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Abstract 

RNA–protein interactions are crucial for diverse biological processes. In prokaryotes, RNA–protein interactions enable 
adaptive immunity through CRISPR‑Cas systems. These defence systems utilize CRISPR RNA (crRNA) templates 
acquired from past infections to destroy foreign genetic elements through crRNA‑mediated nuclease activities of Cas 
proteins. Thanks to the programmability and specificity of CRISPR‑Cas systems, CRISPR‑based antimicrobials have the 
potential to be repurposed as new types of antibiotics. Unlike traditional antibiotics, these CRISPR‑based antimicrobi‑
als can be designed to target specific bacteria and minimize detrimental effects on the human microbiome during 
antibacterial therapy. In this study, we explore the potential of CRISPR‑based antimicrobials by optimizing the RNA–
protein interactions of crRNAs and Cas13 proteins. CRISPR‑Cas13 systems are unique as they degrade specific foreign 
RNAs using the crRNA template, which leads to non‑specific RNase activities and cell cycle arrest. We show that a high 
proportion of the Cas13 systems have no colocalized CRISPR arrays, and the lack of direct association between crRNAs 
and Cas proteins may result in suboptimal RNA–protein interactions in the current tools. Here, we investigate the 
RNA–protein interactions of the Cas13‑based systems by curating the validation dataset of Cas13 protein and CRISPR 
repeat pairs that are experimentally validated to interact, and the candidate dataset of CRISPR repeats that reside on 
the same genome as the currently known Cas13 proteins. To find optimal CRISPR‑Cas13 interactions, we first validate 
the 3‑D structure prediction of crRNAs based on their experimental structures. Next, we test a number of RNA–protein 
interaction programs to optimize the in silico docking of crRNAs with the Cas13 proteins. From this optimized pipe‑
line, we find a number of candidate crRNAs that have comparable or better in silico docking with the Cas13 proteins 
of the current tools. This study fully automatizes the in silico optimization of RNA–protein interactions as an efficient 
preliminary step for designing effective CRISPR‑Cas13‑based antimicrobials.
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Background
The central dogma of molecular biology attributes the 
main role of RNA as the intermediate messenger between 
DNA and protein [1]. Recent studies reveal that RNA is 
involved in diverse cellular processes such as regulatory 
activities of gene expression, catalytic activities of vari-
ous substrates, and molecular chaperoning and scaffold-
ing [2]. The ability of RNAs to interact with RNA-binding 
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proteins (RBPs), which rely on both RNA sequence and 
structure, has been studied in a number of RNA–pro-
tein complexes, including ribosomal RNA complexes [3]. 
In prokaryotes, RNA–protein interactions play a vital 
role in the highly intricate process of adaptive immunity 
against foreign genetic elements through Clustered Reg-
ularly Interspaced Short Palindromic Repeats (CRISPR) 
and CRISPR-associated system (Cas) proteins [4, 5]. 
Prokaryotic genomes with CRISPR-Cas systems have the 
ability to store sequence information of previous infec-
tions in their CRISPR arrays. A complex of Cas proteins 
uses this sequence information as a genetic template 
to find and neutralize invaders of the same sequence. 
To achieve such specificity, the interaction between a 
complex of Cas proteins with nuclease activities and a 
CRISPR RNA (crRNA) with the protein-binding compo-
nent (CRISPR repeat) is essential for this RNA-mediated 
adaptive immunity. The redesign of the protein-binding 
component of crRNAs associated with the Cas9 protein 
(trans-activating RNA) led to an efficient genome-editing 
tool in diverse eukaryotic cells [6–8].

Thanks to the interest in genome-editing applica-
tions, there was an active discovery of new CRISPR-
Cas systems based on Cas proteins, which revealed the 
immense diversity of CRISPR-Cas systems in nature 
[9–11]. Recently, CRISPR-Cas systems are being repur-
posed as antibiotic tools against multidrug-resistant 
bacteria due to their programmability and specificity 
[12–15]. The uncontrolled spread of antimicrobial resist-
ance (AMR) against traditional antibiotics of small mol-
ecules has become a global health issue [16], and we are 
in urgent need of novel antibiotics to combat multid-
rug-resistant bacteria. Some novel strategies are bacte-
riophage-derived, such as phage therapy that has been 
used successfully to treat multidrug-resistant infections 
as breakthrough therapy [17–19]. Several phage-derived 
endolysins are in clinical development for their antimi-
crobial activities to lyse the peptidoglycan layer of Gram-
positive bacteria [20, 21]. Another promising strategy 
is to use bacterial defence systems such as CRISPR-Cas 
systems against themselves by reprogramming CRISPR 
templates to target AMR genes in the chromosome or 
on plasmids [12, 13, 22]. For this purpose, Cas9 proteins 
have been explored extensively, but the double-stranded 
breaks in DNA resulting from their nuclease activities 
leave the blunt-ends susceptible to DNA repair pathways 
in bacteria [23, 24].

Recently, Class 2 CRISPR-Cas systems of type VI are 
being investigated as promising antimicrobial tools, 
whose activity is characterized by RNA-guided sin-
gle-stranded RNA (ssRNA) cleavage [25, 26]. These 
systems encompass a single-effector Cas13 protein 
consisting of two Higher Eukaryotes and Prokaryotes 

Nucleotide-binding (HEPN) domains with ribonucle-
ase activity (Fig.  1). Cas13 proteins bind and cleave 
specific RNAs, which sequentially activate nonspecific 
RNase activities by changing their structural conforma-
tion [26, 27]. Such promiscuous RNA cleavage is effec-
tive in restricting bacteria growth by degrading bacterial 
transcript RNAs. As the effects of CRISPR-Cas13 sys-
tems cannot be repaired like those of CRISPR-Cas9 sys-
tems in prokaryotes, they are one of the most promising 
antimicrobial tools to resensitize and neutralize mul-
tidrug-resistant bacteria. A recent experimental study 
demonstrated that CRISPR-Cas13a systems could be 
designed to trigger such activities in a sequence-specific 
manner that led to successful bacteria growth arrest [28]. 
Currently, CRISPR-Cas13 systems are divided into five 
subtypes (VI-A, VI-B1, VI-B2, VI-C, VI-D), depending 
on the Cas13 protein and its accessory proteins. How-
ever, the architecture of CRISPR-Cas13 systems is highly 
variable [11].

