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Abstract 

Background  Integrating multi-layered information can enhance the accuracy of genomic prediction for complex 
traits. However, the improvement and application of effective strategies for genomic prediction (GP) using multi-
omics data remains challenging.

Methods  We generated 11 feature sets for sequencing variants from genomics, transcriptomics, metabolomics, 
and epigenetics data in beef cattle, then we assessed the contribution of functional variants using genomic restricted 
maximum likelihood (GREML). We next estimated and ranked variant scores for 43 economically important traits, 
and compared the prediction accuracy of the top and bottom sets using genomic best linear unbiased prediction 
(GBLUP) and BayesB model. In addition, we annotated the variants from GWAS with functional feature sets and per-
formed enrichment analysis.

Results  We observed significant enrichments for 32 functional categories in 11 feature sets. The evolutionary related 
sets (conservation regions and selection signatures) contributed significantly to heritability (31.78-fold and 14.48-fold 
enrichment), while metabolomics and transcriptomics showed low heritability enrichments. We observed a significant 
increase in prediction accuracy using the top feature set variants compared to whole-genome sequencing (WGS) 
data. The prediction accuracy based on the top 10% variant set showed an average increase of 11.6% and 7.54% using 
BayesB and GBLUP across traits, respectively. Notably, the greatest increase of 31.52% was obtained for spleen weight 
(SW) using BayesB. Also, we found that the top 10% of variants show strong enrichment with weight related QTLs 
based on the Cattle QTL database.

Conclusions  Our findings suggest that integrating biological prior information from multiple layers can enhance our 
understanding of the genetic architecture underlying complex traits and further improve genomic prediction in beef 
cattle.

Background
Genomic prediction (GP), an effective approach for 
enhancing selection and promoting breeding efficiency 
[1, 2], has been widely applied in the fields of plant and 
animal breeding [3, 4]. Many parametric and nonpara-
metric statistical methods have been proposed to pre-
dict Genomic Estimated Breeding Values (GEBVs) 
[5]. GBLUP constructs a genetic relationship matrix 
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to facilitate the estimation of GEBVs [6]. The Bayesian 
alphabet assumes a priori that the variances of effects for 
many single nucleotide polymorphisms (SNPs) are zero, 
while the effect of SNPs follow Student’s t distribution 
[7]. Such models formulate distinct hypotheses regard-
ing the distribution of marker effects and their impact 
on genetic variation [8, 9]. GP has been primarily applied 
based on SNP arrays [10, 11]. With the cost of whole-
genome sequencing (WGS) decreasing, the application of 
WGS for GP has been widely applied in farm animals [12, 
13]. GP using WGS data may promote prediction accu-
racy because it covers more SNPs across the genome than 
SNP arrays [14, 15]. A previous simulation study showed 
the superiority of BayesB over GBLUP using WGS, while 
the accuracy of GEBV increased when compared to SNP 
array [16, 17]. GP based on WGS data, was more accurate 
when using BayesB than using GBLUP [18].

The use of WGS data for GP may be limited by the 
substantial presence of linkage disequilibrium (LD) 
and diverse genomic functional regions. This scenario 
reduces the signal-to-noise ratio when employing WGS 
data directly for GP without a biological prior [19–21], 
thus many studies have been conducted to incorporate 
genomic information into statistical models by control-
ling for LD and annotating variants based on different 
functional classes [22, 23]. Moreover, the availability of 
multi-omics information (e.g., genomics, transcriptom-
ics, proteomics and metabolomics) bridges a vital link 
between genotypes and phenotypes which provides a 
biological prior for genomic prediction. The Genotype-
Tissue Expression (GTEx) Project was initiated with the 
objective of collating genetic influences on gene expres-
sion in human tissues and facilitating an enhanced 
understanding of the dynamics of regulatory genetic vari-
ation by elucidating the molecular mechanisms under-
lying genetic correlations with complex diseases and 
traits [24]. Similarly, the Farm Animal Genotype-Tissue 
Expression (FarmGTEx) Project serves as an extensive 
public repository, facilitating the discovery of tissue-
specific genetic regulatory variants and the prediction 
of molecular phenotypes in farm animals [25, 26]. Addi-
tionally, the Functional Annotation of Animal Genomes 
(FAANG) Project seeks to improve comprehension of 
genome functionality through comprehensive annotation 
efforts. This annotation information helps to refine the 
accuracy and sensitivity of genomic selection strategies 
for animal [27, 28].

Many approaches have been developed to estimate 
genomic values and improve genomic prediction accu-
racy using multi-omics information [28–30]. Ye et  al. 
refined the GFBLUP model using transcriptomics infor-
mation in Drosophila [31], revealing that significant 

variations identified through a transcriptome-wide 
association study (TWAS) contribute more effects than 
those identified through genome-wide association study 
(GWAS). Xu et al. applied Bayesian ridge regression (BR) 
to evaluate the accuracy of GP for complex traits by inte-
grating transcriptomics, proteomics, and metabolomics 
data, suggesting that large biobanks could reliably and 
efficiently explore trait–disease associations using multi-
omics data [32]. Additionally, Hu et al. designed a novel 
GP strategy called multilayered least absolute shrinkage 
and selection operator (MLLASSO) by integrating multi-
omics data into a single model, their finding suggested 
MLLASSO can significantly improve the predictability of 
yield in rice [33]. Although these approaches have been 
successfully employed in many  studies, the integration 
of disparate data types into comprehensive system-scale 
analyses represents a significant challenge [34].

