP. Similarly to the behaviour
observed for the DL models, the performance of the SL
classifiers was poor independently of model, feature set
and input type. The average MCC values in CV ranged
from 0 to 0.12 for RF and from 0.01 to 0.10 for MLP. The
MCC in external validation ranged from −0.12 to 0.07 for
RF and from −0.16 to 0.11 for MLP. Overall, the SL exper-
iments displayed comparable CV performance in both cell
lines, with slightly worse validation performance in MCF7
than in PC3 (Fig. 3B).
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Fig. 1 Experimental design scheme and batch correction. The figure represents schematically the data processing approach adopted in the article

Random splits
Since the classification performance obtained with both
shallow and deep machine learning methods was gen-
erally low, we asked whether an alternative TR/TS split
could be more informative on the classification task under
analysis. To test this hypothesis we randomly split the
whole set of 266 samples into 100 random TR/TS pairs
containing 75% and 25% of the data respectively. As the
classification performance was particularly low in external
validation, we performed a similar experiment consider-
ing the TR set alone. The results are shown in Fig. 3C.
In general, the average classification accuracy over the
100 splits generated from the whole dataset was slightly
higher (p < 0.01) on PC3 (mean MCCcv = 0.04;
mean MCCval = 0.02) than on MCF7 (mean MCCcv =
−0.01; mean MCCval = −0.03). We concluded that an
alternative and more informative TR/TS partition could
not be found among the 100 splits. Considering the
splits generated from the training set only, the aver-
age classification accuracy was marginally better in both
PC3 (mean MCCcv,PC3 = 0.05; mean MCCval,PC3 =

0.01) and MCF7 (mean MCCcv,MCF7 = 0.05; mean
MCCval,MCF7 = 0.03).

Class balancing
As shown in Table 1, the two DILI-1 and DILI-0 classes
are not represented equally, as over 70% of the sam-
ples are DILI-1. To test whether class balancing might
be beneficial to improve the classification performance
we tested a number of balancing strategies offered by
the imbalanced-learn [20] package. The class bal-
ancing experiments were performed on the cell line
MCF7, with the feature set KH, using expression as
input and either RF or NMB2 as classifier. The results
are detailed in Table 2 and Fig. 3D. In general, class
balancing improved the classification performance in
CV without major impact on external validation perfor-
mance. Notably, for all the balancing strategies tested,
RF performs starkly better than NBM2 in CV (average
MCCcv,RF = 0.64 vs. average MCCcv,NBM2 = 0.19). How-
ever, performances in validation were again poor (average
MCCval,RF = −0.05 vs. average MCCval,NBM2 = −0.02).
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Fig. 2 Deep learning analysis strategies and architectures. a Strategies used for the analysis. “single” indicates that the logFC values or the
expression of each compound were considered as input for the models; “end-to-end” indicates that the expression values of each compound are
considered along with its corresponding vehicles. b Schematic representation of the DL architectures used for the analysis

This suggests that RF is more prone to overfitting the
TR set when the least represented class is artificially
augmented.

Discussion
In the context of the CAMDA2018 CMap Drug Safety
Challenge we performed an array of machine learning
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Fig. 3 Classification results. a Overall DL results. b Overall SL results. c Random TR/TS splits results. d Overall results obtained testing various
strategies to balance classes. MCC CV: MCC in CV; MCC val: MCC in validation

experiments to assess the capability of classifying DILI
status from expression data derived from the two cancer
cell lines MCF7 and PC3. We built three DL architectures
to solve the assigned DILI classification task and com-
pared their performance to two shallow machine learn-
ing algorithms (RF and MLP). Overall, we observed very
poor classification performance both in CV and in valida-
tion, independently on cell line, feature set and classifier.
Notably, the NBMDeep architecture performed signifi-
cantly worse than the two shallower DL architectures,
possibly due to a much larger number of parameters
to train with limited data. A reduced number of sam-
ples is notoriously a limit for the applicability of DL.
We investigated the existence of a better TR/TS split

Table 1 Number of samples belonging to DILI-0 and DILI-1
classes for TR and TS sets

