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Abstract 

Shelterin proteins (TERF1, TERF2, TPP1, TINF2, POT1) protect telomeres, prevent unwarranted repair activation, 
and regulate telomerase activity. Alterations in these proteins can lead to cancer progression. This study uses an in-sil-
ico approach to examine shelterin in tumour samples across various cancers, employing mutation plots, phylogenetic 
trees, and sequence alignments. Network pharmacology identified TERF1 as an essential shelterin protein and tran-
scription factors RUNX1, CTCF, and KDM2B as potential biomarkers due to their interactions with miRNAs and shelterin 
proteins. We performed MCODE analysis to identify subnetworks of ncRNAs interacting with the shelterin proteins. 
Shelterin expression predicted patient survival in 24 cancer types, with TERF1, TERF2, TINF2, and POT1 significantly 
expressed in testicular, AML, prostate, breast and renal cancers, respectively, and TPP1 in AML and skin cancer. Spear-
man and Pearson’s analyses showed significant correlations of TERF1 across cancers, with near-significant correla-
tions for all five proteins in different cancer datasets like breast cancer, kidney renal papillary and lung squamous cell 
carcinoma, skin cutaneous melanoma, etc.,. Shelterin expression correlated with patient survival in breast, renal, lung, 
skin, uterine, and gastric cancers. Insights into TPP1-associated glycans highlighted glycosylated sites contributing 
to tumorigenesis. This study provides molecular signatures for further functional and therapeutic research on shel-
terin, highlighting its potential as a target for anti-cancer therapies and promising prospects for cancer prognosis 
and prediction.
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Introduction
Cells that undergo malignant transformation face the 
challenge of evading replicative senescence and even-
tual cell death due to progressive telomere shortening 
that occurs with each cell division. Telomeres are pro-
tected by a specialized protein complex called shel-
terin or the telosome. This complex comprises proteins 
TERF1, TERF2, TPP1, POT1 and TINF2, which work 
together to prevent telomere degradation or fusion. Shel-
terin plays a critical role in facilitating the formation of 
T-loop structures, recruiting telomerase, and protecting 

telomeres [1]. Moreover, the molecular components of 
telomerase act as additional factors that influence telom-
eres’ replicative and protective functions. Often, these 
components work together with shelterin or other core 
telomere-binding proteins to orchestrate the intricate 
events that govern telomere maintenance and stability. 
When telomere protection is lost, it can lead to chromo-
some end-to-end fusions and a state of telomere crisis, 
characterized by extensive genome instability, chromo-
thripsis, kataegis, and tetraploidization, all of which can 
promote cancer progression. Beyond its role in end-
protection, shelterin also functions as a mechanism for 
sensing telomere length and regulates telomerase activ-
ity at the telomere. TERF1 and TERF2 are homodimers 
that bind to telomeric double-stranded DNA, while the 
POT1–TPP1 heterodimer binds and caps the telomeric 
3′ tail. TINF2 connects the TERF1 and TERF2 dimers 
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with POT1–TPP1, forming the complete shelterin com-
plex (Fig. 1a) [2]. Aberrant shelterin expression has been 
observed in various cancers like breast cancer [3], adre-
nal cortical cancer [4], colorectal cancer [5], gastric can-
cer [6–8], glioblastoma [9–11], lung cancer [12], prostate 
cancer [13, 14], chronic lymphocytic leukaemia [15–17] 
and melanoma [18] with mutations in some shelterin 
genes acting as cancer drivers. Paradoxically, cancer cells 
(CCs) require adequate shelterin to sustain their rapid 
proliferation, and increased levels of shelterin proteins 
such as TERF1, TERF2, and TINF2 are associated with 
tumour development. This complex relationship between 
shelterin expression and tumorigenesis necessitates fur-
ther investigation (Fig. 1).

Excessive telomere shortening due to telomerase muta-
tions or severe telomere uncapping caused by shelterin 
dysfunction can trigger a DNA damage response (DDR) 
at chromosome ends, mistaking them for double-strand 
breaks. This can activate the nonhomologous end-joining 
pathway, leading to chromosomal end-to-end fusions, 
while increased homologous recombination might cause 
rapid telomere length changes and terminal deletions 
[19]. Critically short telomeres fail to recruit enough 
shelterin to suppress checkpoint activation, a model 
supported by evidence that disrupting specific shelterin 
components like TERF1 can induce a DDR even with-
out telomere shortening (Fig.  2). Telomere dysfunction, 
whether due to critically short telomeres or uncapping, 

Fig. 1  The components of the shelterin complex, telomerase and the specific functions of each shelterin component are highlighted in grey insets. 
Telomeric DNA is made up of both double-stranded and single-stranded DNA, and in vertebrates. This duality enables the single-stranded 3′ tail 
to enter the double-stranded DNA region, forming a displacement loop (D-loop) and a telomere loop (T-loop). Shelterin complexes regulate T-loop 
development, which can prevent telomerase from accessing the 3′ tail. Once the telomere is opened, presumably during the S phase of the cell 
cycle, telomerase can connect to the 3′ tail using its RNA template and add telomeric repeats. CST then blocks telomerase activity, preventing 
excessive telomere lengthening
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triggers a DNA damage response (DDR) through the 
activation of upstream kinases such as DNA-PK, ATM 
(ataxia-telangiectasia mutated), and ATR (ataxia-telangi-
ectasia and Rad3 related) [20].

Most CCs express telomerase, a protein that main-
tains telomere length, which is inactive in most normal 
cells. CCs preserve telomere length by preventing tel-
omere shortening, allowing them to bypass replication 

Fig. 2  Telomerase dysfunction leads to Cancer: When a p53/p21-dependent cell cycle arrest occurs, the damage can be ’repaired’ 
through either the non-homologous end-joining (NHEJ) pathway, resulting in chromosomal end-to-end fusions or the homologous recombination 
(HR) pathway, leading to telomere length changes and terminal deletions. Both pathways induce chromosomal instability, potentially leading 
to the amplification of oncogenes and the loss of tumour suppressor genes, thus increasing the risk of cellular transformation and the initiation 
of cancer Cellular Degradation: Activation of the tumour suppressor proteins p53 and/or p21 can lead to apoptosis or senescence of cells, resulting 
in tissue degeneration and, ultimately, organ failure
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limits and divide indefinitely, a key characteristic of can-
cer. Changes in the structure and function of shelterin 
complex proteins can promote tumorigenesis and cancer 
progression. Understanding shelterin complex biology 
suggests that targeting shelterin proteins could be a novel 
strategy for cancer therapy.

