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BRD4 sustains p63 transcriptional program 
in keratinocytes
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Abstract 

Here, we investigated the potential interaction between bromodomain-containing protein 4 (BRD4), an established 
epigenetic modulator and transcriptional coactivator, and p63, a member of the p53 transcription factor family, essen-
tial for epithelial development and skin homeostasis. Our protein–protein interaction assays demonstrated a strong 
and conserved physical interaction between BRD4 and the p53 family members—p63, p73, and p53—suggesting 
a shared binding region among these proteins. While the role of BRD4 in cancer development through its interaction 
with p53 has been explored, the effects of BRD4 and Bromodomain and Extra Terminal (BET) inhibitors in non-trans-
formed cells, such as keratinocytes, remain largely unknown. Our functional analyses revealed changes in cellular pro-
liferation and differentiation in keratinocytes depleted of either p63 or BRD4, which were further supported by using 
the BRD4 inhibitor JQ1. Transcriptomic analyses, chromatin immunoprecipitation, and RT-qPCR indicated a synergistic 
mechanism between p63 and BRD4 in regulating the transcription of keratinocyte-specific p63 target genes, includ-
ing HK2, FOXM1, and EVPL. This study not only highlights the complex relationship between BRD4 and p53 family 
members but also suggests a role for BRD4 in maintaining keratinocyte functions. Our findings pave the way for fur-
ther exploration of potential therapeutic applications of BRD4 inhibitors in treating skin disorders.

Keywords  Keratinocytes, BRD4, BET, P63, Proliferation, Transcription, Epigenetic regulation

Introduction
Skin keratinocytes create a tightly layered epithelium on 
the body’s surface, serving as a protective barrier against 
the external environment. The formation and mainte-
nance of the skin epidermis are regulated by dynamic, 
well-coordinated processes involving stemness, prolif-
eration and differentiation [1–5].These critical cell fate 
decisions rely on a delicate interplay between transcrip-
tion factors, chromatin dynamics, and epigenetic readers, 
that activate and repress specific sets of genes in a pre-
cise temporal and spatial manner [6–10]. The TP63 gene 
encodes multiple isoforms, of which the amino-deleted 

ΔNp63α isoform (here after indicated as p63) is a key 
regulator of epidermal development, differentiation, pro-
liferation and self-renewal (Annie Yang, Mourad Kaghad, 
[2, 4, 5, 11–13]). The transcription factor p63, is a mem-
ber of the p53 gene family. Unlike p53, which is well-
known for its role in tumor suppression (Annie Yang, 
Mourad Kaghad, 2002; [14, 15]), p63 is recognized as a 
crucial regulator of epidermal development, as evidenced 
by various animal models and human diseases bearing 
p63 mutations [2, 5, 16–18]. For instance, mice with a 
complete deletion of p63 or ΔNp63 isoform, lack epider-
mis and related appendages and exhibit defects in other 
epithelial tissues [2, 5, 18, 19]. In humans, heterozygous 
mutations in TP63 cause several developmental disor-
ders, many of which present with skin abnormalities [20, 
21]. Several studies have established that p63 is vital for 
embryonic epidermal development and for the prolif-
eration and differentiation of epidermal keratinocytes. 
It directly regulates numerous target genes involved in 
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cell proliferation, differentiation, and adhesion [22–28]. 
Different isoforms of p63 have been identified in vari-
ous cells and tissues, including the epidermis, oocytes, 
muscles, and cochlea [29–32]. Recent research has also 
shown that p63 influences the epigenetic and chroma-
tin landscape in epidermal keratinocytes by regulating 
chromatin factors and by engaging and opening chro-
matin regions [33–39]. Studies using genome-wide 
approaches have confirmed that p63 is a key regulator of 
the enhancer landscape [34, 40], suggesting a more com-
plex model of its role in gene regulation during epidermal 
development and in related diseases.