In this study, we observe that many CRISPR-Cas13 sys-
tems have no adjacent CRISPR arrays, particularly the 
Cas13a systems. This genomic architecture implies that 
CRISPR-Cas13 systems often share CRISPR arrays with 
other CRISPR-Cas systems in the genome, and some 
structural studies used synthetic constructs due to the 
lack of clear association between the Cas13 protein and 
the crRNA [29]. For effective CRISPR-based antimicro-
bials, RNA–protein interactions between crRNAs and 
Cas proteins should be optimal. Previously, it was shown 
that some off-target effects of genome-editing tools in 
cells occur when there is a competition between several 
crRNAs to bind the Cas protein [30]. As CRISPR-based 
antimicrobials have to operate in bacterial cells which 
often have several CRISPR arrays, it is imperative that 
these antibiotic tools have the optimal affinity between 
the target crRNA and the Cas13 protein to prevent com-
petition with endogenous crRNAs. Here, we optimize 
RNA–protein interactions by curating crRNA datasets 
from CRISPR-Cas13 genomes and predicting 3-D crRNA 
structures for in silico docking with the Cas13 protein 
(Fig.  2). First, we compare the accuracy performance of 
several RNA secondary and tertiary structure predic-
tion programs using the experimental data of crRNA 
and Cas13 structures. Next, we validate in silico dock-
ing of crRNAs on the Cas13 protein of interest using the 
experimental structures and the predicted structures of 
crRNAs. This comparison study optimizes the computa-
tional pipeline required for in silico docking experiments 
to assess RNA–protein interactions. Finally, we conduct 
in silico docking of candidate crRNAs on the Cas13 pro-
tein of interest to compare with the experimental data of 
the crRNA-Cas13 complexes. This candidate study con-
tributes to the investigation of effective CRISPR-based 
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Fig. 1 Architecture and mechanism of CRISPR‑Cas13 systems. Three main stages constitute the CRISPR‑Cas13 immune response: adaptation, 
expression and interference. During the adaptation stage, a complex of Cas proteins binds the invading genome, which is shown as an RNA virus. 
The bound part of the target RNA is cleaved out and is inserted into the CRISPR array of the prokaryotic genome as a new spacer through a reverse 
transcriptase. The expression stage involves the transcription of the CRISPR array as a large, single transcript and this pre‑crRNA is processed into 
a mature crRNA containing a target spacer and a flanking repeat. The mechanisms and components involved in the pre‑crRNA processing of 
CRISPR‑Cas13 systems have not been experimentally resolved yet. At the last stage of the immune response, the interference stage utilizes the 
crRNA as a guide to recognize invading genomes based on sequence complementarity, recruiting the complex of Cas proteins. The Cas13a/b/d 
proteins have two higher eukaryotes and prokaryotes nucleotide‑binding (HEPN) domains of RNase activity, which cleave the target sequence and 
inactivate the RNA virus

Fig. 2 In silico docking of crRNAs with Cas13 proteins to assess the RNA–protein interactions. This study is divided into two parts: the validation 
study to optimize the in silico docking of crRNAs and Cas13 proteins, and the candidate study to apply the optimized pipeline of in silico docking to 
test a list of candidate crRNAs on each Cas13 protein for RNA–protein interactions, as a preliminary step prior to experimental validation
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antimicrobials by generating a list of candidate crRNAs 
that dock optimally with the Cas13 proteins. Further-
more, we aim to provide an optimized and automatized 
computational pipeline for in silico docking experiments 
to model the receptor-ligand binding of experimental or 
predicted structures. Such in silico studies offer an effi-
cient preliminary step to scan for candidate crRNAs pre-
dicted to bind optimally with the Cas13 proteins to be 
validated and optimized further with in vitro and in vivo 
studies.

Results
RNA secondary structures of CRISPR repeats differ 
by the prediction program
From the literature search, we found eight RNA 2-D 
structure prediction programs that were available and 
maintained for performance comparison (Additional 
file 1: Table S1). As RNA 2-D structures are an interme-
diate step, no macromolecular structures are available to 
be directly compared with. Thus, the predicted RNA 2-D 
structures were first compared between different predic-
tion programs in this section, after which the RNA 3-D 
structures resulting from this intermediate step were 
compared with experimental RNA 3-D structures in the 
next section (see “Results” below). The predicted 2-D 
structures of the crRNAs in the validation dataset were 
summarized in Additional file  1: Table  S2. None of the 
crRNAs were predicted to have the same 2-D structure 
by all eight prediction programs. For most cases, the 
number of different 2-D structures predicted per CRISPR 
repeat sequence was between three different structures 
(5WLH, 6VRB, 6IV8_B, 6IV8_D, 6IV9) and four different 
structures (5W1H, 5W1I_B, 5W1I_D, 7OS0_D, 7OS0_I, 
6DTD, 6E9E). Some crRNAs had more variability in the 
predicted 2-D structures. For the crRNA of 6AAY, only 
CentroidFold and CONTRAfold predicted the same 
RNA 2-D structure. RNAfold and MXfold2 also formed 
a separate group, as well as RNAstructure and RNA-
shapes. IPknot and ContextFold each predicted a unique 
2-D structure that was different from all the other pre-
dictions. Consequently, five different 2-D structures were 
predicted for this crRNA. For the other crRNAs, the pre-
dicted 2-D structures had less variability. For the crRNAs 
of 5WTK, 5XWY and 6VRC, all the programs predicted 
the same 2-D structure for each CRISPR repeat sequence 
except ContextFold.

In overall, ContextFold and CONTRAfold mostly pre-
dicted 2-D structures that were more complex with a 
higher number of paired bases than the rest of the pro-
grams. RNAfold, RNAstructure, MXfold2 and RNA-
shapes predicted the same 2-D structure in most cases. 
However, there were no consistent patterns to how 
the eight programs predicted the crRNAs; thus, it is 

important to evaluate the 2-D structure prediction from 
multiple programs when predicting the structure of an 
RNA sequence.

RNA tertiary structures of CRISPR repeats are highly 
dependent on the predicted secondary structures
To evaluate the accuracy of RNA 2-D structure predic-
tion, we fixed the RNA 3-D structure prediction program 
constant and compared the predicted 3-D structures in 
combination with the different RNA 2-D structure pro-
grams against the experimental RNA 3-D structures 
(Additional file  1: Tables S3–S4). The predicted crRNA 
3-D structures from RNAComposer and Rosetta were 
superimposed with the corresponding experimental 3-D 
structure (referred to as ‘ground truth’ or ‘GT’) using the 
evaluation programs (PyMOL align, PyMOL super and 
SETTER) to obtain the RMSD values (see Tables 1, Addi-
tional file 1: S5–S8). For each superimposition of two 3-D 
structures, the mean and the SD from the three replicate 
runs were calculated. For SETTER, the RMSD values 
varied while those of PyMOL align and PyMOL super 
stayed constant. The RMSD values across all the crRNAs 
are visualized as a heatmap for each evaluation program 
(Figs.  3, Additional file  1: S1–S4). The lower the RMSD 
value, the smaller the average distance between the atoms 
of the superimposed structures, and the darker the colour 
in the heatmap. We observed that there is a correlation 
between the accuracy of RNA structure prediction with 
the quality of the experimental resolution. For example, 
the crRNA of 6E9E with the lowest experimental resolu-
tion of 3.4 Å was predicted poorly by all combinations of 
the RNA structure software (Fig. 3).

