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Abstract
Background Pancreatic cancer is characterized by a complex tumor microenvironment that hinders effective 
immunotherapy. Identifying key factors that regulate the immunosuppressive landscape is crucial for improving 
treatment strategies.

Methods We constructed a prognostic and risk assessment model for pancreatic cancer using 101 machine learning 
algorithms, identifying OSBPL3 as a key gene associated with disease progression and prognosis. We integrated 
multi-dataset analyses, single-cell transcriptomic data, and functional experiments to explore the role of OSBPL3 in 
pancreatic cancer.

Results Our risk prediction model, developed using machine learning algorithms, demonstrated high predictive 
accuracy across multiple datasets. Notably, the “rf” algorithm model showed an AUC of 1 in the training set and AUCs 
of 0.887 and 0.977 in two validation datasets. Ridge regression analysis identified OSBPL3 as a core prognostic feature 
gene. High OSBPL3 expression in pancreatic cancer samples was associated with immunosuppressive characteristics, 
including reduced CD8 + T cell infiltration and increased immunosuppressive cell populations such as Treg cells and 
M2 macrophages. Transcriptomic sequencing following OSBPL3 knockdown revealed enrichment of immune-related 
pathways, suggesting OSBPL3’s influence on the immune microenvironment. Single-cell analyses further confirmed 
OSBPL3’s role in shaping the immunosuppressive landscape by modulating Treg cells and M2 macrophages. 
Additionally, OSBPL3 expression was linked to resistance to immunotherapy, with high OSBPL3 expression associated 
with lower Immunophenoscore (IPS) scores, indicating poor responsiveness to immunotherapy.

Conclusions Our study reveals OSBPL3 as a critical regulator of the immunosuppressive microenvironment in 
pancreatic cancer and a potential therapeutic target. Targeting OSBPL3 may enhance the efficacy of immunotherapy 

OSBPL3 modulates the immunosuppressive 
microenvironment and predicts therapeutic 
outcomes in pancreatic cancer
Qihui Sun1†, Xiaoqi Zhu1,2†, Qi Zou1,2†, Yang Chen1, Tingting Wen1, Tingting Jiang1, Xiaojia Li1, Fang Wei1,2*, 
Keping Xie1* and Jia Liu3*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13062-025-00596-0&domain=pdf&date_stamp=2025-1-9


Page 2 of 18Sun et al. Biology Direct            (2025) 20:5 

Introduction
Pancreatic cancer is one of the most aggressive malig-
nancies, with pancreatic ductal adenocarcinoma (PDAC) 
accounting for over 90% of cases [1, 2]. Currently, the 
incidence of pancreatic cancer has surpassed that of 
breast cancer and is projected to overtake colorectal 
cancer by 2040, becoming the second leading cause of 
cancer-related deaths after lung cancer [3]. Due to the 
extremely low survival rates, the incidence and mortal-
ity of pancreatic cancer are nearly equivalent [4, 5]. The 
tumor microenvironment (TME), comprising stromal 
cells, blood vessels, immune cells, signaling molecules, 
and the extracellular matrix, plays a pivotal role in the 
development and progression of PDAC [6]. The dense 
fibrotic stroma in pancreatic cancer acts as a barrier that 
disrupts angiogenesis, leading to impaired blood perfu-
sion and hypoxia [7]. Additionally, activated fibroblasts 
within the pancreatic stroma acquire a myofibroblast 
phenotype, promoting dense fibrosis by secreting lam-
inin, fibronectin, and collagen [8]. This dense fibrotic 
microenvironment restricts the pro-angiogenic capac-
ity of angiogenic factors, while the poor vascularization 
can trigger autophagy in tumor cells. Immune cells are 
central to the TME in PDAC. Pancreatic cancer is well 
known for recruiting myeloid cells and fibroblasts with 
immunosuppressive and tumor-promoting characteris-
tics. Regulatory T cells (Tregs), tumor-associated mac-
rophages (TAMs), and myeloid-derived suppressor cells 
(MDSCs) collectively establish an immunosuppressive 
microenvironment [9]. These inhibitory cell populations 
suppress or eliminate the activity of anti-tumor effector 
cells. Research has shown that macrophages can secrete 
cytidine deaminase to reduce apoptosis [10]. Although 
immunotherapy has revolutionized cancer treatment 
and shown significant clinical benefits in hematological 
malignancies and some solid tumors, pancreatic cancer 
patients rarely respond effectively due to the complex 
immunosuppressive microenvironment [11]. Therefore, 
targeting key genes that promote the formation of the 
immunosuppressive microenvironment may activate 
effector T cells, enhance the efficacy of immunotherapy, 
and bring new hope to pancreatic cancer patients.