The messenger RNA (mRNA)-microRNA (miRNA)-
long noncoding RNA (lncRNA) axis plays a crucial role 
in different cancer hallmarks, including inhibition of tel-
omere shortening. This makes them potential biomark-
ers for predicting clinical outcomes, including survival in 
cancer patients. This study focuses on two types of non-
coding RNAs (miRNAs and lncRNAs) that interact with 
differentially expressed metastatic mRNAs. The miRNAs, 
which are dysregulated in cancers, contribute to cancer 
hallmarks by modulating various pro- and anti-oncogenic 
properties. These small, conserved, endogenous RNA 
molecules [21] are 19–25 base pairs long and regulate 
gene silencing by binding post-transcriptionally to target 
mRNAs’ 3’-untranslated (UTR) region. The lncRNAs are 
RNA transcripts typically longer than 200 nucleotides 
that are not translated into proteins [22].

Since time immemorial, plant-derived natural com-
pounds and molecules have been exploited for their 
anti-oncogenic properties. Existing drugs, including 
chemotherapeutic agents, often have significant side 
effects, and prolonged use can lead to resistance in CCs. 
Minimizing side effects and preventing chemoresistance 
can be achieved through dosage adjustments or modifi-
cations of these drugs [23]. Even with dosage modifica-
tions, chemotherapeutic agents have demonstrated the 
ability to cause cytotoxicity and result in tumour regres-
sion. However, only a limited number of drugs specifi-
cally target tumour tissues. Increasing research indicates 
that the development and recurrence of cancer are influ-
enced not only by physiological factors but also by psy-
chological and social aspects of a patient’s life.

Despite decades of extensive research aimed at devel-
oping novel therapies, effective treatment for cancer 
remains elusive due to the disease’s complexity and het-
erogeneity. CCs often acquire drug resistance, and avail-
able treatments frequently come with severe side effects. 
Specifically, the study aims to discover novel alterna-
tive therapeutics and non-coding biomarkers, such as 
miRNAs and lncRNAs, that are significantly involved in 
maintaining telomeres for cellular immortality. This in-
silico research may provide new targets for validation in 
experimental setups, potentially leading to more effective 
cancer treatments.

In a nutshell, in this study, we aim at the detection of 
significant cliques, biomarkers and drugs derived from 
interaction networks of mRNA–miRNA–lncRNA–phy-
tocompound interactions, followed by a multi-omics 

analysis of the shelterin proteins that can be useful and 
critical for an enhanced understanding of the telomerase 
activity in different cancers, which may lead to the identi-
fication of newer therapeutic strategies as well.

Methodology
Retrieval of significant mRNAs
Various research and review articles have extracted 
information about the shelterin protein complex with 
keywords such as ‘shelterin proteins’, ‘shelterin protein 
complex’ and ‘telomeric shelterin proteins in cancers’ 
[24]. Within this complex, TERF1 and TERF2 bind to 
double-stranded telomeric DNA, while POT1 binds 
directly to single-stranded DNA. TINF2 and TPP1 serve 
as bridges between TERF1, TERF2, and POT1, stabilizing 
the entire complex. Although TERF1, TERF2, and POT1 
directly bind to telomeres, TINF2 and TPP1 indirectly 
interact with telomeres through their associations with 
TERF1 or TERF2 [25].

Retrieval of non‑coding RNAs
In this study, we focus on two types of non-coding RNAs: 
miRNAs and lncRNAs. We retrieved common miRNAs 
interacting with shelterin proteins from the ENCORI 
using the RNA-RNA menu for miRNA-RNA (https://​
starb​ase.​sysu.​edu.​cn/), [26] miRTarBase (https://​mirta​
rbase.​cuhk.​edu.​cn/​~miRTa​rBase/​miRTa​rBase_​2022/​php/​
search.​php) using the search option and then searching 
for miRNAs using the ‘By Target Gene’ option [27] and 
in TargetScan (http://​www.​targe​tscan.​org/​vert_​80/) [28] 
database, the list of miRNAs can be downloaded by giv-
ing the input of the human gene symbol of the respective 
mRNA. The ENCORI database includes experimentally 
identified RNA–RNA and protein–RNA interaction 
networks derived from 108 CLIP-Seq datasets across 
37 independent studies. miRTarBase focuses on miR-
NAs, and their high-throughput validated miRNA-target 
interactions, particularly supported by CLIP-Seq verified 
data. TargetScan predicts miRNA targets by examining 
conserved 8-, 7-, and 6-mer sites complementary to the 
miRNA seed region.

For common lncRNAs interacting with differentially 
expressed genes (DEGs), we utilized two databases: 
lncBase v3 for retrieving interacting lncRNAs for miR-
NAs by entering the miRNA of interest and selecting the 
specific tissue types) (For eg. hsa-let-7a-5p in bone tissue) 
(https://​diana.e-​ce.​uth.​gr/​lncba​sev3) [29]. ENCORI was 
also used to identify interactions between miRNAs and 
lncRNAs under the ‘miRNA-Target’ drop-down menu.

Retrieval of interacting small compounds
The drugs interacting with mRNAs are obtained from the 
Comparative Toxicogenomics Database (CTD) (https://​

https://starbase.sysu.edu.cn/
https://starbase.sysu.edu.cn/
https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2022/php/search.php
https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2022/php/search.php
https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2022/php/search.php
http://www.targetscan.org/vert_80/
https://diana.e-ce.uth.gr/lncbasev3
https://ctdbase.org/
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ctdba​se.​org/) by entering the gene name in the tab ‘Search 
by gene’ under ‘Chemical–Gene Interaction Query’ [30]. 
CTD contains manually curated data on mRNA–drug 
interactions that affect various biological pathways impli-
cated in diseases such as cancer. For information on 
drugs interacting with miRNAs, we utilized the Sm2miR 
database (http://​www.​jiang​lab.​cn/​SM2miR/) [31] using 
the miRNA name and species, which provides compre-
hensive data on drugs and small molecules that influence 
miRNA expression and miRNA-associated therapeutics. 
The lncRNA–drug interaction data is retrieved from the 
D-lnc database (http://​www.​jiang​lab.​cn/D-​lnc/) [32] by 
selecting ‘Homo sapiens’ under species and entering the 
lncRNA of interest in the ‘Search by lncRNA’ tab.