DILI-1 DILI-0

TR 120 60

TS 67 19

Table 2 Results obtained for RF and NBM2 classifiers using
different class balancing strategies

balancing strategy classifier MCCcv MCCval

adasyn RF 0.63 (0.60, 0.66) 0.12

oversampled_all RF 0.69 (0.65, 0.71) -0.13

oversampled_minority RF 0.69 (0.65, 0.71) -0.13

smote RF 0.63 (0.60, 0.66) 0.02

smote_svm RF 0.61 (0.59, 0.65) -0.09

smote_borderline1 RF 0.61 (0.58, 0.64) -0.04

smote_borderline2 RF 0.59 (0.55, 0.63) -0.07

adasyn NBM2 0.07 (0.03, 0.10) 0.02

oversampled_all NBM2 0.24 (0.19, 0.29) -0.02

oversampled_minority NBM2 0.23 (0.19, 0.28) 0.07

smote NBM2 0.20 (0.15, 0.25) -0.2

smote_svm NBM2 0.24 (0.20, 0.29) 0.1

smote_borderline1 NBM2 0.23 (0.19, 0.29) -0.11

smote_borderline2 NBM2 0.11 (0.06, 0.16) -0.01

Boldface indicates the best performance of RF or NBM2 models either in cross
validation or in validation
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by randomly splitting the 266 samples into 100 artifi-
cial TR/TS splits containing 75 and 25% of the data. The
results on these simulated TR/TS splits did not highlight
the presence of a more informative partition of the data.
We additionally questioned whether the low MCC val-
ues obtained in validation indicate that the TR and TS
samples are extracted from two distinct data distributions
regardless of normalization. To indirectly test this hypoth-
esis we randomly split the 180 samples of the TR set into
100 artificial TR/TS splits. The results obtained were in
line with the random splits on the full dataset. As the two
DILI classes were fairly imbalanced we tested two of our
classifiers on a subset of the data (MCF7 expression data
restricted to the KH feature set) with classes artificially
balanced following multiple strategies. The results show
a sharp improvement for MCC in CV (9.7 and 7.7 times
for the RF and DL classifiers, respectively) with essentially
no improvement in external validation, suggesting that the
balancing strategies give rise to overfitting. An objective
comparison with previous efforts aiming at DILI predic-
tion is challenging, as most studies relied on compound
chemical structures and molecular descriptors to assess
DILI risk [7–10, 21]. The closest study we can consider
for comparison is Kohonen et al. [14] as they also used
CMap transcriptomics data for the creation of a DILI pre-
diction score. However, the authors used the full CMap
dataset, including ca. 1300 compounds and three cell
lines, combined with the NCI-60 cytotoxicity data [16].
As the input is fundamentally much larger and therefore
more suitable for training a model, a direct comparison
with the classification strategies presented here is difficult
to interpret.

Conclusions
All our experiments point to the major conclusion that
the data provided in the context of the CAMDA2018
CMap Drug Safety Challenge do not grant the capability
of classifying the DILI status.

Methods
Data
The data provided by the CAMDA2018 organizers
included microarray expression derived from two cell
lines (MCF7 and PC3), either treated with one of 276
chemical compounds or dimethyl sulfoxide (DMSO) vehi-
cle alone, part of the larger Connectivity Map build 02
resource [15]. A spreadsheet containing information to
link compound filename identifiers to the correspond-
ing vehicles, the DILI labels for the 276 compounds and
the split into TR and test TS sets was also provided
(Additional file 1). To complement these information, we
downloaded from the CMap project website a sample
annotation file (Additional file 2) including information
such as chip platform used for the assay, processing batch

Table 3 CEL files available in the original CAMDA2018 Drug
Safety challenge dataset

Affymetrix chip MCF7 PC3

HT_HG-U133A 588 475

HG-U133A 7 25

identifiers, compound CMap names, treatment duration
and compound concentration during treatment. Experi-
ments were performed in 96-well plates and a graphical
representation of the experimental design is provided
in Fig. 1 along with the data pre-processing overview.
The original dataset provided by the organizers globally
included 1095 CEL files (Table 3). Two distinct Affymetrix
chips were used for the expression data assays: HG-U133A
and HT_HG-U133A. To avoid potential confounding
effects in the analysis, since HG-U133A was used only for
a handful of samples, these were removed from the list
of input CEL files prior to normalization. Consequently,
the starting dataset consisted of a total of 1057 samples,
distributed across cell lines as shown in Table 4.