For RNAComposer, the evaluation programs of the 
superimposition between the predicted 3-D structures 
and the GT structures varied vastly according to the 2-D 
structure prediction program used in combination. With 
the evaluation program of PyMOL align, CONTRAfold 
gave the lowest RMSD value on average (Table 1), while 
CentroidFold and IPknot mostly showed lighter shades in 
the heatmap rows (Fig. 3). Interestingly, ContextFold gave 
both the highest RMSD value and the lowest RMSD value 
(6AAY and 6IV8_B, respectively). Regarding the per-
formance consistency, ContextFold had the highest SD 
value. In this setting, MXfold2 had the lowest SD value 
and the second lowest average RMSD value (Table 1).

For Rosetta, the performance of the 3-D structure pre-
diction program also varied vastly according to the 2-D 
structure prediction program used in combination. With 
the evaluation program of PyMOL align, IPknot gave the 
lowest RMSD value on average (Table 1), while Context-
Fold and RNAstructure mostly showed lighter shades in 
the heatmap rows (Fig.  3). Interestingly, RNAstructure 
both gave the highest RMSD value and the lowest RMSD 
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value (6IV8_B and 6DTD, respectively). Regarding the 
performance consistency, RNAstructure had the highest 
SD value. In this setting, IPknot had the lowest SD value 
and also the lowest average RMSD value (Table 1).

crRNA structures of the validation dataset demonstrate 
good performance of in silico docking with Cas13 proteins
The in silico docking experiments of the validation data-
set using HADDOCK showed low performance when 
the docked model was compared to the GT structure 
with the CAPRI docking scores (Additional file 1: Figure 
S5). PyDockDNA showed better performance by cor-
rectly docking one receptor-ligand pair for every 3–5 
pairs. Surprisingly, HDOCK was able to dock all the pairs 
with high accuracy, regardless of the random rotations. 
In terms of the iRMSD values, HADDOCK, PyDock-
DNA and HDOCK achieved on average 28.05, 12.73, 
and 0.11, with the standard deviations of 5.03, 7.30, and 
0.05, respectively, across all the crRNAs in the validation 
dataset. From the validation study, HDOCK was found 
to be the best performing in silico docking software for 
the Cas13 proteins and crRNAs. Due to the exceptional 
performance, further in silico docking experiments were 
conducted only with HDOCK.

Next, we used the predicted 3-D structures of the 
crRNAs in the validation dataset to perform in silico 
docking with the Cas13a proteins and Cas13b/d pro-
teins (Additional file 1: Figures S6 and S7, respectively). 
Subsequently, the accuracy of the docked model using 

the predicted crRNA structures was analysed using the 
CAPRI docking scores (Additional file 1: Table S9). For all 
the crRNAs, the docking scores of iRMSD were above the 
acceptable threshold (4 Å) when the RNA 3-D structures 
were predicted with different combinations of the 2-D 
and 3-D structure prediction programs (Additional file 1: 
Figures  S6-S7). This result was surprising as the previ-
ous in silico docking experiments using the GT crRNA 
structures had resulted in the near-perfect docking score 
of iRMS (~ 0 Å). However, four crRNAs (5WLH, 5W1H, 
5W1I_AB, and 5W1I_CD) gave better docking scores 
than the others, and it was notable that these crRNAs 
also had better experimental metrics (Additional file  1: 
Table S10).

As the quality of the GT crRNA structures depended 
on the experimental condition, we decided to only keep 
these four crRNAs with the best experimental metrics in 
further studies [49]. Another adjustment was to consider 
the 10 best models generated from the in silico docking 
experiments rather than retaining the best model only. 
Additionally, the CRISPR repeat sequences for these 
crRNAs were shortened to match the visible part of the 
GT structures before predicting the 3-D structures. In 
the subsequent experiments, some of the docking scores 
reached an acceptable threshold in terms of the iRMSD 
scores (Table  2). From visualization by superimpos-
ing with the GT structure, the best model selected by 
the minimal docking score and the human experts were 
compared. As shown in Fig. 4, the best model from the 

Table 1 Superimposition performance of the predicted crRNA structure with the ground truth crRNA structure

Performance of the RNA 2-D structure prediction programs in combination with RNAComposer or Rosetta when superimposed to the GT 3-D structure of the 
experimentally validated crRNAs. The mean and the standard deviation of the root-mean-square deviation (RMSD) values were calculated from three replicate runs of 
PyMOL align across all the predicted structures

RNA 3-D structure prediction program RNA 2-D structure prediction program Mean RMSD value (Å) Standard deviation 
of RMSD values (Å)

RNAComposer CentroidFold 14.5751 3.4605

ContextFold 15.0601 6.7700

CONTRAfold 13.0886 3.9715

IPknot 15.5927 4.3685

MXfold2 13.3285 3.3359

RNAfold 13.8130 4.0411

RNAshapes 13.4816 4.3896

RNAstructure 13.5431 4.2974

Rosetta CentroidFold 11.4316 3.9693

ContextFold 13.2483 4.9258

CONTRAfold 11.8012 4.3517

IPknot 9.9731 3.4309

MXfold2 11.1416 3.8934

RNAfold 11.9661 4.6712

RNAshapes 11.8083 3.5449

RNAstructure 12.8113 5.3425
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in silico experiments between these two methods coin-
cided, except for 5W1H. Furthermore, the best model of 
the crRNA associated with 5WLH superimposed almost 
perfectly with the GT structure. Finally, we performed 
the in silico docking experiments with both template-free 
and template-based settings, which resulted in no sig-
nificant improvement in the docking performance when 
the template-based setting was used (Figs. 4, Additional 
file 1: S8–S9). Thus, all the subsequent in silico docking 
experiments with the candidate dataset with HDOCK 
were conducted template-free.

Some candidate crRNAs had optimal in silico docking 
with Cas13 proteins
The predicted 3-D structures of the candidate crRNAs 
from the software combinations with consistent per-
formance were docked in silico with the corresponding 

Cas13 protein using the optimized pipeline. As the 10 
best models were retained for each docking experiment, 
there were many docked models to be evaluated by the 
human experts in the absence of the GT structures. Thus, 
we first summarized each docking result as the centre of 
mass in the spatial coordinates calculated from all atoms 
of the docked macromolecular structure model (Fig.  5). 
This step enabled a visual summary of the in silico dock-
ing experiments, and calculation of the closest clusters or 
individuals to the GT crRNA in the spatial coordinates. 
As the coordinates of the Cas13 protein remained con-
stant, the docked models of each candidate crRNAs near 
the GT crRNA had the potential to interact optimally 
with the binding domains. For example, the N-terminal 
domain (NTD) and the Helical-1 domain were previ-
ously found to form the crRNA-recognition (REC) lobe 
of Cas13a [49], and we only considered the candidate 