In this study, we generated genomic feature sets for 
sequencing variants by integrating multi-layered biologi-
cal priors in beef cattle, then we assessed the contribu-
tion of functional variants and estimated variant scores 
for 43 economically important traits. Further, we evalu-
ated and compared the GP accuracy based on functional 
variants using GBLUP and BayesB (Fig. 1).

Methods
Dataset
The measurement of phenotypes and genotypes was 
performed as described in our previous studies [35, 36]. 
The phenotypic data were generated from 1577 Huaxi 
(derived from Chinese Simmental beef cattle), which 
were born between 2008 and 2020 from Ulgai, Xilingol 
League, and Inner Mongolia, China. After weaning, all 
individuals were moved to Jinweifuren Co., Ltd. for fat-
tening under the same feeding and management condi-
tions. All samples were genotyped by Illumina BovineHD 
SNP array. The SNP positions were determined based on 
the ARS-UCD1.2 reference genome, the SNP imputation 
was carried out using Run 8 of the 1000 Bull Genomes 
Project and 44 representative individuals from our stud-
ied population. After filtering variants with the thresh-
old of MAF < 0.05 and DR2 < 0.8, we retained a total of 
10,213,925 autosome SNPs with an average DR2 of 0.93. 
A total of 43 traits including carcass and beef cut traits 
were included in this study. Detailed information for traits 
is presented in (Supplementary file 1, Table  S1). All of 
the traits were adjusted by gender, year, acid remove day, 
enter weight and enter day. The phenotypes were adjusted 
by the significant factors using the glm function in R.
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Annotation
The SnpEff software was used to annotate and predict the 
effects of genetic variants, and the bovine genome anno-
tation (ARS-UCD1.2) was downloaded from Ensembl 
[37, 38]. According to genome annotation information, 
the bovine genome was partitioned into six genomic 
classes, including 1) intergenic.regions, 2) intronic.
regions, 3) geneend.regions, 4) cording.related.regions, 
5) regulatory.related.regions, 6)3’ untranslated regions 
(UTR) and 5’ UTR.

LD, allele frequency and variant density
The levels of LD, allele frequency and variant den-
sity were divided based on three quartiles. We used the 
GCTA software to calculate the LD score in the sur-
rounding 50  kb region, and then we used the LD score 

of each variant to bin all variants by quartile [39, 40]. 
Variants were unevenly distributed across the genome. 
VCFtools software was used to calculate the density 
within fixed 50 kb windows [41]. The allele frequency was 
divided by the minor allele frequency (MAF). The values 
of the quartiles were as follows: fourth quartile > third 
quartile > second quartile > first quartile.

Potential variants for production traits using WGS
We retrieved candidate variants related to body size and 
beef production traits in cattle, which are publicly avail-
able from sequence-based meta-GWAS with a larger 
number of animals from diverse cattle populations [42, 
43]. Finally, 583,438 variants were used to define as  the 
potential variants (p-variants).

Fig. 1  Schematic overview of current study. a Data collection. We divided the full variants from WGS data into 11 feature sets (annotation, LD, 
allele frequency, variant density, p-variants, selection signature, conservation, eQTL, mQTL, OCR and HMRs) from genomics, transcriptomics, 
metabolomics, and epigenetics data. b. Calculate variants score. For each of the 43 traits, we estimated the variance explained by the random 
effects associated with each GRM using GREML. Each GREML analysis incorporated two random effects: one based on the targeted GRM 
and another based on the GRM derived from the remaining variants. We calculated the proportion of genetic variance attributed to the targeted 
GRM for each trait. To determine the per-variant heritability, we divided the explained variance by the number of variants in the set. Finally, we 
averaged this value across the 11 functional sets for each variant. c. Validation analysis. To assess the reasonableness of the scores, we established 
six thresholds: “top-5”, “top-10”, “top-30”, “bottom-5”, “bottom-10” and “bottom-30” We then compared the variance explained by each threshold 
with the accuracy of the genomic predictions. To ascertain whether there are pertinent QTL enrichments for our top variants, we conducted a QTL 
enrichment analysis using the Cattle QTL Database
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Selection signature
The selscan software with a setting of the max-gap 
800,000 bp was used to estimate the iHS score for autoso-
mal SNPs [44]. The norm module of selscan was applied 
to normalize the iHS score, and single site values for 
iHS were averaged in nonoverlapping windows of 50 kb 
across the genome. Regions in the top 1% with the high-
est average |iHS| score and SNP numbers greater than 
10 were regarded as candidate regions under positive 
selection.

Conserved sites
In this study, we used conserved sites to map gene 
regions that may be involved in basal metabolism. The 
conserved genome sites in cattle were transformed from 
humans. First, the conserved sites were based on conser-
vation between 100 vertebrate species, and the Wiggle 
file was downloaded from UCSC. All the conserved sites 
in the human genome were 113,280,297, the sites were 
lifted over to the cattle genome (102,953,048) by LiftOver 
(https://​genome.​ucsc.​edu/​cgi-​bin/​hgLif​tOver), and only 
the PhastCon score > 0.9 was chosen. Finally, a total of 
192,825 variations were remained after merging the con-
verted variants.