Microarray data preprocessing
The microarray data was normalized using the fRMA
function of the Bioconductor package fRMA [22] with
default parameters. Briefly, the function performs back-
ground correction according to the robust multi-array
average algorithm, quantile normalization and robust
weighted average summarization over probesets. Using
the Bioconductor annotation package hgu133a.db [23],
the expression data was further summarized considering
the mean expression value for each gene and gene sym-
bols were used as reference. Since a batch effect related
to the actual microarray processing batches was observed,
a batch correction adjustment was applied to the nor-
malized expression data using the ComBat function of
the Bioconductor package sva [24]. The resulting normal-
ized and batch adjusted data was used as input for the
subsequent analyses, either directly in the form of com-
pound expression or as the log2-transformed fold change
(logFC) between compound and vehicle treated samples.
If a given compound was associated to multiple vehi-
cles, their median expression value was considered in

Table 4 Number of samples available after removing CEL files
profiled with the HG-U133A chip

category MCF7 PC3

compound train 180 180

compound test 86 86

vehicle 316 209

Sample numbers are reported according to three categories: samples treated with a
compound assigned to the TR test, samples treated with a compound assigned to
the TS set and samples treated with DSMO vehicle only
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the calculation. All data were simultaneously normalized,
neglecting the TR/TS partition due to their mutual het-
erogeneity. We note that part of the vehicles were shared
between the TR and the TS set.We considered two feature
sets. A first dataset included all the 12437 genes result-
ing from the processing of the microarray data (named
ALL feature set). A second, more compact, consisted of
1234 genes (KH feature set) representing the intersection
between ALL and the 1331 genes most associated to the
predictive toxicogenomics space defined by Kohonen and
colleagues in [14].

Deep learning architectures
The DL models were trained following two distinct
strategies dealing with vehicle expression differently, as
sketched in Fig. 2A. In the first strategy (“single”) each cell
line was treated independently and either the logFC values
or the expression of each compound were considered as
input for the models, creating samples of size (1×N), with
N = 12437 (ALL) or N = 1234 (KH). In the second strat-
egy (“end-to-end”), we considered the expression of each
compound along with the median of the corresponding
vehicles, creating homogeneous samples of size (2×N) for
each cell line, with N = 12437 (ALL) or N = 1234 (KH).
We designed three neural network architectures

with increasing depths: NBM1, NBM2, and NMBDeep
(Fig. 2B). The NBM1 architecture includes a first layer
taking as input the whole set of 12437 (ALL) or 1234 (KH)
features, concatenated according to the two strategies.
This is followed by two fully connected layers with 1000K
and 100K nodes (with K = 2 for ALL and K = 1 for KH)
and by the output layer. NBM2 was created doubling the
1000K and 100K inner layers of NMB1. NBMDeep is the
deepest network, created further expanding the inner
layers of NBM2 as detailed in Fig. 2B, obtaining a total of
12 hidden layers.
For each architecture the weights and biases of the fully

connected layers were initialized before training with val-
ues drawn from the uniform distribution. The rectified
linear unit (ReLU) functions [25] were used as activa-
tions for all the inner layers while SoftMax was used for
the output layer. For the ReLU layers a batch normal-
ization with eps 10−5 and momentum 0.1 was applied.
The categorical cross-entropy was chosen as loss func-
tion, with weights proportional to the class sizes. To avoid
overfitting, dropout layers were added with rate 0.5 after
each of the inner layers. The networks were trained over
1000 (NBM1, NBM2) or 5000 (NBMDeep) epochs, using
minibatches of 60 samples.

Parameter tuning
The optimizer type and the learning rate (LR) of the
networks were selected among the alternatives described
below by training NBM1 over 1000 epochs on 70% of the

training set (randomly chosen) and evaluating the perfor-
mance on the left-out 30% portion. With the stochastic
gradient descent (SGD) optimizer, the net was trained
with LR ∈[ 10−2, 5 × 10−3, 2 × 10−3, 10−3]. Using Adam
optimizer, the net was trained with LR ∈[ 10−7, 10−6, 5 ×
10−6, 7 × 10−6, 8 × 10−6, 9 × 10−6, 10−5, 10−4, 5 ×
10−4, 10−3], as Adam requires smaller LR with respect
to SGD [26]. We compared the training and validation
performance and losses of the network using the two opti-
mizers. As detailed in the “Results” sections, the perfor-
mances were generally poor without strong dependence
on the parameters. We decided to use Adam as opti-
mizer with LR = 1 × 10−5 as it was giving slightly better
performance (not shown).

Shallowmachine learning
We considered a basic MLP and a RF as baseline machine
learning strategies to compare our DL models to. MLP
consisted of three fully connected hidden layers with 30
nodes each, and an input layer with 12437 or 1234 nodes
for ALL and KH feature sets, respectively. All activations
were ReLU functions [25], with neither dropout nor batch
normalization. As optimizer we used Adam [26] with
the number of iterations bounded at 200. RF was initial-
ized with 500 trees and the Gini impurity as criterion to
evaluate the quality of a split.