Fig. 3 Performance analysis of RNA structure prediction of CRISPR repeats with PyMOL align. Heatmap of the means of the RMSD values by 
superimposition of each predicted crRNA 3‑D structure with the ground truth (GT) structure. The RNA 2‑D structure prediction programs are 
shown on the y‑axis, and the PDB name of each Cas13 protein is shown on the x‑axis, with the RNA 3‑D structure program as a RNAComposer and 
b Rosetta. c Superimposition of the GT structure 6IV8_B predicted by ContextFold and RNAComposer (best), and 6AAY predicted by ContextFold 
and RNAComposer (worst). d Superimposition of the GT structure 6DTD predicted by RNAstructure and Rosetta (best), and 6IV8_D predicted by 
RNAstructure and Rosetta (worst). Grey = GT structure; Magenta = predicted structure
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crRNAs which docked near these domains by selecting 
the closest clusters or individuals to the GT crRNA. We 
ranked the best candidate crRNAs for each Cas13 protein 
from the candidate dataset by calculating the Euclidean 
distance of each docked model to the GT, which deter-
mined the best cluster of the candidate crRNAs (con-
taining 10–50 docked models for each Cas13) and the 
best individual candidate crRNAs (containing 10–50 
docked models for each Cas13). The average distance 
between each GT crRNA and the closest cluster was 
17.15 ± 7.09  Å, and the average distance between each 
GT crRNA and the closest individual candidate crRNAs 
was 16.69 ± 5.26 Å. Using a two-sided Student’s t test, we 
found that the difference between the average individ-
ual and the average cluster distances was not significant 
(p = 0.54, Additional file 1: Table S11).

The docking results of the selected candidate crRNAs 
were further evaluated through visual inspection by the 
human experts (Additional file 1: Figures S10–12). From 
the visualization analysis, the docking results of the best 
individual crRNAs were found to show better docking 
than those of the best cluster crRNAs, in terms of both 
position and direction. Among the 321 docked pairs 
of the closest clusters, only 8 of them received the best 
docking score from the human experts, while 77 from the 
370 closest individuals received the best docking score 
(Additional file  1: Table  S12–S14). It is notable that not 
all candidate crRNAs with the best docking result came 
from the best model generated by the in silico docking 

software. For example, the 8th best model of the candi-
date crRNA of CP002345_2_11 was evaluated to dock 
very well with the corresponding Cas protein of 5WTK 
(Table 3). This result shows the importance of retaining at 
least the 10 best models from the in silico docking exper-
iments to be analysed further by the human experts, to 
ensure that the best docking model of the ligand reflects 
the biological information on the receptor.

RNA–protein binding affinities between the crRNA 
and the Cas protein of the experimental GT complexes 
and the predicted complexes are shown in Table  3. The 
Gibbs free energy (ΔG) in RNA–protein binding affinity 
varies between − 11.68  kcal/mol and − 14.06  kcal/mol 
for the experimental GT complexes, which is within the 
range of RNA–protein binding affinities seen in other 
types of single-stranded RNAs. The RNA–protein bind-
ing affinity values of the predicted docking models of 
the crRNA-Cas complexes also fall within the range of 
− 13  kcal/mol and − 15  kcal/mol. Notably, some pre-
dicted docking models had stronger binding affinity val-
ues than the experimental GT complex. For example, one 
of the candidate crRNAs from Rosetta (CP002345_2_6_1) 
had a binding affinity of − 15.16  kcal/mol with the Cas 
protein 5W1H, compared to − 14.06  kcal/mol of the 
experimental GT complex. This candidate crRNA also 
received the highest docking evaluation score from the 
human experts.

The multiple sequence alignment (MSA) results 
showed that some candidate crRNAs in the closest indi-
viduals to the GT crRNA had very different sequences 
when compared to the sequence of the GT crRNA 
(Fig.  5). When these crRNAs were visualized, they had 
the in silico docking models as optimal as the GT crRNA 
without necessarily having similar sequences. For exam-
ple, the crRNA of CP018618_1_1 fits perfectly into the 
docking region of 5W1H, but its sequence has almost 
no similarity to the sequence of the GT crRNA. There-
fore, a selected list of candidate crRNAs is provided as 
novel CRISPR repeats that have the potential to interact 
as optimally as the GT crRNAs for each Cas13 protein. 
These candidate crRNAs have been assessed through in 
silico docking experiments worthwhile to be further vali-
dated through in vitro or in vivo experiments (Table 3).

Discussion
Conducting in silico experiments that accurately predict 
the results of laborious and expensive laboratory experi-
ments is a long-standing goal of many computational 
biologists. The recent advances in computational meth-
ods such as machine learning in 3-D protein structure 
prediction [19, 50] and in genomics [51, 52] bring the 
possibility of achieving such challenging tasks closer 
to reality. In this study, a series of in silico docking 

Table 2 Performance analysis of in silico docking of the 
predicted crRNA structures with the Cas13a proteins

The three best docking models of the Cas13a proteins with the best 
experimental resolution were given in terms of iRMSD when superimposed with 
the GT structures (5W1H, 5W1I_AB, 5W1I_CD, 5WLH). The Model column refers 
to the nth best model given by HDOCK in each in silico docking experiment

Cas13 
protein 
structure

Combination iRMSD Template Model

5W1H CONTRAfold + Rosetta 12.615 Free 9

5W1H ContextFold + Rosetta 12.818 Free 7

5W1H IPKnot + RNAComposer 12.987 Used 3

5W1I_AB ContextFold + Rosetta 12.753 Free 1

5W1I_AB CONTRAfold + Rosetta 13.547 Free 1

5W1I_AB ContextFold + Rosetta 13.7 Free 3

5W1I_CD IPKnot + RNAComposer 13.026 Used 3

5W1I_CD CONTRAfold + Rosetta 13.41 Free 7

5W1I_CD ContextFold + RNACom‑
poser

13.515 Used 2

5WLH ContextFold + RNACom‑
poser

6.256 Free 1

5WLH IPKnot + Rosetta 10.055 Free 1

5WLH IPKnot + RNAComposer 10.876 Free 5
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experiments were conducted to model the RNA–protein 
interactions between a Cas protein and a CRISPR repeat. 
We predicted the RNA 3-D structures of these CRISPR 
repeats to perform in silico docking with the correspond-
ing Cas13 protein, with the first goal of optimizing the in 
silico docking pipeline and the second goal of generating 
a list of potential CRISPR repeats that may interact opti-
mally with the Cas13-based antimicrobial tools.