Meta‑analysis of expression QTLs (eQTLs)
We conducted cis-eQTL mapping for three tissues (mus-
cle, liver and adipose) according to our previous study 
[45]. The SNPs located within 1  Mb up/downstream of 
the transcription start sites (TSSs) were defined as poten-
tial cis-eQTLs [46]. In this study, each variant had an 
estimate of the effect and standard error (se), allowing for 
the three tissues to perform meta-analysis in this study 
by METAL software [47]. We obtained 240,683 variants 
as the eQTLs sites under threshold of 0.05 based on the 
false discovery rate(FDR) .

Meta‑analysis of metabolic QTLs (mQTLs)
A total of 397 metabolites were extracted from 117 indi-
viduals. The polar metabolome extracts were analyzed 
using reversed-phase chromatographic separation with 
positive and negative ionization detection. The metabo-
lome data were measured and corrected according to our 
previous study [48]. The metabolites were screened using 
three criteria: 1) We computed the pearson correlation 
coefficient between the traits and the metabolites. A total 
of 328 metabolites correlated with at least one trait were 
retained for subsequent analysis ( |r|≥ 0.25). 2) The herit-
ability of relevant metabolites was calculated, then  we 
obtained 74 significant heritable metabolites (0.1< 
h2  < 0.9 and P<0.05). 3) GWAS analyses were performed 
based on the LMM for the 74 metabolites. We consid-
ered only the GWAS of 66 metabolites with inflation 

factors ranging from 0.98 to 1.02 for the meta-analysis 
in METAL software [47]. We obtained 386,995 candidate 
pleiotropic variants for metabolites with < P9.79E-08.

Epigenetic signals
Peak calling for muscle samples was performed using 
Genrich with the following parameters: -m 30, -j (ATAC-
seq mode), -r (remove PCR duplicates), -e MT (to exclude 
mitochondrial chromosome), -q 0.05 (FDR-adjusted 
P-value). We obtained 495,903 variants as open chroma-
tin region (OCR). For hypomethylated regions (HMRs) 
detection, we chose a 10 kb window size for muscle sam-
ples using the Methpipe software with the default param-
eters [49]. We obtained 762,835 variants as HMRs.

Variation score construction
The GREMLwas used to estimate the variance compo-
nents. First, the different genomic relationship matrixes 
(GRMs) were made of the target variants and the remain-
ing variants. Target variants were identified in 11 cat-
egories (conservation, annotation, selection signature, 
p-variants, LD, allele frequency, density, eQTLs, mQTLs, 
OCRs, and HMRs). Variants in these 11 categories refer 
to the  target variants, whereas the remaining variants 
refer to the  non-target variants. The  variance compo-
nents are estimated using a linear mixed model.

where y∗ is the vector of adjusted phenotypic values, gc is 
the vector of individual polygenic effects associated with 
annotation groupc , C is the total number of fitted annota-
tion groups, and e is the random residual effect, which is 
assumed to follow a normal distribution of e ~N

(

0, σ 2
e I
)

 . 
where gc is the genomic relationship matrix (GRM) com-
puted using the variants present in category, which were 
calculated by Yang’s method [50]. Then, the GCTA soft-
ware was used to calculate the variance explained by 
random effects described for each GRM [39]. The mean 
heritability of the variation within target region for each 
trait was calculated, the partitioned heritability were 
estimated via the mean heritability divided by the num-
ber of variants [51]. To avoid LD heterogeneity along the 
genome, the LD level was chosen to adjust the score [52, 
53] (Supplementary file 1, Table S2).

(1)y∗ =

C
∑

c=1

gc + e

Strait =

∑43
1 h2i
43

Sset =
Strait

N

https://genome.ucsc.edu/cgi-bin/hgLiftOver


Page 5 of 16Zhao et al. Biology Direct          (2024) 19:147 	

Strait is the heritability after pooling an average of 43 
traits, and Sset is the average heritability of the variant 
within each category, N  is the number of the functional 
sets. For the LD feature set, nLD1 , nLD2 , nLD3 and nLD4 are 
the numbers of variant members within the 1st, 2nd, 3rd 
and 4th LD score levels, respectively. h2LD1 , h2LD2 , h2LD3 
and h2LD4 are the mean heritability of the 43 traits at the 
LD level. Sadj  is the value after adjustment by LD. Svariant 
is the mean heritability for 11 categories and is the com-
bined score value of variance [51].

The enrichment of each category is quantified using 
the ratio of EST  to EXP . EST  denotes the estimated total 
heritability associated with the category, normalized by 
the estimated SNP heritability, which represents the pro-
portion of heritability attributable to SNPs within that 
specific category. In contrast, EXP signifies the expected 
contribution of the category to overall SNP heritability, 
which was calculated by the ratio of the number of SNPs 
within the category to the total number of SNPs analyzed 
[54].

Finally, the combined variant score among the 11 fea-
ture sets was obtained. The top 5%, 10% and 30% and 
bottom 5%, 10% and 30% ranked  variants were selected 
as the “top-5”, “top-10”, “top-30”, “bottom-5”, “bottom-10” 
and “bottom-30”, respectively.