OSBPL3, a member of the oxysterol-binding protein-
related protein (ORP) family, comprises 23 exons and 
encodes a predicted protein of 887 amino acids with a 
carboxy-terminal ORD domain and an amino-termi-
nal PH domain [12]. Under physiological conditions, 
OSBPL3 primarily mediates cellular adhesion, lipid 
transport, actin cytoskeleton regulation, and signal trans-
duction between the endoplasmic reticulum and plasma 

membrane [13]. The expression of OSBPL3 is cell- and 
tissue-specific, being highly expressed in organs such as 
the kidney, bladder, bone marrow, and endocrine system, 
as well as in immune cells, including macrophages, T 
cells, and B cells [14, 15].

As a key component of the sterol synthesis pathway, 
OSBPL3 may support pancreatic cancer cell growth, pro-
liferation, and division by participating in lipid metabo-
lism reprogramming and activating various oncogenic 
pathways [16, 17]. Moreover, OSBPL3 is likely involved 
in remodeling the tumor microenvironment, facilitating 
immune evasion, and influencing the efficacy of immu-
notherapy [18]. In this study, we employed immune infil-
tration analysis and cell-cell communication analysis to 
investigate whether OSBPL3 mediates alterations in the 
immune microenvironment and to explore its potential 
role in modulating the effectiveness of immunother-
apy, focusing on the critical cell-cell signaling pathways 
involved.

Methods and materials
Data acquisition
The transcriptome sequencing of NC and OSBPL3-Si 
was conducted on PAAD cell line of CFPAC using Illu-
mina Novaseq6000 by Gene Denovo Biotechnology Co. 
(Guangzhou, China). We obtained transcriptomic count 
data for pancreatic ductal adenocarcinoma (PDAC) and 
normal pancreatic tissues from the UCSC XENA data-
base (https://xena.ucsc.edu/) (TCGA-PAAD and GTEx 
datasets) for subsequent differential expression analysis. 
The transcriptomic data were normalized using Tran-
scripts Per Million (TPM) to account for gene expression 
across transcripts per kilobase per million mapped reads, 
facilitating further analyses. Additionally, we downloaded 
the corresponding clinical data, which included survival 
information, to perform survival analysis and construct 
predictive models. In total, we acquired 178 pancreatic 
tumor samples and 170 normal control samples. Upon 
re-evaluation of all pathology slides, 150 samples were 
confirmed as PDAC and subsequently included in down-
stream analyses.

Furthermore, expression profile data from pancreatic 
cancer transcriptomic datasets—GSE16515, GSE62452, 
GSE71729, and GSE32676—were downloaded from the 
GEO database (https:/ /www.nc bi.nlm. nih. gov/geo/). 
We also obtained single-cell transcriptomic datasets 
GSE155698, GSE141017, and GSE78220, which include 
multiple pancreatic cancer samples, to enable more 
in-depth analyses. We also utilized two spatial tran-
scriptomic datasets, GSE111672 and GSE203612, to 

and improve patient outcomes. Further research is warranted to explore OSBPL3 as a biomarker for predicting 
immunotherapy response and as a potential therapeutic target in combination with anti-PD1 therapy.

https://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/geo/
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investigate the spatial distribution of different immune 
cell populations. Details of each dataset and the respec-
tive groupings are provided in the following table 
(Table 1).

Data processing
The transcriptome data matrix was downloaded and pro-
cessed based on the sequencing platform. Seurat objects 
were created using the “Read10X” and “CreateSeuratOb-
ject” functions from the Seurat package. Filtering crite-
ria included nFeature_RNA > 200, nFeature_RNA < 6000, 
and percent.mt < 10 to ensure high-quality data. To miti-
gate technical biases introduced during the sequencing 
process, the data was normalized using the “Normalize-
Data” function from the Seurat package. After normal-
ization, “FindVariableFeatures” was employed to identify 
the top 2000 highly variable genes (HVGs) based on their 
contribution to data variability for subsequent analy-
ses. Principal component analysis (PCA) was performed 
using the “RunPCA” function for linear dimensional-
ity reduction. Next, clustering was conducted using the 
“FindNeighbors” and “FindClusters” functions, which 
apply a K-Nearest Neighbor (KNN) algorithm based 
on manifold learning. Finally, the clustering results 
were visualized using t-distributed Stochastic Neighbor 
Embedding (t-SNE) and Uniform Manifold Approxima-
tion and Projection (UMAP), two widely used nonlinear 
dimensionality reduction algorithms. These visualization 
approaches provided a clear representation of the clus-
tering patterns and data structure.

Pancreatic cancer survival prediction and risk assessment 
models
To construct survival prediction and risk assessment 
models for pancreatic cancer, transcriptome data 
from dataset GSE16515, comprising 16 normal con-
trol samples and 36 pancreatic cancer tumor samples, 
was analyzed for differential expression. A total of 189 
upregulated genes in tumor tissues were identified as 
the candidate gene set for model construction. Dataset 
GSE16515 was used as the training set, while datasets 
GSE62452 and TCGA-GTEx served as validation sets for 
building and validating the risk assessment models. For 

survival prediction models, datasets with survival data, 
including GSE62452 and GSE71729, were utilized.