The first part of the study used the validation dataset of 
the crRNA-Cas complexes with the experimentally vali-
dated structures to optimize the computational pipeline 

of in silico docking, given a CRISPR repeat sequence 
and a Cas protein structure as the input data. This opti-
mization followed the iterative process of selecting the 
best combination of the 2-D and 3-D structure predic-
tion programs through evaluating the predicted RNA 
structure against the GT RNA structure. Subsequently, 
the GT structures of the crRNA-Cas complexes were 
utilized to select the best in silico docking software with 
Cas proteins as the receptor and crRNAs as the ligand. 
This optimized pipeline was further tested using the pre-
dicted 3-D structures of crRNAs to assess the impact 

Fig. 4 In silico docking evaluation of the Cas13a proteins of the best experimental metrics. The iRMSD from the in silico docking experiments of the 
crRNAs with the Cas13a protein using HDOCK. The 10 best models were retained from HDOCK and the experiments were performed template‑free 
or template‑based. Each box represents the results of 60 docking experiments. The 3‑D structure below each box shows the GT structure (magenta), 
the computer selected best model (blue), and the human selected best model (green) docked on the corresponding Cas13a protein (grey). Except 
for 5W1H, the computer selected best model coincided with the human selected best model (green)

Fig. 5 Best crRNA candidates for Cas13a protein from in silico docking experiments. The 3‑D visualization shows the spatial coordinates of each 
crRNA candidate model (only 10 best models were considered) after in silico docking with the corresponding Cas13 protein. Each pink dot 
represents the centre of mass calculated from all atoms of the macromolecular structure model for each crRNA candidate. The GT crRNA is marked 
as a black dot, and its closest crRNA candidates in terms of Euclidian distance are highlighted as blue dots. The multiple sequence alignment 
compares the RNA sequences of the GT crRNA with those of the best crRNA candidates. The different shades of blue show the percentage identity, 
with the identity threshold set to 50%, highlighting variations in the RNA sequences. The 3‑D structure shows an example of docking between the 
receptor (Cas protein) and the ligand (crRNA). The Cas proteins are in grey, the GT crRNA is coloured in magenta, and the best crRNA candidate 
model is highlighted in green with its identifier given above (GenomeID_CRISPRarray_CRISPRrepeat_modelnumber)

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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Table 3 Best candidate crRNAs from in silico docking with Cas13 proteins

Cas13 protein GT structure
and predicted ΔG

Best model Candidate crRNA Model Distance (Å) Cluster Human 
expertise

Predicted 
ΔG (kcal/
mol)