Proper timing in transcription regulation plays a cru-
cial role in directing cell fate and influencing cell fate 
determination and cancer progression [41]. The Bromo-
domain-containing protein 4 (BRD4), a member of the 
BET (Bromodomain and Extra Terminal) family, facili-
tate the transcriptional elongation step ([42]). Notably, 
BRD4 binds to acetylated histones, particularly histone 
H4, through its two bromodomains, promoting active 
transcription [43]. Additionally, BRD4 is found at dis-
tal enhancer regions where its presence correlates with 
enhancer activity and the transcription of enhancer 
RNAs (eRNAs) [44–47]. Recent studies have revealed 
that BRD4-dependent gene expression programs are 
frequently disrupted in various diseases, including can-
cer [48]. The function of BRD4 is highly influenced by 
specific contexts. While several studies have highlighted 
BRD4’s roles in aging and cancer development [49, 50], 
the precise mechanisms leading BRD4’s actions in dif-
ferent normal cell types and the factors that determine 
its activity in various cellular contexts remain largely 
unknown.

In this study, we investigated the previously unknown 
role of BRD4 in normal human keratinocytes. We dem-
onstrate that p63 physically interacts with BRD4, and this 
interaction is conserved among the p53 family members, 
including p53 and p73. Our experiments show that both 
keratinocyte proliferation and differentiation depend, at 
least in part, on the activities of BRD4 as further sup-
ported using the BRD4 inhibitor JQ1. Transcriptomic 
analyses revealed a synergistic mechanism between p63 
and BRD4 in regulating p63-detendent keratinocyte-
specific transcriptional program. Our findings open new 
avenues for developing therapeutic strategies to treat skin 
diseases.

Results
BRD4 is a p53 family interactor
Beyond its role as an epigenetic regulator, BRD4 also acts 
as a transcriptional coactivator. Therefore, BRD4 could 
be considered a relevant p63 and p53 family member co-
binding factor. Given the high structural similarity of the 

p53 family members (Fig. 1a), we decided to investigate 
if BRD4 could be a specific interactor of the p53 family. 
Semi-endogenous immunoprecipitation (IP) (Fig.  1b–d) 
revealed that BRD4 is indeed a p53 family interactor and 
the interaction lies in a common shared region among 
the oligomerization (OD) and the DNA-binding (DBD) 
domain (Fig.  1a). We also found that BRD4 expression 
was positively and significantly correlated with p53, 
p63, and p73 expression in different datasets of normal 
skin and normal squamous epithelia (Fig. S1). Since p63 
is the main actor in the regulation of skin homeosta-
sis and showed higher correlation with BRD4 (Fig.  1e), 
we decided to further investigate their role in epider-
mal development. To better understand the nature of 
the interaction between BRD4 and p63, we decided to 
verify if BRD4 activity could be required in the binding. 
We performed an exogenous co-immunoprecipitation in 
HEK293T using the wild-type (WT) and a functionally 
inactive version (BD) of BRD4 (Fig.  1f ) co-transfected 
with ΔNp63α-HA [51]. As shown in Fig. 1g, BRD4 inac-
tivation does not affect the binding with p63. Further, 
we used different BRD4 deleted constructs [52] (Fig. 1f ) 
to investigate which BRD4 functional domain could be 
involved in the binding process. As shown in Fig.  1h, 
only the isoform containing the CTM domain was able to 
maintain the interaction. The endogenous IP in normal 
human epidermal keratinocytes (HEKn) combined with 
a proximity ligation assay (PLA) in immortalized human 
keratinocytes (Ker-CT), confirmed the p63 and BRD4 
interaction (Fig. 1i, l). Our data indicate that BRD4 physi-
cally interacts with the p53 family of transcription fac-
tors, specifically interacting with p63 at the endogenous 
level in human keratinocytes.

BRD4 and p63 regulate keratinocyte proliferation 
and differentiation
Given the p63 crucial role in the regulation of epithe-
lial cell proliferation and differentiation, and the physi-
cal interaction among p63 and BRD4 in keratinocytes, 
we examined the cell proliferation after p63 and BRD4 
depletion. P63 and BRD4 knock-down by siRNA (Fig. S2 
a–d) resulted in a significant accumulation of cells in the 
G0/G1 phase (Fig. 2a–b), with a consequent reduction of 
cells in the S phase as evaluated by EdU-incorporation 
assay (Fig. 2c).