Generation of an mRNA–miRNA–lncRNA–drug interaction 
network, followed by hub RNA identification, module 
detection, and transcription factor analysis
To analyze the interactions within the complex network 
of miRNA–mRNAs–lncRNA–drugs, the Cytoscape 
v3.9.0 software [33] was employed. This freely accessible 
platform allows the visualization of intricate networks 
involving multiple biological entities. Using the ’Merge’ 
attribute from the ’Tool’ dropdown menu, smaller 
networks such as mRNA–mRNA, mRNA–lncRNA, 
mRNA–drugs, miRNA–drugs, lncRNA–drugs, and 
miRNA–lncRNA were consolidated. The Maximal Clique 
Centrality (MCC) ranking method from the ’cytohubba’ 
plugin was then utilized to identify hub mRNAs within 
the interaction network. Additionally, the ’MClique’ 
plugin was used to detect cliques [34].

The MCODE plugin [35] was applied to the interaction 
network to identify the top subnetworks with an MCODE 
score of 3 and above to discover significant transcription 
factors (TFs). The most prominent carcinogenic condi-
tions were identified by analyzing the highly expressed 
hub genes (rank-wise: deep red denotes the most signifi-
cance), with a cut-off degree of ‘30’ for significant genes 
from the topological parameters like ‘degree’, ‘between-
ness’, ‘closeness’, ‘radiality’, ‘bottleneck’ and ‘eccentricity’. 
For mRNAs from the top two subnetworks identified by 
MCODE, interacting miRNAs were searched using the 
ENCORI database. Once the mRNAs and miRNAs were 
obtained, their interacting TFs were retrieved from data-
bases like TRRUST (https://​www.​grnpe​dia.​org/​trrust/) 
corresponding to mRNAs under the ‘Search’ tab in the 
‘Search a gene in TRRUST database’ [36] and Trans-
miR (http://​www.​grnpe​dia.​org/​trrust) for miRNAs by 
exploring the ‘Search’ tab, giving the miRNA name and 
organism name ‘Homo sapiens’ [37]. The subnetworks 
were merged to identify the hub TFs and the MClique 
plugin was employed on the interaction network, which 
involved mRNAs, miRNAs, and TFs. ChA3 TF analysis 

was conducted on all TFs obtained from TRRUST and 
TransmiR to validate the hub TFs identified through 
Clique analysis in MClique within Cytoscape. The sig-
nificance of the TFs was further validated using ChA3 TF 
analysis [38].

Multi‑faceted analysis of the shelterin proteins
Gene expression profiling  The TNMPlot database 
(https://​tnmpl​ot.​com/) [39] offers expression profiles of 
shelterin proteins across 25 different types of cancer, uti-
lizing nearly 57,000 samples from various RNA-seq and 
microarray datasets. It includes sensitivity/specificity 
plots based on expression cutoffs, illustrating the propor-
tion of tumour samples with elevated expression com-
pared to standard samples at different cutoff levels (mini-
mum, first quartile, median, third quartile, maximum). 
These bar graphs provide clear insights into the clinical 
utility of a selected gene by highlighting its specificity to 
tumour cells, which is essential for identifying pharmaco-
logically valuable targets. The expression profiles of these 
proteins are displayed cumulatively in box plots, and den-
sity graphs show the expression profiles of the shelterin 
proteins, comparing normal, tumour, and metastatic sam-
ples based on their log2 values.

Survival profiles related to the shelterin proteins
Additionally, we performed a survival analysis of mRNAs 
using Oncolnc (http://​www.​oncol​nc.​org/) [40], an inter-
active platform that links cancer patient survival data 
from TCGA with expression levels of mRNA, miRNA, 
and lncRNA, presented in Kaplan–Meier plots. Tumor 
samples from 503 patients were divided into high- and 
low-expression groups and analyzed using the log-rank 
test. The statistical significance of the selected markers 
was validated with a p-value < 0.05.

Shelterin protein complex‑associated mutation profiles
Genetic mutations often impact more than just a single 
protein; they can influence the transcription of entire 
pathways. Comprehensive analysis of the mutational pro-
filing of these proteins is carried out using Tumor Portal 
(http://​www.​tumor​portal.​org), cBioPortal (https://​www.​
cbiop​ortal.​org/) [41] and muTarget (https://​www.​mutar​
get.​com/) [42].

Tumor Portal facilitates the exploration of genes, can-
cers, mutations, and annotations by allowing users to 
delve into various tumour types, genes, and visual rep-
resentations. cBioPortal provides mutational data based 
on the chromosomal positions of shelterin proteins. 
This integrative platform offers high-quality genetic pro-
files detailing various molecular alterations. This data-
base identifies genetically altered mRNAs by examining 
samples from the TCGA dataset (Cell, 2015), revealing 

https://ctdbase.org/
http://www.jianglab.cn/SM2miR/
http://www.jianglab.cn/D-lnc/
https://www.grnpedia.org/trrust/
http://www.grnpedia.org/trrust
https://tnmplot.com/
http://www.oncolnc.org/
http://www.tumorportal.org
https://www.cbioportal.org/
https://www.cbioportal.org/
https://www.mutarget.com/
https://www.mutarget.com/
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different chromosomal mutations, their positions, and 
base pair changes. In addition to the default layout, cBio-
Portal features supplementary bar plots adjacent to the 
heatmap, displaying the number of various modifications 
for each sample and gene. Mutational data from cBio-
Portal is then visualized using the web-based Circos tool 
(https://​circos.​ca/​softw​are/​downl​oad/​circos/) [43].

The muTarget database encompasses 18 solid tumour 
subtypes and 7800 patient samples, incorporating 
somatic mutations and RNA-seq gene expression data. 
Based on filters like ‘prevalence at least 3%’, ‘p-value cut-
off < = 0.05’, ‘fold change cutoff = 1.44’ and ‘FDR = < 5%’, 
muTarget facilitates the identification of biomarkers and 
potential therapeutic targets across various types of solid 
tumours.

Gene correlation profiles
Correlation profiles for shelterin proteins are analyzed 
using the TIMER database (http://​timer.​cistr​ome.​org/) 
[44], employing Pearson and Spearman correlation coef-
ficients. These coefficients are widely used to measure 
relationships between variables: the Pearson correlation 
coefficient evaluates linear relationships, while the Spear-
man correlation coefficient assesses monotonic relation-
ships [45, 46].