5W1H
− 14.06 kcal/mol

RNAC_5W1HvsAP019845_1_1_1 AP019845_1_1 1 15.42061 8 1 − 13.47

RNAC_5W1HvsAP019845_1_1_5 AP019845_1_1 5 15.91598 6 1 − 13.53

RNAC_5W1HvsCP002345_2_4_1 CP002345_2_4 1 18.63954 16 1 − 15.16

RNAC_5W1HvsCP002345_2_9_10 CP002345_2_9 10 8.592774 3 0 − 15.16

Rose_5W1HvsAP019834_1_1_1 AP019834_1_1 1 17.97766 3 1 − 15.09

Rose_5W1HvsAP019845_1_1_3 AP019845_1_1 3 8.767469 16 0 − 13.53

Rose_5W1HvsAP019845_1_1_7 AP019845_1_1 7 16.31799 3 1 − 13.53

Rose_5W1HvsCP002345_2_6_1 CP002345_2_6 1 10.5807 3 0 − 15.16

Rose_5W1HvsCP002345_2_7_1 CP002345_2_7 1 10.28279 3 0 − 15.16

Rose_5W1HvsCP018618_1_1_1 CP018618_1_1 1 11.36411 3 0 − 13.46

5W1I_AB
− 13.93 kcal/mol

RNAC_5W1IABvsAP019834_2_2_1 AP019834_2_2 1 15.41219 1 1 − 15.09

RNAC_5W1IABvsAP019845_1_1_1 AP019845_1_1 1 15.4393 7 1 − 13.47

RNAC_5W1IABvsAP019845_1_1_2 AP019845_1_1 2 16.81572 15 1 − 13.53

RNAC_5W1IABvsCP091244_12_2_8 CP091244_12_2 8 19.48762 9 1 − 15.09

Rose_5W1IABvsAP019834_1_1_7 AP019834_1_1 7 18.04252 9 1 − 15.09

Rose_5W1IABvsAP019845_1_1_2 AP019845_1_1 2 17.05391 9 1 − 13.53

Rose_5W1IABvsCP002345_2_5_4 CP002345_2_5 4 14.53866 1 1 − 15.16

Rose_5W1IABvsCP002345_2_6_2 CP002345_2_6 2 10.42858 1 0 − 15.16

Rose_5W1IABvsCP002345_2_6_5 CP002345_2_6 5 13.87067 1 0 − 15.16

Rose_5W1IABvsCP002345_2_7_2 CP002345_2_7 2 10.77602 1 0 − 15.16

Rose_5W1IABvsCP018618_1_1_1 CP018618_1_1 1 10.17277 1 0 − 13.46

5W1I_CD
− 13.68 kcal/mol

RNAC_5W1ICDvsAP019834_2_2_3 AP019834_2_2 3 14.82603 18 0 − 15.09

RNAC_5W1ICDvsAP019845_1_1_1 AP019845_1_1 1 15.82544 19 1 − 13.47

RNAC_5W1ICDvsAP019845_1_1_10 AP019845_1_1 10 11.31408 18 1 − 15.09

Rose_5W1ICDvsAP019834_1_1_5 AP019834_1_1 5 18.23438 2 1 − 15.09

Rose_5W1ICDvsAP019845_1_1_9 AP019845_1_1 9 18.28236 2 1 − 13.53

Rose_5W1ICDvsCP002345_2_4_4 CP002345_2_4 4 10.64548 18 0 − 15.06

Rose_5W1ICDvsCP002345_2_6_1 CP002345_2_6 1 10.06707 18 0 − 15.16

Rose_5W1ICDvsCP002345_2_6_6 CP002345_2_6 6 13.18188 18 0 − 15.16

Rose_5W1ICDvsCP002345_2_6_7 CP002345_2_6 7 10.06989 18 0 − 15.16

Rose_5W1ICDvsCP002345_2_7_1 CP002345_2_7 1 10.96614 18 0 − 15.16

Rose_5W1ICDvsCP011102_2_1_3 CP011102_2_1 3 19.27656 18 1 − 13.15

Rose_5W1ICDvsCP018618_1_1_2 CP018618_1_1 2 8.83881 18 0 − 13.46

5WLH
− 14.06 kcal/mol

RNAC_5WLHvsAP019834_2_2_2 AP019834_2_2 2 15.66461 2 1 − 15.09

RNAC_5WLHvsAP019845_1_1_1 AP019845_1_1 1 13.99831 10 1 − 13.47

RNAC_5WLHvsCP002345_2_1_4 CP002345_2_1 4 14.43221 2 1 − 15.07

RNAC_5WLHvsCP011102_2_2_4 CP011102_2_2 4 13.4716 2 0 − 13.15

Rose_5WLHvsAP019845_1_1_1 AP019845_1_1 1 16.64761 2 1 − 13.53

Rose_5WLHvsAP019845_1_1_3 AP019845_1_1 3 12.08608 2 1 − 13.53

Rose_5WLHvsAP019845_1_1_4 AP019845_1_1 4 14.27125 2 1 − 13.53

Rose_5WLHvsCP002345_2_6_1 CP002345_2_6 1 11.24522 2 0 − 15.16

Rose_5WLHvsCP002345_2_6_3 CP002345_2_6 3 14.17092 2 0 − 15.16

Rose_5WLHvsCP002345_2_7_1 CP002345_2_7 1 11.88083 2 0 − 15.16

Rose_5WLHvsCP011102_3_2_5 CP011102_3_2 5 16.4966 2 1 − 15.09
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of structure prediction on the performance of in silico 
docking, as compared to the GT crRNA 3-D structures. 
We quantified the impact of inaccuracy arising from 
the two-step process of the 2-D and 3-D structure pre-
diction, and optimized the subsequent in silico docking 
experiments. For this optimization, we achieved satisfac-
tory results according to the evaluation metrics utilized 
in the CAPRI community-wide experiment that aims 
at modelling interactions based on the 3-D structure of 
macromolecules [53].

The second part of this study aimed at finding candi-
date crRNAs that are predicted to have better or equiva-
lent interactions with the Cas13 proteins as the original 
crRNAs in the validation dataset. This candidate data-
set was generated by curating a set of CRISPR repeat 
sequences that are colocalized with the Cas13 system, 
as the previous studies demonstrated that the proxi-
mal colocalization of CRISPR arrays is an indication 
of association to the Cas system [54]. Using the previ-
ously optimized pipeline, we conducted in silico docking 
experiments by first predicting the 3-D structure of these 
candidate crRNAs, which were subsequently docked with 
the corresponding Cas13 protein. The in silico docking 
experiments were evaluated by comparing the spatial 
coordinates of the docked RNA models with those of the 
GT crRNA, relative to the corresponding Cas13 protein. 

This evaluation step enabled the best docked model to be 
selected efficiently by ranking hundreds of docked mod-
els in terms of the closest Euclidean distance to the GT 
crRNA, thus to the crRNA-recognition domains of the 
Cas13 protein. The final step of the candidate study was 
the intervention of human expertise by visualizing these 
docked models to evaluate the receptor-ligand binding 
as compared to the interaction of the GT crRNA-protein 
complexes. Remarkably, we found a number of candidate 
crRNAs that showed in silico docking comparable to 
the GT crRNA-protein complexes, despite the dissimi-
larity in genetic sequence. Furthermore, some of these 
candidate crRNAs were predicted to have RNA–pro-
tein binding affinity stronger than the experimental GT 
crRNA-protein complexes. Given that the 3-D structures 
of these candidate crRNAs were predicted, this result 
indicates the potential of these RNA–protein interactions 
to be more stable than those of the GT crRNA-protein 
complexes.

Conclusions
The in silico docking experiments with the predicted 
crRNA structures and the associated Cas13 proteins 
conducted in this study are significant for the following 
reasons. With the increasing availability of metagen-
omic sequencing, CRISPR-Cas systems in nature are 

Table 3 (continued)

Cas13 protein GT structure
and predicted ΔG

Best model Candidate crRNA Model Distance (Å) Cluster Human 
expertise

Predicted 
ΔG (kcal/
mol)

5WTK
− 11.68 kcal/mol

RNAC_5WTKvsAP019845_1_1_1 AP019845_1_1 1 23.34363 9 1 − 13.53

Rose_5WTKvsAP019845_1_1_1 AP019845_1_1 1 3.64798 5 0 − 13.53

Rose_5WTKvsAP019845_1_1_2 AP019845_1_1 2 1.859212 5 0 − 13.53

Rose_5WTKvsAP019845_1_1_3 AP019845_1_1 3 3.46364 5 0 − 13.53

Rose_5WTKvsCP002345_2_11_8 CP002345_2_11 8 4.103924 5 0 − 15.06

Rose_5WTKvsCP002345_2_5_1 CP002345_2_5 1 9.187617 5 1 − 15.16

Rose_5WTKvsCP002345_2_6_1 CP002345_2_6 1 2.796534 5 0 − 15.06

Rose_5WTKvsCP002345_2_6_2 CP002345_2_6 2 2.4628 5 0 − 15.06

Rose_5WTKvsCP002345_2_8_1 CP002345_2_8 1 5.023773 5 0 − 15.02

Rose_5WTKvsCP011102_2_2_1 CP011102_2_2 1 6.560322 5 1 − 13.15

Rose_5WTKvsCP018618_1_2_8 CP018618_1_2 8 5.777393 5 1 − 13.56

5XWY
− 14.01 kcal/mol

RNAC_5XWYvsAP019845_1_1_1 AP019845_1_1 1 10.34585 2 0 − 13.53

RNAC_5XWYvsAP019845_1_1_3 AP019845_1_1 3 14.16364 6 1 − 13.53

Rose_5XWYvsCP011102_2_1_10 CP011102_2_1 10 17.63066 2 0 − 13.15

A list of crRNA candidates for each Cas13a protein with optimal in silico docking, selected using the optimized pipeline and calculating the distance to the GT crRNA. 
The Model column refers to the nth best model given by HDOCK in each in silico docking experiment. The Distance column shows the Euclidean distance of each 
docked model to the GT crRNA. The Human expertise column indicates the following 3-D visual assessment by the human expert:

0 = docked in the same region and in a similar direction as GT

1 = partially docked in the similar region and in a similar direction as GT
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discovered to be more diverse, complex and disordered 
than previously expected, and the associations between 
CRISPR arrays and Cas proteins are enigmatic in some 
prokaryotic genomes. Particularly, the recently discov-
ered Cas13 systems that degrade RNAs are found to be 
different architecture-wise from the previous CRISPR-
Cas systems, as indicated by the absence of CRISPR 
arrays and cas1/cas2 genes in vicinity [26, 27]. However, 
the exact mechanism of how Cas13-based systems can 
function without the adaptation module and colocalized 
CRISPR arrays is still an ongoing investigation. Given that 
the Cas13-based systems have been proposed as alterna-
tive antimicrobial tools, it is imperative to investigate the 
characteristics of these novel CRISPR-Cas systems. This 
preliminary study is an important step towards design-
ing more effective CRISPR-Cas13-based antimicrobial 
tools, which may be susceptible to off-targeting events 
in the presence of crRNAs with higher binding affinity. 
This problem is even more evident in pathogenic bacte-
ria whose genomes are known to contain several endog-
enous CRISPR-Cas systems [23]. As future prospects, the 
selected candidate crRNAs in this study should be tested 
with experimental methods such as structure reactivity 
of crRNAs and X-ray crystallography or electron micros-
copy of candidate crRNA-Cas13 complexes to validate 
the outcome of these in silico docking experiments. This 
experimental validation will elucidate the potential off-
target effects of the CRISPR-Cas13-based antimicrobial 
tools, which would be an important step towards opti-
mizing the crRNA-Cas13 complex to be stable and effec-
tive in targeting multidrug-resistant bacteria within the 
complex environment of human microbiota. Finally, this 
study reveals a number of aspects of in silico docking that 
could be improved with further investigations to incor-
porate recent computational and biological advances. We 
suggest that predicting receptor-ligand interactions is 
another biological field where deep-learning applications 
may become extremely valuable.