We markedly observed that cell proliferation rate was 
also reduced, both in depletion of BRD4 and p63 (Fig. 2d, 
Fig.  S2d, e). Interestingly, we find comparable results 
after using JQ1, a specific BET inhibitor that can inacti-
vate BRD4 activity (Fig. 2e–h) [48], confirming that BRD4 
activity is necessary to support keratinocyte proliferation. 
Indeed, we observed a strong reduction of the number of 
cells in the S phase (Fig.  2g) and a high reduction of cell 
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proliferation rate (Fig.  2h). We then evaluated whether 
BRD4 depletion affected the expression of the early differ-
entiation marker, keratin 10. Keratinocytes were induced 
to differentiate upon 1.2  mM calcium addition for 3 and 
6  days in the medium upon p63 and BRD5 knockdown 
by siRNAs. We observed a significant decrease of keratin 
10 expression both at mRNA and protein levels (Fig. 2i, l), 
and we found a strong and significant reduction of pro-
tein expression, particularly after BRD4 silencing (Fig.  2i, 
l). These findings were also confirmed after JQ1 treatment 
(Fig. 2m, n), in which we observed a tendence to decrease. 
Altogether these data demonstrate that BRD4 knock-down 

or inactivation affect both keratinocytes proliferation and 
differentiation. BRD4 down-regulation or inactivation phe-
nocopy p63 knock-down supporting the hypothesis that 
BRD4 could be a positive effector of p63 transcriptional 
activity in keratinocytes.

BRD4 and p63 regulate the expression of selected target 
genes
To confirm that BRD4 participates to the p63-tran-
scriptional program in keratinocytes, we decided 
to investigate three p63-target genes, HK2, FOXM1 
and EVPL. Two public datasets of ChIP-sequencing 

Fig. 1  BRD4 is a p53 family interactor. a Schematic representation of p53 family members. b–d Semi endogenous co-IP, HEK293T were 
transiently transfected with different isoforms of p53 family members HA-tagged. In each panel, the upper lane represents anti-BRD4 antibody, 
lower lane the anti-p63 antibody. EV, empty vector. Inputs are 10%. e BRD4 and p63 mRNA correlations in public datasets (GEPIA). f Schematic 
representation of the different BRD4 mutants. g, h Exogenous co-IP, HEK293T were transiently transfected with different Flag-tagged BRD4 isoforms 
and with HA-p63. In each panel, the upper lane represents anti-Flag antibody, lower lane the anti-p63 antibody. EV, empty vector. Inputs are 10% i, l 
Endogenous co-IP and PLA in HEKn, IP was performed utilizing anti-BRD4 antibody and analyzed with western blot: upper lane anti-BRD4 antibody, 
lower panel anti-p63 antibody. PLA was performed in Ker-CT with antibody recognizing p63 in combination with BRD4. The blots in the figure are 
representative of two independent experiments
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analyses for p63 and BRD4 were merged with the bind-
ing profile of p63, and we identified specific binding 
sites (BSs) in the proximity of the HK2, FOXM1 and 
EVPL promoters. The identified BRD4 and p63 BSs 
were overlapping, indicating that p63 and BRD4 are 
associated on chromatin (Fig. 3a–c). The p63 chromatin 
binding site were canonical sites, located at the already 
characterized BS for each specific gene (25, 47, 48) 

(Fig. 3a–c). ChIP experiments confirmed p63 and BRD4 
binding (Fig.  3d–f ), in which we observed an enrich-
ment for p63 and BRD4 respectively over these regions. 
We also found that HK2, FOMX1 and EVPL transcrip-
tion and protein levels are reduced after the depletion 
of p63 and BRD4 (Fig.  3g–i, Fig.  3 j–l, Supplementary 
Fig.  5 a–d), indicating that their expression could be 
regulated by both p63 and BRD4. HK2, FOMX1 and 
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Fig. 2  BRD4 and p63 regulates keratinocytes proliferation and differentiation. a, b, e, f Cell cycle analysis performed in HEKn comparing SCR 
condition and sip63 and siBRD4 conditions comparing untreated cells (DMSO) and JQ1 treated cells (10 µM). Cells were stained with Propidium 
Iodide (50 µg/ml) for 1 h and then analysed by flow cytometry. In a, e representative plot of cell cycle analysis performed in HEKn is shown, 
while in b, f a quantification of cell cycle analysis. Graphs present means ± SD of three independent experiments. c, g EdU-incorporation assay 
of HEKn cells transfected with siSCR, sip63 and different BRD4 (siBRD4#1, BRD4#2) siRNAs or treated with DMSO and JQ1 (10 µM). Data are shown 
as mean ± SD of N = 3 experiments. (Unpaired Student’s t test). d, h Growth curve of HEKn cells transfected with siSCR, sip63 and siBRD4#1, 
or treated with DMSO and JQ1 (10 µM). The cell confluency has been determined using the Incucyte real-time video imaging system. Each data 
points indicate mean ± SEM. i–n Western blot analysis was carried out with specific antibodies against K10, and β-actin was used as loading control. 
ImageJ program was used to quantitate the protein levels. The blot is representative of three independent experiments. DD, days of differentiation
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EVPL transcription is also reduced after JQ1 treatment 
(Fig.  S4), indicating that loss of BRD4 activity affects 
the expression of selected p63 target genes. These data 