Random splits
We randomly split either the whole dataset or the orig-
inal TR set into new TR/TS pairs, containing 75% and
25% of the data respectively with balanced classes, 100
times. Since previous experiments showed fundamentally
homogeneous results across classifiers and feature sets,
the “random split” experiments were performed using the
RF classifier and the ALL feature set for both cell lines.

Class balancing
Since the TR and TS classes were unbalanced (including
about two thirds vs. one third of the initial data respec-
tively) three oversampling strategies were considered for
balancing, as follows:

• naïve random over-sampling, i.e. resampling either
both classes (all ) or the minority class only (minority);

• synthetic minority oversampling technique (SMOTE,
[27]) and variants borderline1, borderline2, svm [28,
29];

• adaptive synthetic sampling approach for imbalanced
learning (ADASYN, [30]).

Oversampling was performed using imbalanced-learn
v0.3.3 Python package [20]. The experiments were per-
formed on the cell line MCF7, on the feature set KH,
using expression as input and either RF or NMBDeep as
classifier.
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Predictive modeling strategy
All shallow and DL models (including class balancing
experiments) were trained within the DAP previously
developed by FBK within the MAQC-II and SEQC chal-
lenges [31, 32], the U.S. FDA initiatives for reproducibility
of biomarkers. Briefly, our DAP uses a 10 × 5−fold strat-
ified CV on TR to get a ranked feature list and a set
of classification metrics [33], including the MCC. Data
were rescaled in the interval [−1, 1] (for shallow learning)
or centered and scaled to unit variance (for DL) before
undergoing classification: rescaling parameters from TR
were used for rescaling both TR and TS subsets, so to
avoid information leakage. The DL models were run in
the DAP without feature selection, which was enabled for
MLP and RF.

Computational details
The NBM1, NBM2 and NBMDeep architectures were
implemented in PyTorch v0.40 [34]. The MLP network
and the RF models were implemented in scikit-learn
v0.19.1 [35]. The whole DAP was written in Python.
All DL computations were run on either a Microsoft
Azure platform with 4x NVIDIA Tesla K80 GPU cards or
on a Linux workstation with 2x NVIDIA GeForce GTX
1080 cards. Shallow learning models were run on the
FBK KORE high-performance computing Linux cluster.
All plots were produced using the ggplot2 R package
[36]. Comparisons between conditions of interest were
assessed by Wilcoxon test using the wilcox.test R
function.
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els on the CMap dataset to predicting drug-induced
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cussing some recent works that achieved high predic-
tive performance with regard to DILI and using gene
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that markedly better performance can be achieved by sim-
ply expanding the search grid. We therefore decided to
adopt a simple scheme.
Reviewer comment: (4) Authors provide a link to an

online repository with code used for this analysis but I was
unable to log into it. Please have a look into it. Author’s
response: The link to our repository has been fixed.

Reviewer’s report 2
Paweł P. Labaj
Reviewer comment: The manuscript by Chierici et

al presents an extensive study of the limits of machine
learning in the face of biomedical data sets limited by
sample size and hidden signals. They dive deep into the
international data analysis challenge of predicting drug
induced liver injury (DILI) from gene expression pro-
files from drug compound cell-line assays, which was
assembled by the US FDA in the framework of the Crit-
ical Assessment of Massive Data Analysis conference
(CAMDA, www.camda.info). Specifically, the team fol-
lows best practise through a data analysis plan established
by the US FDA MAQC2 consortium, including 10x5
cross-validation. The authors examine 3 deep learning
architectures in comparison to two less complex classi-
fication approaches. In the thorough comparison to ran-
domised labels and in independent external validation, it
turns out that none of the approaches works very well.
Rather than stop at this point, the authors then dissect this
issue further. They attempt to rebalance the highly skewed
sample labels, which interestingly leads to overfitting of
themethods of greater complexity, indicating that in-build
regularisation does not save them from overfitting the
augmented data. In the end, it seems that the attempt to
prepare a cleaner, smaller data set with thoroughly curated
DILI labels could not overcome the inherent limitations
of smaller sample size, unbalanced label categories, and
the conceptual distance of gene expression profiles from
cell line assays to the eventual regulatory DILI classifica-
tion of a drug. In comparison, the Kohonen paper from
2017 could find better performance in an about 6x larger
dataset, also linking it to toxicological data. Still, I much
recommend this paper for publication because it is one

of a small number of manuscripts that report a negative
result ’and’ derive interesting insights from a thorough dis-
section of the analysis.
I think the manuscript is ready for publication in its
present form. Author’s response: We thank the reviewer
for the critical evaluation of our work and the positive
feedback.
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