Methods
Genomic architecture of CRISPR-Cas13 systems
Two distinct components are necessary for a functional 
CRISPR-Cas system: a CRISPR array and a cluster of 
cas genes arranged in one or more operons (Fig. 1). The 
CRISPR array consists of almost identical and mostly pal-
indromic repeats, which are separated by unique spacers 
that contain foreign DNA from past infections. The cas 
genes are divided into four functional modules: the adap-
tation module of spacer acquisition, the expression mod-
ule of pre-crRNA processing, the interference module of 
target recognition, binding and cleavage, and the signal 
transduction module of CRISPR-linked accessory genes. 
Currently, CRISPR-Cas systems are assigned to a class 

and type based on the composition of functional mod-
ules. In Class 1 (types I, III and IV), the effector module 
(part of the interference module) consists of multiple Cas 
proteins, whereas in Class 2 (types II, V and VI), a single 
and large Cas protein is responsible for the effector mod-
ule [11].

CRISPR-Cas13 systems belong to Class 2 and type 
VI with several subtypes of effector proteins, including 
Cas13a, Cas13b, and Cas13d [26]. The Cas13 effector 
proteins contain two higher eukaryotes and prokaryotes 
nucleotide-binding (HEPN) domains that confer RNase 
activity (Fig.  1). The Cas13 protein complexes with the 
crRNA via the CRISPR repeat sequence of ~ 30 nucleo-
tides, and the CRISPR spacer encodes a sequence that 
is complementary to the target sequence. In Class 2, 
CRISPR-Cas systems mostly involve Cas1, Cas2 and Cas4 
for adaptation, but the Cas13b subtype lacks the adapta-
tion module (Fig. 1). Interestingly, the Cas13 family often 
has no colocalized CRISPR arrays within ± 10,000 base 
pairs (Additional file 1: Table S15). Compared to the Cas9 
family with a high occurrence of colocalized CRISPR 
arrays (80%), the Cas13 family has lower occurrences 
of colocalized CRISPR arrays, particularly the subtypes 
Cas13a (19%) and Cas13d (0%).

Data curation of Cas13 proteins and CRISPR repeats
To conduct in silico docking experiments, the first step 
was to curate a validation dataset of Cas13 proteins and 
associated CRISPR repeats that could be used for perfor-
mance evaluation (Fig. 2). An experimental dataset of the 
Cas13 family was retrieved from the Protein Data Bank 
(PDB), whose 3-D structure has been resolved by experi-
mental techniques such as X-ray crystallography, NMR 
spectroscopy, or cryo-electron microscopy (Additional 
file 1: Table S2). The repeat sequences of the crRNAs in 
the CRISPR-Cas complex were retrieved from the PDB 
in the FASTA format (Additional file 1: Table  S16). The 
CRISPR repeat sequences of all Cas13a-associated com-
plexes were later shortened to match the visible part in 
the PDB, as their 3-D structures were only partially mod-
elled. Some CRISPR-Cas13 systems contained multim-
eric proteins, and the crRNA chains (5W1I, 7OS0, 6IV8) 
were considered separately for the validation studies.

Another dataset of candidate CRISPR repeats was 
curated to identify crRNAs that interact optimally with 
the Cas13 proteins. As shown previously, the Cas13 fam-
ily often has no colocalized CRISPR arrays, which makes 
the association between the Cas13 proteins and the crR-
NAs difficult to determine (Additional file 1: Figure S13). 
Thus, this candidate dataset is a collection of CRISPR 
repeat sequences from the CRISPR arrays that are 
within ± 10,000 base pairs of the Cas13 proteins by que-
rying the prokaryotic genomes from the CRISPRCasdb 
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[31]. As these crRNAs have no experimental structures, 
the first step to in silico docking experiments is to predict 
the RNA structures of these candidate crRNAs.

3-D structure prediction of CRISPR repeats
As the RNA 2-D structure prediction precedes the 3-D 
structure prediction, the 3-D structure prediction pro-
grams base their prediction on the 2-D structure (Addi-
tional file 1: Figure S14). With a selection of eight RNA 
2-D structure prediction programs and two RNA 3-D 
structure prediction programs, 16 different combina-
tions, including both machine learning-based and model-
based methods, were evaluated using the validation 
dataset (Additional file  1: Table  S4). The 2-D structure 
of each CRISPR repeat sequence was predicted as the 
dot-bracket notation through the web servers of all the 
RNA 2-D structure prediction programs with the default 
parameters (Additional file 1: Table S1).

RNAComposer receives genetic sequence and 2-D 
structure as input to predict the 3-D structure of an 
RNA molecule. If only the genetic sequence is given as 
an input, RNAComposer creates the 2-D structure itself 
through the built-in algorithm [32, 33]. For Rosetta, the 
fragment assembly of RNA with full-atom refinement 
(FARFAR2) protocol was applied followingly [34]. The 
CRISPR repeat sequences of the validation dataset and 
the dot-bracket notation of the predicted 2-D structure 
were given as an input. Subsequently, the predicted RNA 
3-D models were subjected to minimization in an all-
atom scoring function used by the FARFAR2 protocol. 
The FARFAR2 protocol selected the best model in terms 
of minimum free energy (MFE) and root-mean-square 
deviation (RMSD) from the ensemble of predicted 3-D 
structure models. First, the models were sorted by total 
energy, and the top 500 models were selected. Then, these 
top 500 models were sorted by the RMSD value to extract 
the best 3-D model based on the RMSD and MFE values. 
The final output of the validation dataset resulted in 256 
predicted crRNA 3-D structures in PDB files, given 16 
crRNA sequences and 16 different RNA programs.

Evaluation of the 3-D structure prediction of CRISPR 
repeats
To assess the performance of each program combina-
tion, the predicted 3-D structures of the crRNAs in the 
validation dataset were compared with the experimen-
tal 3-D structures. The RMSD measuring the average 
distance between the atoms of superimposed structures 
was used as the performance metric. The RMSD values 
were obtained using three different evaluation programs: 
the PyMOL align function, the PyMOL super function 
and the secondary structure-based tertiary structure 
similarity algorithm (SETTER) [35, 36]. The PyMOL 

align function superimposes 3-D structures based on 
sequence, while the PyMOL super function and the SET-
TER superimpose 3-D structures based on structure.