In the TIMER database, the Gene-Corr module investi-
gates the correlation between a gene of interest and a list 
of other genes across various cancer types. The resulting 
heatmap displays the purity-adjusted partial Spearman’s 
rho value, indicating the strength of their correlation. 
Users can select the ’Purity Adjustment’ checkbox to 
adjust the association for purity.

O‑linked Glycan prediction
Glycans play a critical role in cancer, serving as a poten-
tial source for developing new clinical biomarkers. Their 
ability to influence various stages of tumour progression 
and the biosynthetic pathways involved in glycan struc-
tures make them a promising target for cancer therapy. 
GlyGen is an open-source web interface that predicts 
shelterin-associated glycans by integrating glycoinfor-
matics tools to explore glycoscience data. The GlyGen 
portal (https://​www.​glygen.​org/) [47] currently includes 
N- and O-glycans from human, rat, and mouse species. 
In the database, from the drop down list of ‘Molecule’ the 
authors have chosen Glycan from the drop-down menu 
and under the ‘From ID type’ we need to select ‘PDB’ 
and then enter the PDB IDs of the shelterin proteins to 
retrieve the list of glycans corresponding to each one.

Functional enrichment analysis

An automated functional and pathway-enrichment anal-
ysis was performed on the shelterin protein cluster using 
hypergeometric testing by the STRING database (https://​
string-​db.​org/) [48]. The database performed overrep-
resentation tests for gene ontology (GO) terms such 
as biological process (BP), cellular components (CC), 
Molecular Functions (MFs), enriched tissues, and Reac-
tome pathways. Statistically significant enriched terms 
with a p-value < 0.05 were considered along with the 
overlapping genes against a statistical background of the 
entire genome. The false discovery rate (FDR) is a meas-
ure that describes how significant the enrichment is. The 
p-values corrected for multiple testing within each cat-
egory using the Benjamini–Hochberg procedure.

Gene cooccurrence profiling of shelterin complex
The STRING database retrieves the gene cooccurrence 
profile of the shelterin proteins across a wide range of 
taxonomy. In the STRING database, the lighter the red 
hue, the lesser the similarity or percentage of conserva-
tion of the proteins across the different taxonomies. Cor-
relations of these presence/absence profiles can predict 
interactions. Clade coverage for groups of genomes col-
lapsed in the phylogenetic tree, two distinct colours indi-
cate the lowest and highest similarity observed within 
that clade.

Figure  3 serves as a comprehensive guide, showcas-
ing this study’s systematic approach and methodol-
ogy to achieve the research objectives. It emphasizes 
the sequential flow of tasks and the interconnections 
between different analysis components, ensuring a thor-
ough understanding of the investigative process.

Results
Retrieval of interacting non‑coding RNAs
For the 5 shelterin proteins, 2056 interacting miRNAs are 
retrieved from TargetScan and ENCORI databases and 
1275 lncRNAs from (mRNA–lncRNA interaction data) 
and ENCORI (miRNA–lncRNA interaction data) are 
considered for the study. 549 small molecules interacting 
with mRNA, miRNA and lncRNA were discovered from 
CTDbase, Sm2miR and D-lnc database, respectively.

Interaction network analysis using cytoscape v3.9
In Cytoscape, six distinct interaction tables are individu-
ally loaded to encompass different types of interactions: 
mRNA–miRNA, miRNA–lncRNA, mRNA–lncRNA, 
mRNA–small molecules, miRNA–small molecules, 
and lncRNA–small molecules. These tables are then 
merged to form a comprehensive interaction network, 
as depicted in Fig. S1. This network visually repre-
sents mRNAs, miRNAs, lncRNAs, and drugs by pink 

https://circos.ca/software/download/circos/
http://timer.cistrome.org/
https://www.glygen.org/
https://string-db.org/
https://string-db.org/
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hexagons, green ellipses, yellow triangles, and blue paral-
lelograms, respectively (Fig. S1).

The CytoHubba and MClique plugins were utilized to 
analyze the interaction network. CytoHubba identified 
the top 10 hub RNAs, including all five shelterin pro-
teins and NEAT1, MALAT1, XIST, SNHG14, and KCN-
Q1OT1. Additionally, the MClique plugin revealed a total 
of 567 cliques within the network: the two largest cliques 
contain four nodes each, while the remaining 565 cliques 
consist of three nodes each. Figure 4 illustrates the top 10 
cliques. Examining the top 20 cliques, significant mRNAs 
identified include TERF1 and TERF2 and notable lncR-
NAs include NEAT1. No redundant miRNAs were found 
among these top cliques. Regarding drugs, doxorubicin 
and diethylstilbestrol appear in the two most prominent 
cliques. Furthermore, bromocriptine is present in one of 
the cliques.

Retrieval of sub‑networks from the interaction complex 
network
MCODE is implemented on the merged interaction net-
work based on the haircut algorithm, considering param-
eters like a k core of 2, a node cut-off value of 0.2, and 
a maximum depth of 100. The clustering score was uti-
lised to create sub-networks. Seven sub-networks were 
retrieved using the plugin with an MCODE score cut-
off of 3. The sub-networks with MCODE scores of 3 and 

above are taken into consideration for this study. Table 1 
lists the MCODE score of the seven sub-networks.

Construction of TF–miRNA–mRNA interaction network 
and TF analysis
The mRNAs involved in these sub-networks (Fig.  5a) 
are further exploited to study a mRNA–miRNA–tran-
scription factor (TF) interaction network. For the three 
mRNAs involved in the seven MCODE subnetworks, 
19 interacting miRNAs, and 290 interacting TFs were 
retrieved. The merged network for mRNA–miRNA–TF 
is generated (Fig. 5b). Fig S2 represents the hub RNA net-
work with the top 20 RNAs depicting the highly potential 
(based on colour ranking: red > orange > mustard > yel-
low) RNA biomarkers (POT1, TERF1 and TPP1). The 
MClique plugin of cytoscape is utilised to reveal that the 
TFs, RUNX1, CTCF and KDM2B are present in the top 
three generated cliques (Fig. 5c). Further, the CheA3 TF 
analysis reveals that these three TFs from the cliques are 
present among the top 15 integrated mean ranks TF anal-
ysis clustergram (Fig. 5d).