GBLUP model

where y∗ is the vector of adjusted phenotypic values, X 
is the design matrix selected by different thresholds (the 
top 5%, 10%, and 30% and bottom 5%, 10%, and 30%) 
relating additive genetic values to the phenotype, g is the 
vector of genomic values captured by the genetic markers 
linked to target variants, which follow a normal distribu-
tion g ∼ N

(

0, σ 2
g G

)

 . G was calculated using Yang’s 
method, and e is a vector of random residual effects. The 
GBLUP model is implemented in the GCTA software 
[39].

(2)
h2LD =

nLD1 × h2LD1 + nLD2 × h2LD2 + nLD3 × h2LD3 + nLD4 × h2LD4
nLD1 + nLD2 + nLD3 + nLD4

Sadj = Sset − h2LD

Svariant =

∑11
1 Sadj

11

(3)y∗ = Xg + e

BayesB model
In this study, we chose the BayesB model to predict the 
individual phenotypes, the equation:

where y∗ is the adjusted phenotype, zj is the vector of 
genotype (0,1,2) across animals for the SNP, aj is the allele 
substitution effect for the SNP, and δj is an indicator of 
whether the SNP was included ( δj = 1) or excluded ( δj = 0) 
in the model for a given Markov chain Monte Carlo 
(MCMC) iteration. The BayesB model is implemented in 
the GCTB software [55].

Evaluation of prediction performance
To avoid the impact of the number of variants on the 
accuracy of genomic prediction, we performed subsam-
pling on WGS data by simulating a variant set containing 
10% variants. The autosomal variants were sorted based 
on their base pair (BP) positions and then divided into 
bins, each containing 10 variants. From each bin, one 
variant was randomly selected to compose the variant 
panel [56, 57]. We then performed genomic prediction 
with simulated panels using the GBLUP model.

The accuracy of the predictions was assessed using a 
five-fold cross-validation method with five repetitions. 
Genomic prediction accuracy ( Acc = cor

(

y∗,GEBV
)

 ) 
was determined by calculating the Pearson correla-
tion coefficient between adjusted phenotypic values and 
GEBVs separately for each of the five-fold cross-valida-
tion replicates.

The GWAS significant regions mapping and QTLs 
enrichment
The GWAS was performed by using a mixed linear 
model-based association analysis in GCTA software [39]. 
The mixed linear model was used for GWAS:

where y∗ is the adjusted phenotype, b is the additive 
effect (fixed effect) of the candidate SNP to be tested 
for association, x is the SNP genotype indicator variable 
coded as 0, 1 or 2, g is the random effect and accumu-
lated effect of all SNPs, g~N

(

0, σ 2G
)

 , and e is a vector of 
random residual effects. FDR was used to determine the 
threshold values for single-trait GWAS.

QTL enrichment analysis was carried out using the 
GALLO package [58] by comparing the number of anno-
tated QTLs within candidate regions to the total number 
of QTLs in the Cattle QTL database [59].

(4)y∗ =

k
∑

j

zjajδj + e

(5)y∗ = bx + g + e
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Results
Summary statistics and genetic parameter estimations 
of 43 traits
The detailed summary statistics of the 43 traits are pre-
sented in (Supplementary file 1, Table  S1), including 
the mean, median, coefficient of variation (CV), and 

standard deviation (SD). As expected, strong pheno-
typic correlations were observed between traits (Fig. 2a). 
The heritability estimates from the GREML are dis-
played in Supplementary file 1, Table  S1. Seventeen 
traits showed high heritability, 16 showed medium her-
itability, 10 showed low heritability. Hind shin (HS) had 

Fig. 2  The phenotype and genetic parameters of carcass traits. a The phenotype correlation between the 43 carcass traits is presented in the form 
of a color-coded box plot. The color of each box represents a positive correlation (red) or a negative correlation (blue). b The heritability of the 43 
traits is presented in a similar format. Low heritability (0~0.2), medium heritability (0.2~.4), and high heritability (0.4~1)

Table 1  Merged and original functional annotation of sequence variants

Merged set name Original annotation set name Number Sum

UTR​ 3_prime_UTR_variant 33,021 43,207

5_prime_UTR_variant 1669

5_prime_UTR_premature_start_codon_gain_variant 8517

intergenic intergenic_region 6,132,394 6,132,394

geneend downstream_gene_variant 388,028 863,401

upstream_gene_variant 475,373

intron intron_variant 3,096,627 3,096,627

regulatory.related splice_acceptor_variant 110 11,534

splice_donor_variant 164

splice_region_variant 6222

non_coding_transcript_exon_variant 5038

coding.related synonymous 43,651 66,762

missense_variant 22,680

initiator_codon_variant 23

start_lost 66

stop_gained 279

stop_lost 41

stop_retained_variant 22

Total 10,213,925
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the highest heritability (0.66), while fat cover percentage 
(FCR) showed the lowest heritability (0.05) (Fig. 2b).

The category of variants
In this study, we divided the full variants from WGS data 
into 11 feature sets (annotation, LD, allele frequency, var-
iant density, p-variants, selection signature, conversation, 
eQTL, mQTL, OCR and HMRs). First, we annotated a 
total of 10,213,925 variants based on the ARS-UCD1.2 
reference genome (Table 1). Among them, the majority of 
variants were located in intergenic and intronic regions, 
while only 0.65% were found in coding regions. The 
p-variant set contains 583,438 variants.