Each of the 256 predicted 3-D structures was super-
imposed with the corresponding GT structure, and this 
performance analysis was conducted with three repli-
cates to account for the stochasticity of each evaluation 
program. The mean and standard deviation (SD) of the 
RMSD values across all predicted structures and all repli-
cate runs were calculated as summary statistics. By keep-
ing the RNA 3-D structure prediction program constant 
and changing the 2-D program, the prediction accuracy 
of each combination could be assessed. The best-per-
forming combination with the lowest mean RMSD and 
SD value was chosen for further in silico docking experi-
ments with the candidate dataset.

In silico docking of experimentally validated crRNAs 
with Cas13 proteins
The validation dataset contained three subtypes of Cas13: 
Cas13a, Cas13b, and Cas13d. These experimentally vali-
dated structures from the PDB contained CRISPR-Cas 
complexes with both the Cas protein and crRNA. The 
PDB files of the validation dataset were first cleaned to 
remove all unwanted residues such as water and mag-
nesium molecules in PyMOL. For the PDB files contain-
ing dimeric Cas proteins and two crRNAs (5W1I, 6IV8, 
7OS0), the two chains and RNAs were separated and 
named with their chain ID (5W1I_AB, 5W1I_CD; 6IV8_
AB, 6IV8_CD; 7OS0_AF, 7OS0_CD). Each of the cleaned 
PDB files were separated into the receptor (Cas protein) 
and ligand (crRNA).

Next, the receptor and ligand pairs were randomly 
rotated to ensure that the docking is not influenced 
by their initial coordinates. For example, PyDockDNA 
without random rotation led to perfect docking of the 
ligand and the receptor. Each receptor and ligand pair 
was rotated separately in 3-D around the centre of mass 
using random angles between 40° and 320°, to ensure suf-
ficient rotation from the initial coordinates. Three differ-
ent angles were chosen for the Cas proteins and for each 
crRNA.

To optimize in silico docking using the validation data-
set, five in silico docking programs were considered: 
HADDOCK [37, 38], HDOCK [39], PyDockDNA [40], 
RNP-denovo [41], and Swarmdock [42]. However, two 
of these were eliminated in the preliminary steps due to 
software incompatibility and thus, only three programs 
(HADDOCK, HDOCK, and PyDockDNA) were con-
sidered for the in silico docking validation study (Addi-
tional file  1: Table  S17). We automatized the use of the 
web servers for in silico docking experiments. HAD-
DOCK was run with the parameters recommended for 
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RNA–protein docking. Some experimental structures 
with intrinsically disordered proteins were processed 
prior to using HADDOCK, as the dynamic conforma-
tions of the proteins intervened with in silico docking 
[43]. All other parameters were kept as default, except for 
the parameter defining randomly ambiguous interaction 
restraints from accessible residues, which allows docking 
without specifying the binding sites. PyDockDNA was 
run with the default parameters and the PyDock scoring 
function was used. HDOCK was run with the template-
free option, and all other parameters were kept as default. 
For evaluation of the results, only the best docking 
model, as given by the internal docking score based on a 
relative ranking of different binding models for the recep-
tor-ligand pair, was considered in the validation study.

In the following steps of the validation study, the pre-
dicted crRNA structures were used as ligands. These 
RNA 3-D structures were predicted with the shortened 
sequences containing only the CRISPR repeat. The RNA 
3-D structures were generated from all combinations of 
the 2-D and 3-D structure prediction programs (Addi-
tional file 1: Table S4). The subsequent in silico docking 
of the receptor (Cas13a proteins) and the ligand (pre-
dicted crRNA structures) was conducted template-free 
and template-based runs of HDOCK.

We used the interface RMSD (iRMSD) to assess the 
performance of each in silico docking experiment, which 
is one of the docking scores used in Critical Assessment 
of PRediction of Interactions (CAPRI) experiments [44, 
45] that calculates the docking distance overlap between 
the GT ligand and the model ligand at the interface of 
all atoms within a distance of 8 Å from the point where 
the receptor and ligand meet (see Additional file 1: Fig-
ure S15 for details). The CAPRI-based performance cal-
culation was adapted for RNA–protein interactions by 
retaining alpha carbon (Cα) and phosphate as the back-
bone of the protein receptor and the RNA ligand, respec-
tively [46]. Finally, we used DockQ [47] for calculating 
iRMSD values by setting the backbone atom as Cα and 
phosphate.

In silico docking of candidate crRNAs with Cas13 proteins
The candidate crRNAs structures of Cas13a, Cas13b, and 
Cas13d were predicted with the two combinations of 2-D 
structure prediction and 3-D structure prediction pro-
grams (MXfold2 with Rosetta or RNAComposer). Sub-
sequently, the candidate crRNA structures were docked 
in silico with the corresponding Cas13 protein using 
HDOCK, which showed the best performance in the vali-
dation study. The template-free parameter was used and 
the 10 best models were retained from the in silico exper-
iments for evaluation.

Since the candidate dataset has no experimentally vali-
dated structures, the in silico docking experiments of the 
candidate crRNA structures were evaluated by compar-
ing with the GT crRNA-Cas13 structures as well as by 
visual analysis of the human experts. First, we applied 
K-means clustering of the 10 best models obtained from 
the in silico docking experiments of each candidate 
crRNA structure [48]. We used the centre of mass of 
each crRNA as a representative position of the crRNA in 
the 3-D space. The Euclidean distance of each candidate 
crRNA model to the GT crRNA model was calculated, 
and the number of clusters was determined in propor-
tion to the number of candidate crRNAs for each Cas13 
protein, which was 20, 80, and 10 for Cas13a, Cas13b, 
and Cas13d, respectively. From the distance calcula-
tions, the closest cluster to the GT crRNA was found for 
each Cas13 protein, and multiple sequence alignments 
(MSAs) were performed on the closest cluster for each 
docking result. Next, the individual candidate crRNAs 
with the closest docking position to the GT crRNA were 
found, with the number of individuals also determined 
proportionally to the size of the candidate dataset for 
each protein. Followingly, the human experts used the 
3-D visualization to validate the candidate crRNA dock-
ing results in comparison to the GT results.

We calculated the RNA–protein binding affinity for 
the experiment GT complexes and the candidate crRNA 
docking models with PredPRBA, which predicts RNA–
protein binding affinity using gradient boosted regression 
trees trained on the experimental RNA–protein bind-
ing affinity dataset [55]. We modified the PDB format of 
the candidate crRNA docking models by adding 1 as the 
occupancy and 50 as the B-factor, as these missing val-
ues of the docking program are necessary for the binding 
affinity program to run despite having no effect on the 
outcome of the calculation. For the RNA–protein com-
plex category, we selected the single-stranded RNA cat-
egory for crRNAs. The method was previously shown to 
perform the best with this category due to the largest size 
of the training dataset.
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