Multi‑factorial analysis of the shelterin proteins
Expression profiling of the shelterin proteins
The TNM plot represents the significance of enabling a 
real-time comparison of gene expression in ‘Normal’ 
Vs ‘Tumor’ of the shelterin proteins over a horizon of 

Fig. 3  The fundamental analysis framework involved network pharmacology and multi-faceted analysis of the shelterin proteins
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different cancers. TERF1, TERF2, TINF2, and POT1 are 
significantly expressed in testicular, Acute Myeloid Leu-
kemia (AML), prostate and breast as well as renal can-
cers, respectively (Fig. 6). TPP1 is significantly expressed 
in AML and skin cancer. Additionally, Violin plots for 
individual cancers are portrayed as ‘Normal’ Vs ‘Tumor’ 
Vs ‘metastatic’ in Fig. S2 and listed in Table 2.

Survival analysis of the shelterin proteins
Unleashing an interactive platform, this innovation seam-
lessly weaves together survival data from TCGA with the 
intricate dance of mRNA, miRNA, and lncRNA expres-
sions in cancer patients. Only markers with a resounding 
statistical significance, marked by a P-value < 0.05, made 
the cut. The shelterin proteins were assessed for survival 
analysis across various cancer datasets (Fig. 7).

The survival profiles of shelterin proteins in respec-
tive datasets are: TERF1 in BRCA (BReast CAncer gene), 
KIRP (Kidney renal papillary cell carcinoma), LUSC 
(Lung squamous cell carcinoma), SKCM (Skin cutane-
ous melanoma) and UCEC (Uterine Corpus Endometrial 
Carcinoma) datasets; TERF2 in LUSC, LGG (Low-grade 
glioma) and KIRC (Kidney renal cell carcinoma) data-
sets; TINF2 in LGG, BRCA and SKCM datasets; TPP1 in 
STAD (Stomach adenocarcinoma), SARC (Sarcoma) and 
HNSC (Head-Neck Squamous Cell Carcinoma) data-
sets and POT1 in LGG and SKCM datasets are found to 
be significantly associated with patient overall survival 
potential. Hence targeting these respective proteins in 
respective cancers has the potential of improving overall 
patient survival.

Mutation or polymorphic profiling of the shelterin proteins
The mutational profiling of the shelterin proteins is 
assessed via three different datasets from three publicly 
available databases. The Tumor Portal database provides 
plots that annotate mutations associated with individual 
proteins as different legends. POT1 has a nearly signifi-
cant mutation profile in Chronic lymphocytic leukaemia 
(Fig. 8a).

The circos plot for all the mutations associated with 
the shelterin proteins at different chromosomal posi-
tions (Fig.  8b) is listed in Table  S1. The muTarget data-
base represents mutations associated with cancers like 
bladder cancer, breast cancer (TCGA), cervix cancer, 
colon adenocarcinoma, head and neck cancer, renal clear 

Fig. 4  The top 10 cliques from the merged network. These cliques are retrieved using the MClique cytoscape plugin on the ‘Merged’ version 
for the interaction network of mRNA-miRNA-lncRNA-small compounds. The top 10 cliques depict the most closely interacting coding 
and non-coding RNAs with various small molecules

Table 1  The MCODE subnetworks with a score of 3 and above

Subnetwork ranking MCODE score

1 6.154

2 3.918

3 3.36

4 3.429

5 3.429

6 3.25

7 3
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cell carcinoma, renal papillary carcinoma, brain lower 
grade glioma, liver cancer, lung adenocarcinoma, lung 
squamous carcinoma, ovarian cancer, prostate cancer, 
sarcoma, multiple myeloma, melanoma, gastric can-
cer, Thyroid cancer and Uterine cancer that includes all 
somatic mutations (Fig. S3).

Gene‑correlation
In the TIMER database, the correlation among the shel-
terin proteins is determined based on the cut-off of 
p-value of 0.05. TERF1 is found to be significantly cor-
related with the highest number of cancers. All five pro-
teins are found to be nearly significantly correlated as 
per DLBC (n = 48), PAAD (n = 179) and PCPG (n = 181) 
datasets. TERF1, TERF2 and POT1 have a ‘near signifi-
cant’ correlation in THCA (n = 509) and THYM (n = 120) 
datasets. TERF1 and POT1 are significantly correlated 
as per UVM (n = 80) datasets. TINF2 is negatively corre-
lated based on the TGCT (n = 150) and LUSC (n = 501) 
datasets, while TPP1 is also negatively correlated as per 
the UVM dataset (Fig. 9).

Glycans
The functional significance of O-linked glycosylation for 
the immunosuppression role of TPP1 has encouraged us 
to check and analyze the probable glycosylation sites in 
TPP1. This is important because the variations in glyco-
sylated TPP1 can be a significant factor while designing 
cancer therapeutics against TPP1 for different cancers. 
Among the five shelterin proteins of interest, TPP1 is the 
only one with 22 glycosylated domains (Fig. 10).

The squares represent N-acetyl Hexosamine (Glc-
NAc), the circle galactose, the rhombus/diamond sialic 
acid, and the triangle fucose. The colour coding of each 
shape signifies a particular type of monosaccharide or 
alteration. Yellow and blue squares frequently represent 
N-acetylgalactosamine (GalNAc), whereas green circles 
typically represent mannose. α and β represent the ano-
meric conformation of the glycosidic bond. The symbols 
α and β indicate alpha and beta linkages, respectively. 
Numbers 2, 3, 4, and 6 represent the location of the gly-
cosidic bond on the sugar ring, indicating how one sugar 
binds to another. For example, "α2" or "β4" indicate the 

Fig. 5  The MCODE results and TF analysis. a. The seven subnetworks with MCODE score cutoff of 3. b. The merged network comprises the three 
mRNAs-19 miRNAs-290 TFs c. The cliques generated from the network having the TFs. d. The CheA3 TF clustergram shows the significant TFs 
among the top 15
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Fig. 6  The box plots depict the expression analysis of the shelterin protein across 24 different cancers. TERF2 and TPP1 are most highly expressed 
in Acute Myeloid Leukemia (AML), followed by skin, prostate, breast, and renal malignancies, and oesophageal and ovarian cancers. TERF2 has its 
most expression in testicular cancer. POT1 seems to be expressed similarly in almost all cancers except hepatic cancer



Page 11 of 20Chakraborty and Banerjee ﻿Biology Direct          (2024) 19:120 	

Ta
bl

e 
2 

Co
m

pa
re

d 
ex

pr
es

si
on

 p
ro

fil
es

 o
f s

he
lte

rin
 p

ro
te

in
s 

ac
ro

ss
 1

2 
di

ffe
re

nt
 c

an
ce

rs
 w

ith
 p

-v
al

ue
s

 →
 C

an
ce

r P
ro

te
in

Br
ea

st
 ↓

Co
lo

n
In

te
st

in
e

Ki
dn

ey
Li

ve
r

Lu
ng

O
es

op
ha

ge
al

O
ra

l
O

va
ri

an
Pa

nc
re

as
Pr

os
ta

te
Sk

in

TE
RF

1
2.