Selection signature set were selected based on the top 
1% of regions with the highest |iHS| values (109,325). 
Different sets of variants were also divided according to 
the distribution of LD score (LD1, LD2, LD3, and LD4), 
MAF (Freq1, Freq2, Freq3, and Freq4) and variant density 
(Density1, Density2, Density3, and Density4) based on 
the quartile approach. In addition, conserved sites were 
selected according to a PhastCon score > 0.9 (Table  2). 
Finally, a total of 192,825 variants remained in our subse-
quent analysis.

For the transcriptomic data, a meta-analysis was subse-
quently carried out to identify the candidate variants that 
influence the expression of genes. We obtained 240,683 
variants as eQTL sites with a threshold (FDR < 0.05) 
(Supplementary file 2, Fig. S1a).

For the metabolomic analysis, metabolites with |Cor-
relation coefficients| >  0.25 for at least one trait were 
retained. Heritability analysis was then performed 
on the remaining 328 metabolites with strict crite-
ria ( 0.1 < h2 < 0.9 and P < 0.05 ) (Supplementary file 
2, Fig.  S1b). Finally, 254 categories remained for sub-
sequent analysis. GWAS was performed based on 74 
metabolites, and we obtained 66 metabolites for meta-
analysis after filtering based on the inflation factor. We 
identified 386,995 mQTL variants with a threshold of 
0.05/10,213,925 (Supplementary file 2, Fig. S1c). For epi-
genomics data, a total of 495,903 OCRs were detected in 
muscle tissue by Genrich. We identified 762,835 HMRs 
in muscle tissue using Methpipe with a 10  kb window 
size.

The partitioned heritability estimation based on feature 
sets
We calculated the partitioned heritability for 43 traits 
to assess the contribution of each feature set to traits 
(Table 3). Regulatory-related regions accounted for 6.22% 
of Strait while representing only 0.11% of genome vari-
ants. Our analysis showed a decrease in the square of the 
average heritability Strait from the first to fourth quartile, 
indicating local LD and variant density influence variants 
effect. P-variants explained approximately 9.35% of the 
average genetic variance and constituted 5.71% of WGS 
variants. Conservation and selection signature variants 
accounted for 18.87% and 4.64% of genetic variance, 

Table 2  The summary of the functional annotation sets in this study

The LD score indicates the linkage disequilibrium between pairwise variants in the surrounding 50-kb region. For the three quartiles, fourth quartile scores > third 
quartile > second quartile > first quartile. NA indicates sample from public data

Omics Partitions (Number of animals) Targeted variant sets (no. of variants)

Genomic Conserved 100 species (NA) Bovine genome sites lifted over from human sites with PhastCon score  > 0.9 calcu-
lated using genomes of 100 vertebrate species (192825)

Annotation (NA) SnpEff was used to annotate the variants which was annotated as UTR (43,207), inter-
genic (6,132,394), geneend (863,401), intron (3,096,627), regulatory.related (11,534) 
and coding.related (66,762)

Selection signature (44) Regions at the top 1% with the highest average |iHS| score and SNP numbers greater 
than 10 were regarded as candidate regions under positive selection (109,325)

P-variants (NA) Variants have been identified in cattle: those relating to body size and beef production

LD (1577) First quartile (2,553,483), second quartile (2,553,481), third quartile (2,553,486), 
and fourth quartile (2,553,475)

Freq (1577) First quartile (2,557,044), second quartile (2,555,826), third quartile (2,550,339), 
and fourth quartile (2,550,716)

Variant density (1577) First quartile (2,564,482), second quartile (2,564,733), third quartile (2,538,073), 
and fourth quartile (2,546,637)

Metabolomics mQTLs (117) mQTLs with meta-analysis P < (0.05/10,213,925) from 66 types of metabolites (386,995)

Transcriptomics eQTLs(227 muscle, 120 liver and 117 adipose) eQTLs with meta-analysis (0.05) from 3 types of tissues (240,683)

Epigenomics OCR (10) Peak calling for muscle samples was performed using Genrich with -m 30, -j (ATAC-seq 
mode), -r (remove PCR duplicates), -e MT (to exclude mitochondrial chromosome), -q 
0.05 (FDR-adjusted P-value) (495,903)

HMRs (10) chose a 10 kb window size with the default parameters (762,835)
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respectively, despite representing only 1.89% and 1.07% 
of genome variants. Variants derived from transcriptom-
ics and metabolomics data explained 2.74% and 5.84% 
of genetic variance. Epigenetically, HMRs and OCRs 
explained 7.43% and 9.54% of genetic variance. Over-
all, functional annotation sets contributed significantly 
to heritability (Fig.  3a), with regulatory-related SNPs 
(11,534) showing the greatest enrichment (172.96-fold), 
and coding regions providing a per-SNP predictability 
enrichment of 9.40. Smaller SNP counts in conservation 
and selection signatures yielded substantial contributions 
(31.78-fold and 14.48-fold enrichment). Metabolomics 

data provided greater heritability enrichment (5.03-fold) 
than transcriptomics (3.78-fold), while in the epigenet-
ics category, OCRs outperformed HMRs with a 6.37-fold 
enrichment versus 3.22-fold. After correcting for LD cat-
egories, the ranking of variant sets from per-variant her-
itability showed  highly correlated (R2 = 0.91) with that 
of unranking variant sets(Fig. 3b). 