together suggest that BRD4 and p63 cooperate in the 
transcriptional regulation of HK2, FOXM1 and EVLP.
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Keratinocytes lacking for p63 and BRD4 have similar gene 
expression profile
To further investigate the transcriptional modulation 
mediated by BDR4 on p63 in keratinocytes biology, we 
decided to compare the changes in the transcriptomic 
profile after the silencing of p63 and BRD4 and BRD4 
inhibition, using the nanoString technology. Specifi-
cally, we compared the expression of 770 selected genes 
belonging to different biological processes and tumor 
pathways (see materials and method section for further 
details).

We identified shared and unique differentially 
expressed genes (DEGs) across these three conditions, 
suggesting potential common pathways or mechanisms 
affected by these treatments. Gene ontology analy-
sis revealed similarities in pathways modulation, such 
as cell proliferation, matrix remodeling and metabolic 

stress, abolishing the expression of p63 and/or BRD4 
through specific RNAi (Fig. 4a) It’s noteworthy to men-
tion that similar results were obtained even inhibit-
ing BRD4 activity with a specific inhibitor (Fig.  4c,d), 
accordingly to what we observed after p63 and BRD4 
silencing(Fig. 4b). Furthermore, comparing the transcrip-
tomic profiles of keratinocytes in absence of p63 (Fig. 4c) 
or BRD4 (Fig. 4d), or inhibiting BRD4 with JQ1 (Fig. 4e; 
Supplementary Fig.  3), we found that several dysregu-
lated target genes were shared across the different condi-
tions analyzed, showing a similar pattern of expression. 
Particularly, as expected, HK2 was downregulated in all 
the samples, confirming our previous results. Interest-
ingly, we also found a downregulation of other crucial 
genes regulating keratinocytes homeostasis, as TP53, 
VEGF and PCK2, supporting our hypothesis that the 
co-binding of p63 and BRD4 is essential for supporting 
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p63-dependent transcription in keratinocytes, particu-
larly for genes involved in metabolic stress, cell prolif-
eration, matrix remodeling, and the PI3K-Akt/MAPK 
pathway(Fig. 4e–g).

Discussion
Our findings provide a comprehensive insight into the 
interconnected roles of p63 and BRD4 in keratinocyte 
biology. Our data suggest that p63-mediated transcrip-
tional program is supported by the co-binding partner 
BRD4. The discovery that BRD4 interacts closely with 
p63 enhances our understanding of the chromatin land-
scape in keratinocytes during their proliferation and dif-
ferentiation. Additionally, since BRD4 is well-known for 
its role in super-enhancer organization and transcription 
activator of different transcription factors, the results 
obtained provides relevant insights into the p63 interac-
tome and its mechanism of action.

BRD4 recognizes and binds to acetylated histones, 
facilitating the transcriptional activation of various genes, 
including c-Myc [53], Devaiah BN et  al. [54], which is 
essential for cell growth and proliferation. Therefore, 
in addition to the direct link between BRD4 and p63 in 
regulating the transcription of selected genes, BRD4 
may also support keratinocyte proliferation and differ-
entiation programs by engaging different transcriptional 
pathways, for instance the myc-dependent transcription 
program.