95
e-

14
3.

17
e-

36
4.

48
e-

01
7.

7e
-0

7
1.

65
e-

36
1.

16
e-

22
5.

87
e-

03
2.

39
e-

06
2.

23
e-

07
1.

06
e-

07
9.

25
e-

05
4.

19
e-

09

TE
RF

2
1.

71
e-

03
6.

7e
-0

8
4.

08
e-

02
1.

37
e-

07
7.

15
e-

07
3.

25
e-

18
7.

04
e-

03
1.

69
e-

02
1.

27
e-

03
1.

56
e-

07
4.

15
e-

01
1.

01
e-

09

TI
N

F2
7.

4e
-2

7
9.

32
e-

04
6.

83
e-

01
5.

39
e-

04
1.

01
e-

07
3.

14
e-

51
7.

04
e-

12
9.

54
e-

04
1.

28
e-

06
7.

38
e-

03
7.

9e
-0

4
4.

8e
-0

.6

TP
P1

1.
31

e-
01

7.
16

e-
10

1.
27

e-
03

2.
18

e-
01

6.
4e

-4
2

7.
53

e-
09

1.
09

e-
21

5.
71

e-
07

1.
62

e-
13

2.
86

e-
02

1.
91

e-
01

1.
83

e-
31

PO
T1

8.
5e

-0
7

6.
55

e-
71

2.
12

e-
05

6.
46

e-
35

2.
89

e-
31

6.
21

e-
41

3.
26

e-
22

2.
37

e-
08

4.
67

e-
04

1.
43

e-
09

4.
6e

-0
1

2.
12

e-
18



Page 12 of 20Chakraborty and Banerjee ﻿Biology Direct          (2024) 19:120 

Fig. 7  Kaplan-Mier plots of the patient survival of the a. TERF1 b. TERF2 c.TINF2 d. POT1
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Fig. 8  The mutation plots using a. POT1 is found to be significantly mutated in CLL. b. The circos plot represents the mutations associated 
with shelterin proteins at different chromosomal positions

Fig. 9  The gene correlation heatmap represents the degree of correlation
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link between specific carbon atoms of two sugars. Mul-
tipliers (×) represent the amount of a given monosac-
charide in a glycan structure. ’?’ most likely denotes an 
unknown or unidentified component of the structure. For 
example, if it occurs adjacent to a form, it might indicate 
that the kind of monosaccharide or linkage is unclear. 
The letter ’p’ is not conventional in glycan notation and 
may be context-specific. It might represent a phosphate 
group or another change if compatible with the diagram’s 
context. Some glycan structures are branching. Glycans 
frequently have branched structures due to numerous 
connections, and branching is necessary for their func-
tion in biological systems. Branching patterns can poten-
tially alter glycan function, notably in cell signalling and 
chemical recognition. In the case of TPP1, the first three 
are the only fully defined glycosylation sites. The first 
motif is Tn antigen with enzymes such as GALNT2,1,3
,6,17,18,5,7,10,13,12,15,16,4,6,11,14 and 9. The second 
one has a composition of Hex7 HexNAc2 and enzymes 
like ALG3,14,1,12,2,9,13 and DPAGT1. The last one has 
ALG11,14,1,2,13 and DPAGT1 as enzymes.

G74724QE, G92275SC, G14669DU, G28681TP, 
G34989PA, G01485JJ and G20956ZV are O-glycans, 
while glycosphingolipids are G02815KT, G06110VR, 
G00912UN, G74724QE, G92275SC, G14669DU, 
G66538GV, G72291OX, G28681TP, G50282JC, 

G84349RE and G20956ZV. All but G57321FI and 
G93180LE are N-glycans.

Functional enrichment
The InterPro database lists the functional gene set enrich-
ment based on InterPro and PANTHER analysis. Fig-
ure 11 represents the PPI and Table S2 lists the detailed 
information regarding the same.

Conservation profile of shelterin proteins
Utilising the STRING database, the co-occurrence profil-
ing of the shelterin proteins was performed across a wide 
array of taxa. It is seen that the sequences of the proteins 
are most conserved among the taxa: Glires (28 taxa), Cer-
copithecidae (12 taxa), Homininae (4 taxa) [Pan (2 taxa), 
Homo sapiens, Gorilla gorilla], Pongo abelii, Nomas-
cus leucogenys, Platyrrhini (4 taxa). Only TPP1 was less 
conserved in Nomascus leucogenys (Fig. 12). The darker 
shade of red the cooccurrence profile shows, the more 
significant it is.

Discussion
Shelterin is a well-known protein complex linked to 
cancer, crucial for understanding tumorigenesis and 
developing telomere-based therapies. Recent research 
suggests that shelterin components significantly impact 
cancer and ageing, with mouse models supporting this 

Fig. 10  The glycosylated domains associated with the only shelterin protein, TPP1. The squares represent Nacetyl Hexosamine (GlcNAc), the circle 
galactose, the rhombus/diamond sialic acid, and the triangle fucose. The colour coding of each shape signifies a particular type of monosaccharide 
or alteration. Yellow and bluesquares frequently represent N-acetylgalactosamine (GalNAc), whereas green circles typically represent mannose. α 
and β represent the anomeric conformation of the glycosidic bond
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theory. However, the full complexity of telomere capping 
structures remains elusive. Little is currently understood 
about the regulation of shelterin components during 
development and in pathological conditions. Changes in 
several shelterin components, such as TERF2, TERF1, 
and TINF2, have been identified in human cancers, high-
lighting potential therapeutic targets to combat cellular 
ageing and telomerase activity in various cancers.