Performance of GP based on different sets in the GBLUP 
model
We examined the heritability and compared the predic-
tion accuracy of different variant sets and WGS data 
using GBLUP  (Supplementary file 1, Table  S3 and S4). 

Table 3  The partitioned heritability enrichment for the functional annotation sets

SLSN represents selection signature

Category Averaged 
heritability, %

Min /Max 
heritability, %

Number Genome 
fraction, %

Averaged 
Enrichment_ratio

Min /Max 
Enrichment_
ratio

OCR_target 9.54 1.87/ 22.47 495,903 4.86 6.37 1.25/ 15.02

Conservation_target 18.87 2.02/ 52.62 192,825 1.89 31.78 3.38/ 88.57

coding.related 1.95 0.47/ 7.9 66,762 0.65 9.40 2.27/ 38.08

Density1 19.48 0.99/ 57.07 2,564,482 25.11 2.37 0.12/ 6.94

Density2 5.68 1.20/ 22.25 2,564,733 25.11 0.69 0.16/ 2.69

Density3 4.26 0.98/ 15.17 2,538,073 24.85 0.52 0.12/ 1.85

Density4 3.33 0.64/ 13.98 2,546,637 24.93 0.41 0.08/ 1.72

eQTLs_target 2.74 0.49/ 9.39 240,683 2.36 3.78 0.67/ 12.97

eQTLs_rest 28.04 2.04/ 57.14 9,973,242 97.64 0.93 0.07/ 1.90

Freq1 8.82 1.42/ 39.34 2,557,044 25.03 1.11 0.18/ 4.95

Freq2 8.23 0.81/ 22.14 2,555,826 25.02 1.04 0.10/ 2.81

Freq3 8.00 1.02/ 37.54 2,550,339 24.97 1.01 0.13/4.74

Freq4 6.55 1.02/ 17.74 2,550,716 24.97 0.83 0.13/ 2.23

Geneend 2.04 0.54/ 6.61 863,401 8.45 0.76 0.21/ 2.47

SLSN_target 4.64 0.61/ 11.59 109,325 1.07 14.48 1.93/ 36.17

Intergenic 11.28 0.58/ 42.19 6,132,394 60.04 0.59 0.03/ 2.21

Intron 6.73 0.61/ 34.33 3,096,627 30.32 0.70 0.06/ 3.57

LD1 16.14 2.05/ 51.85 2,553,483 25.00 1.92 0.24/ 6.29

LD2 8.00 1.41/ 25.35 2,553,481 25.00 0.96 0.17/ 2.47

LD3 5.37 0.94/ 30.83 2,553,486 25.00 0.64 0.11/ 3.65

LD4 3.98 0.57/ 20.52 2,553,475 25.00 0.48 0.07/ 2.48

OCR_rest 21.25 1.86/ 52.03 9,718,022 95.14 0.73 0.06/ 1.79

Conservation_rest 12.55 1.81/ 35.52 10,021,100 98.11 0.41 0.05/ 1/16

SLSN_rest 25.31 2.09/ 50.70 10,104,600 98.93 0.85 0.07/ 1.70

P-variant_rest 21.53 2.14/ 48.88 9,630,487 94.29 0.74 0.08/ 1.68

HMRs_rest 23.49 1.96/ 56.12 9,451,090 92.53 0.82 0.07/ 1.96

P-variant_target 9.35 1.02/ 21.86 583,438 5.71 5.31 0.58/ 12.43

Regulatory.related 6.20 0.72/34.58 11,534 0.11 172.96 20.11/ 964.67

mQTLs_target 5.84 1.22/ 16.29 386,995 3.79 5.03 1.06/ 14.03

mQTLs_rest 24.84 1.94/ 55.60 9,826,930 96.21 0.84 0.07/ 1.88

UTR​ 3.51 0.51/ 18.06 43,207 0.42 26.15 3.80/ 134.57

HMRs_target 7.43 1.32/ 21.26 762,835 7.47 3.22 0.57/9.21
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Fig. 3  The ranking analysis of 11 feature sets. a The heritability enrichment ratio of functional variant sets averaged across beef cattle. 
SLSN represents selection signature b The correlation between the ranking of variant set based on the LD adjusted per-variant Sadj  (y-axis) 
and the ranking of variant set based on the unadjusted (observed) per-variant Sset (x-axis)

Fig. 4  Genomic prediction based on different thresholds using the GBLUP model a The heritability among 6 thresholds and WGS data in the GBLUP 
model b The accuracy of genomic prediction among 6 thresholds and WGS data in GBLUP model
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The top sets performed significantly better than the bot-
tom sets. We found that the top sets (averages of 0.3740, 
0.4026, and 0.4267 for top-5, top-10, and top-30, respec-
tively) had significantly higher heritability estimates than 
the bottom sets (averages of 0.2420, 0.2578, and 0.3164 
for bottom-5, bottom-10, and bottom-30, respectively) 
(Fig.  4a), and the top sets (averages of 0.2793, 0.2865, 
and 0.2841 for top-5, top-10, and top-30, respectively) 
achieved higher accuracies than the bottom sets (aver-
ages of 0.2376, 0.2364, and 0.2487 for bottom-5, bot-
tom-10, and bottom-30, respectively).