p63 and BRD4 pivotal roles in the maintenance and 
regulation of the skin’s primary cell type, keratinocytes, 
suggest potential therapeutic implications, particularly 
in disorders where p63 is known to have pathological 
properties, such us psoriasis or epithelial tumors, includ-
ing cutaneous and head and neck squamous cell carci-
nomas [55],Smirnov, Anemona, et al., 2019; [25, 26]. The 
use of JQ1, a specific BET inhibitor, to inactivate BRD4 
activity [48], provides a hint towards the pharmaco-
logical interventions that could be employed. While this 
study elucidates the effects of JQ1 in keratinocyte prolif-
eration and differentiation, its potential as an anti-cancer 
agent specifically targeting the p63-BRD4 axis remains 
to be fully explored in cutaneous disorders. Given that 
BRD4’s inhibition mirrors the effects of p63 depletion in 
keratinocytes, BET inhibitors like JQ1 might be promis-
ing in conditions where p63 contributes to disease patho-
genesis [56–58],Smirnov, Anemona, et  al., 2019). Lastly, 
given that cutaneous squamous cell carcinoma origi-
nate mostly from keratinocytes, is worth to notice how 
in all the condition analyzed the Jak/Stat, PI3K-Akt and 
MAPK pathways are transcriptionally regulated by p63 
and BRD4, suggesting that p63/BRD4 axis could also 
have a role in squamous cell carcinoma cancer formation 
and progression. Additionally, PI3K/Akt/mTOR pathway 

it’s commonly dysregulated also in psoriasis [59, 60], an 
autoimmune disease resulting from an uncontrolled pro-
liferation and aberrant differentiation of keratinocytes.

Considering these findings, future research endeavors 
should focus on delineating the precise molecular mech-
anisms through which BRD4 and p63 interact, especially 
in the context of skin diseases. Understanding this could 
provide a foundation for developing targeted therapies. 
Furthermore, the potential of BET inhibitors, alone or 
in combination with other agents, should be explored in 
preclinical and clinical settings, especially in tumors with 
aberrant p63 activity [56, 57]. In conclusion, the syner-
gistic relationship between BRD4 and p63, two key play-
ers in keratinocyte biology, opens a new frontier in skin 
biology. This knowledge holds the promise of not only 
enhancing our understanding of skin pathologies but also 
of ushering in innovative therapeutic strategies.

Materials and methods
Cell culture, transfection, proliferation, and growth curve 
analyses
Primary Normal Human Epidermal Keratinocytes, 
neonatal (HEKn) (Gibco, catalog no. C-001-5C) and 
human TERT-immortalized keratinocytes (Ker-CT) 
(ATCC, CRL4048, lot. no. 0213) were cultured in 
EpiLife medium with the addition of Human Keratino-
cyte Growth Supplements (HKGS, Life Technologies). 
HEK293T (ATCC) were cultured in Dulbecco’s modi-
fied Eagle’s medium (DMEM, Gibco) supplemented 
with 10% fetal bovine serum (FBS) and 1% penicillin–
streptomycin. All cell lines were grown at 37  °C and 
5% CO2 in a humidified atmosphere. Keratinocyte dif-
ferentiation was induced by adding 1.2  mM CaCl2 to 
culture medium and the cells were collected at the fol-
lowing time points: 0, 3 and 6  days. For siRNA trans-
fection, cells were seeded in 60  mm dishes plates at a 
density of 3 × 105cells per well and cultured overnight 
to reach 60–80% confluence. siRNAs targeting BRD4, 
p63 and negative control siRNAs were obtained from a 
commercial vendor (Merck, Sigma-Aldrich). Cells were 
transfected with 20  nM siRNA using Lipofectamine 
RNAiMax (Invitrogen, Carlsbad, CA, USA) accord-
ing to the manufacturer’s instructions. The knockdown 
efficiency of BRD4 and p63 was evaluated by Western 
blotting or qPCR analysis 48  h after transfection. siR-
NAs are listed in Table S2. Plasmid DNA transfections 
were performed with Lipofectamine® 3000 (Invitrogen) 
according to the manufacturer’s instructions. Plas-
mids pcDNA5-Flag-BRD4-WT and pCDNA5-Flag-
BRD4-BD were a gift from Kornelia Polyak (Addgene 
plasmid #90,331 and #90,005)[51]. Plasmids p6346 
MSCV-CMV-Flag-HA-Brd4-1–444 (Mut1), p6345 
MSCV-CMV-Flag-HA-Brd4 1–722 (Mut2), p6347 
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MSCV-CMV-Flag-HA-Brd4-444–722 (Mut3) and 
p6348 MSCV-CMV-Flag-HA-Brd4 1047–1362 (mut4) 
were a gift from Peter Howley (Addgene plasmids 
#32,886, #31,352, 31,353 and #31,354 respectively) [52]. 
For JQ1 treatment, cells were seeded in 60 mm dishes 
plates at a density of 3 × 105cells per well and cultured 
overnight to reach 60–80% confluence. The culture 
media was than replace with fresh media supplemented 
with JQ1 (10 µM, Sigma, catalog no. SML1524) and the 
cells were collected 48 h after treatment. For cell cycle 
and proliferation analyses, cells were pulse-labeled with 
10 μM EdU added directly to cell media, incubated for 
2 h, and processed with a Click-iT EdU Alexa Fluor 
488 flow cytometry assay kit (Invitrogen, catalog no. 
C10337). For both EdU assay and propidium iodide 
(PI), cells were stained and analyzed using a CytoFLEX 
flow cytometer (Beckman Coulter) using the appropri-
ate filters and settings. Data were analyzed using CytEx-
pert software (Beckman Coulter) and FlowJo software 
(BD Life Science). Cell growth was evaluated by seed-
ing keratinocytes in 96 well-cell plates at a density of 
3,000 cells/well after 48 h of transfection with p63 and 
BRD4 siRNAs. The Incucyte live-cell analysis system 
was used to measure cell growth in real-time capturing 
images every 3 h for 6 days. The Incucyte S3 software 
was used to analyze the confluence of the cells at dif-
ferent time points and normalized to the starting point 
of each sample. For the JQ1 treatment, cells confluence 
was monitored and analyzed after 48  h of treatment 
with 5µM and 10µM of JQ1. The medium was replaced 
every 48 h.