Traditionally, therapies target individual signalling 
pathways or dysregulated proteins. This study focuses on 
the shelterin complex’s role in mediating the function of 
various non-coding RNAs (ncRNAs) involved in cancer 
development. We employed network-based approaches 
to identify specific cliques involving the interactions of 
differentially expressed mRNAs, miRNAs, lncRNAs, 
and drugs/small molecules. These interactions provide 
a comprehensive view of the disease environment under 
the influence of interacting RNAs and drugs, suggest-
ing new therapeutic strategies. The ncRNAs are often 

overlooked or treated as separate entities in disease 
mechanisms. However, they interact with mRNAs and 
play a crucial role in disease progression. For example, in 
the absence of a drug, dysregulated levels of ncRNAs can 
alter coding RNAs or protein expression levels, leading 
to disease. Using this network-based approach, we aim to 
understand the crosstalk between mRNAs and ncRNAs, 
paving the way for future therapeutic interventions con-
sidering the entire disease environment.

As discussed previously, conventional drugs are linked 
to various side effects and the development of drug resist-
ance in cancer cells (CCs). These complications arise 
partly due to interactions with approved medications. In 
this context, not only messenger RNAs (mRNAs), micro-
RNAs (miRNAs), and long non-coding RNAs (lncRNAs) 
have emerged as promising therapeutic targets, but also 
three key transcription factors (TFs) identified among 
the top 15 in ChEA3 analysis have shown significant 
potential. Targeting these specific TFs could be crucial 

Fig. 11  Functional enrichment analysis associated with the shelterin protein complex
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Fig. 12  The co-occurrence heat-map visualisation of the shelterin proteins across different taxa
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in combating cellular ageing across different types of 
cancers. Focusing on these non-coding RNAs (ncRNAs) 
and transcription factors makes fine-tuning conventional 
cancer drug dosages possible. This approach aims to min-
imize adverse effects and enhance the overall effective-
ness of cancer therapies. The miR139-5p is a prognostic 
thyroid cancer marker involved in HNRNPF-mediated 
alternative splicing [49]. The miR449a has evidence of 
being a prognostic biomarker in different cancers [50]. 
The miR17-5p is associated with poor prognosis in pros-
tate cancer [51]. miR518d-5p utilizes mitochondrial 
activity to overcome liver tumour cell apoptosis [52]. 
miR340-5p targets RhoA, inhibiting colon cancer cell 
viability and metastasis [53]. The miR5580-3p inhibits 
oral cancer cell immortality by suppressing LAMC2 [54]. 
miR671-5p is involved in cellular immortality by target-
ing ALDH2 [55].

This study’s network pharmacology approach reveals 
significant interactions between nine microRNAs (miR-
NAs) and the long non-coding RNA (lncRNA) NEAT1 
with shelterin proteins. NEAT1 engages with TFs or shel-
terin complexes to activate the expression of oncogenes 
or cell cycle-regulating genes. NEAT1 promotes the pro-
cess of EMT, which is linked to metastasis and cancer cell 
invasiveness. NEAT1 may affect the shelterin complex’s 
ability to regulate telomerase activity. In certain malig-
nancies, telomerase is activated to forestall telomere 
shortening, allowing limitless cell division. Interactions 
between NEAT1 and shelterin may impact this balance, 
resulting in telomere extension and the avoidance of cel-
lular senescence, which is a crucial aspect of cancer cell 
longevity. If NEAT1 affects normal shelterin activity, it 
may cause impaired telomere function and chromosomal 
imbalances, which are common in cancer cells. Chromo-
somal instability can cause genetic diversity in tumors, 
which contributes to cancer growth and resistance to 
treatments. NEAT1 may regulate TERC (telomerase 
RNA component) and other telomere-associated param-
eters. The functions of NEAT1 in paraspeckle formation 
and shelterin in DNA damage response may overlap. 
NEAT1 regulates paraspeckles, which store stress-related 
substances. NEAT1 inhibitors could potentially increase 
the efficiency of telomerase inhibitors.

Shelterin proteins are crucial for the protection and 
maintenance of telomeres, the ends of chromosomes, and 
their interaction with these non-coding RNAs (ncRNAs) 
suggests that the ncRNAs may modulate the function of 
shelterin proteins. The modulation of these ncRNAs in 
shelterin proteins is further substantiated by evidence 
showing that conventional cancer drugs such as doxoru-
bicin and diethylstilbestrol influence these ncRNAs. This 
indicates a complex interplay where these drugs not only 
target cancer cells directly but also alter the expression 

and function of ncRNAs, which in turn can modulate the 
shelterin proteins.

Significant transcription factors (TFs) like RUNX1, 
CTCF, and KDM2B have also been identified as potential 
biomarkers due to their interactions with miRNAs and 
shelterin proteins. These TFs play a crucial role in gene 
regulation and are involved in various cellular processes, 
including cell growth, differentiation, and apoptosis. The 
interactions of these TFs with miRNAs and shelterin 
proteins further highlight their importance in regulat-
ing telomere maintenance and cellular ageing. RUNX1, 
for example, regulates gene expression in hematopoiesis 
and has been implicated in several cancers. CTCF is a key 
regulator of chromatin structure and gene expression, 
playing a role in maintaining genome stability. KDM2B, 
a histone demethylase, is involved in chromatin remodel-
ling and gene expression regulation [56–58].

Point mutations in POT1, particularly those affect-
ing its oligonucleotide/oligosaccharide-binding (OB) 
fold domain (POT1 c.1432G > T (p.Cys476Phe) and 
c.1166C > T (p.Ala389Val), have been found in malignan-
cies including chronic lymphocytic leukaemia (CLL), 
melanoma, and gliomas. Mutations in POT1 impair its 
capacity to bind telomeres, resulting in deprotected tel-
omeres and high telomerase activity. POT1 interacts 
with telomeric Repeat-containing RNA (TERRA) to con-
trol telomere length. When POT1 is mutated, TERRA 
levels rise, resulting in telomere disruption, linked to 
various cancer types [13, 59]. Deletions and point muta-
tions (R425W) in TRF1 have been found in malignan-
cies, including lung cancer, glioma, and acute myeloid 
leukaemia (AML). TRF1-deficient cells have weak tel-
omeres prone to breaking and recombination, promot-
ing mutation and cancer growth. RF1 mutations may 
attract NEAT1 and MALAT1 to create paraspeckles 
that control alternative splicing and RNA processing in 
response to telomere disruption. Mutations such as TRF2 
T241A reduce its ability to prevent telomeres from being 
detected as DNA breaks. Point mutations (K280E) in 
TIN2 have been found in patients with dyskeratosis con-
genita (DC), which is linked to an elevated cancer risk. 
TPP1 mutations (D224A) are linked to family melanoma, 
aplastic anaemia, and glioblastoma [24, 60–67].