Across all sets and WGS data, the heritability of the 
top-30 exceeded that of GBLUP, with an average increase 
of 6.54%. Specifically, SW, knuckle (KK), and bone weight 
(BW) increased by 13.76%, 10.01%, and 9.36%, respec-
tively. For the top-10 set, the LRW trait exhibited 20.67% 
higher heritability compared to WGS data. Regarding 

prediction accuracy, the top-10 set significantly outper-
formed the WGS data, with an average improvement of 
7.54%. Notably, the LRW, SW, and hind leg length (HLL) 
accuracies increased by 29.40%, 11.30%, and 7.29%, 
respectively (Fig. 4b).

In this study, we randomly selected the 10% variants 
from the WGS data and compared with the full  WGS 
data, we observed enhancements in prediction accu-
racy (4.18%, 2.67%, and 0.78%) for the GBLUP model 
for average daily gain (ADG), carcass weight (CW), and 
live weight (LW), respectively. The top-10 set demon-
strated higher accuracy (4.18%, 2.76%, and 7.95%) com-
pared to the randomly selected variants in ADG, LW, and 
KK (Supplementary file 2, Fig. S2).

Performance of GP based on different sets using 
the BayesB model
In this study, we found that the top-5 set achieved 
higher accuracy compared to the bottom-5 (average 

Fig. 5  Genomic prediction based on different thresholds using the BayesB model a The accuracy of genomic prediction among 6 thresholds 
in BayesB model. b The heritability among 6 thresholds in the BayesB model
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~22.43%)  using BayesB, the top-10 set outperformed 
the bottom-10 set (average ~24.75%), and the top-30 set 
surpassed the bottom-30 set (average ~ 14.50%). These 
findings are consistent with the performance observed 
in the GBLUP model (Fig. 5a). Furthermore, our analysis 
indicated that the top-10 demonstrated superior predic-
tive accuracy when utilizing both the GBLUP and BayesB 
models. Specifically, we observed that the top-10 outper-
formed the top-5 by an average of approximately 2.88% 
and surpassed the top-30 by an average of approximately 
2.83% (Supplementary file 1, Table S3 and S4).

Also, the heritability estimates of the studied traits 
using the BayesB were lower than GBLUP (Fig. 5b, Sup-
plementary file 2, Fig.  S3a), and BayesB significantly 
outperformed GBLUP in terms of genomic prediction 
accuracy. We found a significant increase in the predic-
tion accuracy using BayesB. For instance, the prediction 
accuracy for the SW trait using the top-30 set showed an 
increase of 34.48% over the WGS data, and it increased 
by 31.52% for the SW using the top-10 set. Compared 
with the other methods, BayesB exhibited more improve-
ments based on the top-10 set than others. For example, 
LRW, BW, and KK achieved the highest improvements 
in accuracy (24.90%, 12.95%, and 9.31%, respectively). 
Compared to GBLUP, BayesB showed higher predicted 
accuracy based on the top feature sets for all traits except 
LRW (Supplementary file 2, Fig.  S3b). Particularly, the 

SW showed an approximately 18.17% increase based on 
the top-10 set compared to GBLUP, while BayesB model 
improved by 3.85% over GBLUP on average.  The unbi-
asedness of genomic predictions (from ~0.84 to ~1.17) 
based on different thresholds were also estimated using 
the GBLUP and BayesB models (Supplementary file 2, 
Fig. S4).

Overlap of GWAS variants with functional features 
and QTLs enrichment analysis
The prioritized variants in the variant score were mapped 
to significant regions from the GWAS results for the HS 
and LRW. The top variant with an FDR of 3.3E-04 in the 
candidate region (BTA 6: 36,816,554-37,883,636 bp) was 
associated with HS, exhibiting a strong LD with nearby 
variants. Subsequently, we annotated the variants in this 
region with functional feature sets and observed that sev-
eral variants overlapped with selection signatures, con-
servation, p-variants, and OCRs (Fig.  6a). For LRW, a 
QTL (BTA 14:25,906,554-26,883,636) was annotated with 
variants from OCRs (51.65%), mQTLs (25.87%), HMRs 
(10.39%) and conservation regions (3.87%) (Fig. 6b).

We carried out the overlap analysis between the top-10 
variant set and the functional annotation set, revealing 
significant correlations between the occurrence ratio of 
the functional annotation set and their enrichment folds 
(R2 = 0.56). Variants within the functional annotation set 

Fig. 6  Integrative GWAS analysis of two traits. a Results of the GWAS of the HS trait; the region plot of BTA 6. The colors of the variants are based 
on their LD with the most significant variants. b GWAS results for the FZ trait; the region plot of BTA 14. The colors of the variants are based on their 
LD with the most significant variants
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that exhibited high enrichment were more frequently 
represented in the top-10 set. Notably, all variants cat-
egorized as regulatory-related, conservation, selection 
signatures, and coding-related were identified within 
the top-10 set. Furthermore, our findings indicated that 
variants within the lower enrichment-fold functional 
annotation set, specifically those in LD4, Freq4, and 
Density4 categories, occurred less frequently compared 
to other sets (Supplementary file 1, Table S6). Based on 
the Cattle QTL database [59], the top-10 set of variants 
was predominantly enriched with the production, meat, 
and carcass categories of QTLs, representing 19.15% and 
21.96% of these categories, respectively (Supplementary 
file 2, Fig.  S5a). Further enrichment analysis revealed 
a significant association of the top-10 set with weight 
related QTLs, such as metabolic body weight, average 
daily gain, carcass weight, and longissimus muscle area 
(Supplementary 2, Fig. S5b). Notably, these QTLs showed 
a prominent enrichment in meat color and conformation 
traits, demonstrating the highest richness factor among 
the analyzed traits.