RNA extraction and RT‑qPCR
Total RNA was extracted from cells using the RNeasy 
Mini Kit (QIAGEN) according to the manufacturer’s 
instructions. Briefly, cells were harvested and lysed 
with Buffer RLT containing β-mercaptoethanol. RNA 
was then purified using a RNeasy Mini spin column and 
eluted in RNase-free water. The quantity and quality 
of RNA were assessed using a NanoDrop spectropho-
tometer. cDNA was synthesized from 1 µg of total RNA 
using the SensiFAST cDNA Synthesis Kit (Bioline) 
according to the manufacturer’s instructions. qPCR 
was performed using QuantStudio™ 5 Real-Time PCR 
System and the Fast SYBR Green Master Mix (Applied 
Biosystems; catalogue A46109). The expression levels of 
target genes were normalized to the expression of the 
housekeeping gene human Tata Binding Protein (hTBP) 
using the 2−ΔΔCt method. qPCR Primers used are listed 
in Table S1.

Chromatin immuno‑precipitaion (ChIP) analyses
For Chromatin cross-linking immunoprecipitation 
(ChIP), N cells (5 × 106) were crosslinked for 10’ in a 
solution containing 1% formaldehyde. After crosslink-
ing, cells were lysed and sonicated to obtain chromatin 
fragments of ~ 300 bp. ChIP assays were performed using 
the Myers Lab ChIP-Seq protocol (Myers Lab, Hudson 
Alpha Institute of Biotechnology). The immunocomplex 
was immunoprecipitated using a specific anti-ΔNp63α 
(D2K8X, Rabbit mAb#13,109), anti-BRD4 (E1Y1P, Rab-
bit mAb #83,375) and non-specific IgG as negative con-
trol. Collected DNA fragments were tested both through 
semi-qPCR and Real Time-qPCR. Oligonucleotides are 
listed in Table S1.

Western blot
Cells were lysed in RIPA buffer containing Complete™ 
Protease Inhibitor Cocktail (Roche). The protein con-
centration was determined using the Protein Assay Dye 
Reagent Concentrate (Bio-Rad). Equal amounts of pro-
tein were separated on 10% SDS-PAGE gels and trans-
ferred onto PVDF membranes (Amersham Portran, GE 
Healthcare). The membranes were blocked with 5% non-
fat milk in PBS-Tween for 1 h at room temperature and 
then incubated with primary antibodies against BRD4 
(1:500; E2A7X, Rabbit mAb #13,440), p63α (1:1000, 
D2K8X, Rabbit mAb #13,109), K10 (1:1000; Biolegend, 
catalog no. 905404), Hexokinase II (1:500; Cell Signaling, 
C64G5 Rabbit mAb  #2867), FOXM1 (1:500; sc-376620 
Mouse, Envoplakin (1:500; sc-16747 Goat) and β-actin 
(1:50,000; Sigma A-5441) overnight at 4  °C. After wash-
ing with PBS-Tween, the membranes were incubated 
using the appropriate horseradish peroxidase-conjugated 
secondary antibody (rabbit and mouse; Bio-Rad, Hercu-
les, CA, USA). Detection was performed with the ECL 
chemiluminescence kit (Perkin Elmer, Waltham, MA, 
USA) while the acquisition was performed with Alliance 
Q9 Advanced (Uvitec Cambridge). The protein expres-
sion levels were quantified using ImageJ software and 
normalized to those of β-actin. The uncropped images of 
the western blots are shown in supplementary figure S6.