By understanding these interactions, researchers can 
better grasp how ncRNAs and TFs contribute to telomere 
maintenance and the overall regulation of cellular age-
ing and cancer progression. This knowledge could lead 
to developing novel therapeutic strategies targeting these 
ncRNAs and TFs, potentially enhancing the efficacy of 
existing cancer treatments and reducing side effects by 
enabling more precise modulation of drug dosages.

The expression profiles reveal that shelterin pro-
teins are prominently present in several major types of 
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cancer, including acute myeloid leukaemia (AML), pros-
tate, breast, renal, testicular, and skin cancers. Analysis 
using violin plots, which depict the distribution of data 
points, indicates that shelterin proteins are significantly 
expressed not only in normal and tumour states but also 
in the metastatic states of these cancers.

Furthermore, overall survival profiles indicate a strong 
association between the expression of all five shelterin 
proteins and patient survival across multiple cancer 
types, such as renal, breast, head and neck, lung, uter-
ine, and stomach cancers. This correlation suggests that 
higher or altered levels of shelterin proteins can impact 
patient prognosis.

Mutations or variations in shelterin proteins are known 
to disrupt various cancer-related pathways. These dis-
ruptions can lead to dysregulated cellular processes, 
including accelerated telomere lengthening, which sup-
ports the concept of cellular immortality—a hallmark 
of cancer progression. Therefore, specific mutations in 
shelterin proteins are significant contributors to cancer 
tumorigenesis.

The conservation of shelterin proteins—a highly con-
served complex across eukaryotic species—plays a crucial 
role in maintaining telomere integrity and chromosomal 
stability in normal cells. This evolutionary conservation 
ensures that the fundamental mechanisms of telomere 
protection and replication are maintained, preserving 
genomic stability across diverse cell types and organisms. 
The heatmap generated in the analysis highlights these 
overlaps, where darker shades represent genes involved 
in multiple cancers. Except for TINF2 in lung and tes-
ticular cancers and TPP1 in uterine cancers, shelterin 
proteins correlate positively across all 40 cancer types 
analyzed. The conservation of shelterin proteins is criti-
cal for telomere integrity and genomic stability in normal 
cells. These proteins, which include TRF1, TRF2, POT1, 
TIN2, TPP1, and RAP1, prevent telomeres from being 
identified as DNA damage, regulate telomerase activity, 
and prevent ineffective DNA repair mechanisms. This 
ensures controlled cell division in normal cells while also 
preventing premature senescence or apoptosis. However, 
in malignant cells, mutations or changed expression of 
shelterin components compromise telomere protection, 
resulting in genomic instability, a cancer hallmark. Muta-
tions in proteins such as POT1 or TRF2 can cause exces-
sive telomerase activity or telomere shortening, resulting 
in uncontrolled cell proliferation and chromosomal rear-
rangements that promote cancer. Thus, whereas shelterin 
complex conserved functions are critical for normal cell 
biology, their dysregulation in cancer drives oncogenesis.

The study by Luo et  al. (PMID: 33,497,432) [68] pro-
vides a comprehensive pan-cancer analysis of shel-
terin proteins, investigating their expression patterns, 

mutations, and prognostic value across multiple cancer 
types. POT1, TRF1, and TRF2 were generally upregu-
lated in most cancers. Frequent mutations in shelterin 
genes result in several cancers, including melanoma, 
lung adenocarcinoma, and colorectal cancer, especially 
POT1 mutations are prevalent. High expression of TRF2 
and TIN2 was correlated with worse survival outcomes 
in lung cancer and glioblastoma, suggesting that shel-
terin protein levels can have prognostic significance. In 
this study, the comprehensive examination of shelterin 
proteins underscores their critical role in cancer biol-
ogy. Their significant expression in various cancer states 
and their association with patient survival point to their 
potential as biomarkers for prognosis and therapeutic 
targets. The genetic correlations observed across differ-
ent cancers suggest a common underlying mechanism 
involving shelterin proteins, further emphasizing their 
importance in cancer research and treatment strategies.

Glycosylation, the most intricate post-translational mod-
ification of proteins, plays a crucial role in cancer patho-
genesis and progression. Altered glycans on the surfaces of 
both tumour and host cells and within the tumour micro-
environment have been identified as crucial mediators 
of critical events in these processes. According to Ogata 
et al., malignant cells are notably more enriched with highly 
branched complex-type N-linked sugar chains compared to 
their regular counterparts [69]. TPP1’s unique status as the 
only shelterin protein with 22 different glycosylation sites 
across various cancers highlights its potential significance 
in cancer biology. The modification of TPP1 through glyco-
sylation likely plays a critical role in telomere maintenance, 
protein stability, cellular localization, and the aggressive 
characteristics of cancer cells, making it a promising focus 
for further research and therapeutic development.

Conclusion
Current oncogenesis research is increasingly focusing on 
the shelterin complex. Various studies have identified the 
involvement of shelterin proteins in different tumours, 
including lymphocytic leukaemia, squamous cell car-
cinoma, non-small cell lung cancer, and breast cancer. 
Notably, the expression levels of certain shelterin compo-
nents, such as TRF2, TRF1, and TIN2, have been found to 
be altered in many cancers. Some shelterin proteins also 
play crucial roles as either telomerase recruitment factors 
(POT1 and TPP1) or negative regulators of telomere length 
(TRF1 and TRF2). Understanding the role of the shelterin 
complex in telomere maintenance during tumorigenesis is 
essential. The data discussed underscore the potential of 
shelterin components as attractive targets for future anti-
cancer therapies, offering promising prospects for progno-
sis and the prediction of cancer aggressiveness. Given their 
connection with telomere and telomerase biology, shelterin 
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proteins could be pivotal in developing combined strate-
gies and synergistic therapeutic interactions for cancer 
treatment.
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