Discussion
In recent years, numerous GP approaches have emerged 
for farm animals and plants [60, 61]. To improve the pre-
diction accuracy, many methods have been proposed by 
integrating biological priors from multi-layered informa-
tion [62, 63]. In cattle, a previous study performed GP 
using the BayesRC model by integrating independent bio-
logical priors, their findings revealed that BayesRC was 
more effective than BayesR in identifying candidate causal 
variants and predicting milk traits[64]. Liang et al. utilized 
transcriptomic data as a T matrix and combined them with 
wmssGBLUP and reported that the transcriptome data has 
the potential to improve genomic predictions [65]. How-
ever, a comprehensive methodology for GP by integrating 
this multi-layered information has not yet been fully devel-
oped [66]. To address this issue, we constructed 11 feature 
sets from multi-omics data and evaluated the contributions 
of functional variants to 43 economically important traits 
in beef cattle.

Multi-omics analyses are useful to characterize the reg-
ulatory regions and annotated mammalian genomes [27, 
67–70]. Our study integrated multi-omics data, includ-
ing comprehensive evolutionary, selection signal, tran-
scriptomic, metabolomic and epigenetic data, based on 
the FAETH framework [51]. By estimating the variance 
explained by each feature set using GREML, we selected 
functional variant sets based on their ranking scores. This 
strategy can help to improve the accuracy of genomic 

prediction, and understand the genetic architecture 
underlying complex traits.

Our findings underscore the significance of incorporat-
ing functional annotation into genomic analyses [71, 72]. 
Zeng et al. revealed that genomic loci displaying conser-
vation across a wider array of species were more prone to 
containing variants correlated with a heightened enrich-
ment of heritability [73]. In humans, conserved regions 
of the genome have been found to markedly enhance 
the estimation of trait heritability [74], a phenomenon 
often attributed to the concentration of functional ele-
ments within these conserved regions [75]. Our findings 
revealed that the selection signature set was capable of 
elucidating a significant portion of the genetic variation 
observed in studied traits, which can contribute larger 
effect for GP compared with WGS data as reported by 
Kemper et  al. [76]. Furthermore, our analysis of the set 
ranking result confirmed that the LD heterogeneity of 
variants have a substantial impact on trait heritability, 
which is consistent with recent evidence for the strong 
influence of LD properties on complex traits [19, 53].

Several studies had showed that the incorporation of 
transcriptomic and metabolomic information can help 
to elucidate the genetic basis for complex traits[77–79]. 
Intermediate QTLs such as eQTLs and mQTLs have 
consistently demonstrated their significance in contrib-
uting to the  regulation of complex traits [80, 81]. These 
intermediate QTLs act as crucial mediators, connect-
ing genetic variants to phenotypic outcomes [82, 83]. 
In this study, we found that the prediction accuracy 
using  metabolomics information surpasses that of tran-
scriptomic information, this could be explained by that 
the complex gene expression patterns of  the diverse tis-
sue sampled in different developmental stages [84–86]. 
Our analysis further revealed the pivotal role of interme-
diate QTLs, emphasizing their importance in the genetic 
architecture of complex traits.

Different models may influence the predictive accu-
racy  of GEBVs [10, 18, 87]. Using the GBLUP model, 
Xiang et  al. predicted GEBVs by  calculating the vari-
ant scores in dairy cattle, and their findings suggested 
that genomic prediction using high-ranking variants 
was more accurate than genomic prediction using low-
ranking variants in most scenarios [51]. In this study, we 
found that the top variant sets showed higher predic-
tion accuracy than the bottom sets using the BayesB and 
GBLUP, which is consistent with the findings of a previ-
ous study by Xiang et  al. [51].The difference between 
GBLUP and BayesB was mainly caused by the different 
assumptions regarding variation effects. Compared with 
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the GBLUP model, the performance of Bayesian models 
is superior when the studied trait are controlled by multi-
ple QTLs [88, 89].

Our study suggested that pinpointing the functional 
variants on the top feature set may contribute larger 
effect for the genetic architecture underlying com-
plex traits. Our approach provided a comprehensive 
framework for GP  from multi-layered biological priors, 
and refined our understanding of complex trait genet-
ics  architecture. New approaches from machine learn-
ing and deep learning should advance analysis strategies 
for incorporating multi-layered biological datasets and 
promote genetic gains in animal breeding programs [66, 
90, 91]. Overall, integrating multi-omics data from new 
approaches can further facilitate investigations of the 
functional impacts of variants and improve genomic pre-
diction accuracy in farm animals.

Conclusions
Our study revealed that pinpointing the effect of  vari-
ants on the top feature set can enhance  our understand-
ing of the genetic architecture underlying complex traits. 
Genomic selection by integrating multi-layered biologi-
cal priors can improve prediction accuracy for important 
traits in cattle.
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