Co‑immunoprecipitation and western blotting
Co-immunoprecipitation was performed in the 
HEK293T cell line transfected for 24 h with correspond-
ing plasmids. Whole-cell extracts obtained by lysing the 
cells with Triton buffer supplemented with Complete™ 
Protease Inhibitor Cocktail (Roche) were incubated 
were incubated with anti-FLAG M2 agarose beads ON 
at 4  °C (Sigma Aldrich). Endogenous immunoprecipita-
tion was performed in HEKn cell line. Whole-cell extract 
was immunoprecipitated by incubating cells ON at 4°C 
with anti-ΔNp63α (D2K8X, Rabbit mAb #13,109) and 
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anti-BRD4 (E1Y1P, Rabbit mAb #83,375) primary anti-
body and then for 3  h at 4  °C with protein-G agarose 
beads (Roche). The beads were washed with Triton buffer, 
resuspended in loading buffer, and incubated at 98  °C 
for 10  min. For western blot assay, cells were collected 
and whole-cell protein extracts were obtained by lysing 
the cell pellet with RIPA buffer (50 mM Tris–cl pH 7.4; 
150 mM NaCl; 1% NP40; 0.25% Na-deoxycholate;1 mM 
DTT), supplemented with Complete™ Protease Inhibitor 
Cocktail (Roche). The samples were loaded on an SDS–
polyacrylamide gel and blotted on a PVDF membrane 
(Amersham Portran, GE Healthcare). Membranes were 
blocked with PBS-0.1% Tween 5% milk incubated with 
primary antibodies overnight at 4 °C, washed with PBS-
0,1% Tween and hybridized for 1 h at RT using the appro-
priate horseradish peroxidase conjugated secondary 
antibody (MsxRb Light Chain specific HRP conjugated; 
GtxMs Light Chain specific HRP conjugated, Millipore). 
Immunoblotting was performed using the following pri-
mary antibodies: anti-Flag M2 (1:2000, F3165, Sigma), 
anti-HA (1:1000, Biolegend cat n°901,502) anti-p63α 
(D2K8X, Rabbit mAb #13,109) and anti-BRD4 (E2A7X, 
Rabbit mAb#13,440).

Proximity ligation assay (PLA)
Ker-CT cells were washed, fixed in formaldehyde and 
permeabilized with 0,1% Triton X-100 in PBS. The cells 
were probed with the following primary antibodies: p63 
(1:500, Abcam #ab735), anti-BRD4 (E1Y1P) (Cell Sign-
aling, Rabbit mAb #83,375). The PLA staining was per-
formed with Duolink in Situ Red Starter Mouse/Rabbit 
kit (Sigma-Aldrich) according to the manufacturer’s 
instructions. Images are obtained using Leica Stellaris 5 
confocal microscope. ImageJ was used for the analysis.

Bioinformatic and statistical analysis
The gene expression analyses were performed using the 
panel “PanCancer IO 360” and run on the nCounter® 
Sprint Profiler. The data obtained were analyzed using the 
software nSolver 4.0 provided by nanoString technolo-
gies. All the analyses were performed following the man-
ufacturer’s instructions. The Gene and Pathway ontology 
analysis was performed with DAVID (https://​david.​ncifc​
rf.​gov/​home.​jsp). The ChIP-seq analysis was performed 
with the online software “USCS Genome Browser” 
(https://​genome.​ucsc.​edu/). TP63 binding profile was 
analyzed with the online database “Jaspar” (https://​jas-
par.​gener​eg.​net/). All statistical analyses were performed 
with Graph Pad Prism v8.0 software. The significance was 
calculated with Student’s T-test. All results are expressed 
as means ± s.d. P < 0.05 was considered significant.
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