Using the “Mime” package, the “ML.Dev.Pred.Cat-
egory.Sig” function was applied to combine the training 
and validation datasets with the 189 candidate genes. 
This enabled the construction of risk models using seven 
machine learning algorithms, including “rt” and “ada-
boost”. The “roc_vis_category” function was employed 
to generate ROC curves, visualizing the Area Under the 
Curve (AUC) values for each model across the training 
and validation datasets.

For survival prediction, the “ML.Dev.Prog.Sig” func-
tion integrated the datasets and candidate genes to con-
struct prognostic models using ten machine learning 
algorithms. The “cindex_dis_all” function visualized the 
C-indices of these models, while the “survplot” and “all.
auc.1y” functions analyzed survival differences between 
high- and low-risk groups and predicted 1-year survival 
outcomes.

To identify prognostically relevant features, the “ML.
Corefeature.Prog.Screen” function selected features 
through eight machine learning algorithms. The “core_
feature_select” function identified the intersection of 
these features, and the “core_feature_rank” function 
ranked the top 20 key genes contributing to pancreatic 
cancer prognosis.

Weighted gene co-expression network analysis (WGCNA)
Single-cell transcriptome data from a KC mouse model 
was preprocessed using the Seurat package, including 
imputation of missing values, batch effect correction, and 
outlier removal. To manage the large number of cells in 
single-cell sequencing data, pseudocells were generated 
to reduce cell count. Genes were further filtered based on 
expression levels to meet analysis requirements.

WGCNA was conducted by setting correlation analy-
sis methods and Topological Overlap Matrix (TOM) 
type parameters. The “pickSoftThreshold” function 
determined the soft threshold, and the “blockwise-
Modules” function was applied to construct a gene co-
expression network using the one-step method. The 
“plotDendroAndColors” function produced a clustering 
dendrogram, and the “plotEigengeneNetworks” function 
generated a correlation heatmap of the modules.

Subsequently, the Mfuzz package was used to analyze 
the cell trajectory trends within each module. Genes in 
selected modules were identified based on correlation 
analysis, and their expression levels were visualized for 
further interpretation.

Overexpression plasmid and siRNA transfections
Small interfering RNA (siRNAs) were synthesized from 
GenePharma (Shanghai, China) to target OSBPL3 (5’- G C 
A A G A A G A U C U G U G U C A U T T-3’), or negative control 

Table 1 Datasets
Database Dataset Species GPL Number(n)
TCGA TCGA-GTEx human Normal: 170 PDAC: 150
GEO GSE16515 human GPL570 Normal: 16 PDAC: 36
GEO GSE62452 human GPL6244 Normal: 69 PDAC: 69
GEO GSE71729 human GPL20769 Normal: 46 PDAC: 145
GEO GSE32676 human GPL198 Normal: 7 PDAC: 42
GEO GSE155698 human Normal: 7 PDAC: 42
GEO GSE141017 mouse CTRL-tumor:7
GEO GSE205049 human Normal: 9 PDAC: 9
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(5’- U U C U C C G A A G G U G U C A C G U T T − 3’). Overexprs-
sion plasmids for OSBPL3 both human and mouse were 
purchased from GenScript (HK, China). Lipofectamine 
3000 (Invitrogen; Thermo Fisher Scientific, Inc.) and 
Opti-MEM Medium (Gibco; Thermo Fisher Scientific, 
Inc.) were applied to transfect siRNAs or overexprs-
sion plasmid according to the manufacturer’s protocol. 
The transfected efficiency was validated by qRT-PCR 
(48  h after transfection) and western blot (72  h after 
transfection).

Mouse tumorigenesis assay
Panc02 mouse pancreatic cancer cells were divided into 
two groups. Following transfection with the PC3.1 vector 
and the OSBPL3 overexpression plasmid, the cell suspen-
sions were mixed with Matrigel in equal proportions and 
injected into mice for tumorigenesis experiments. Tumor 
size measurements were initiated 7 days post-injection, 
and survival curves were plotted. Finally, tumor tissues 
were harvested, fixed in formalin, dehydrated stepwise, 
embedded in paraffin, sectioned, and subjected to immu-
nofluorescence staining.

Immune infiltration analysis
To investigate the relationship between OSBPL3 expres-
sion and immune infiltration in pancreatic cancer, we uti-
lized the R package “GSVA” and “IOBR” to predict scores 
for various immune cell types based on immune-related 
gene sets. This approach allowed us to assess the associa-
tion between OSBPL3 expression and immune cell infil-
tration. Additionally, Spearman correlation analysis was 
employed to describe the relationship between OSBPL3 
expression levels and the infiltration of specific immune 
cell populations.

Differential expression analysis and pathway enrichment 
analysis
To identify the differences in gene expression among vari-
ous clusters, we employed the “FindAllMarkers” function 
to analyze the marker genes specific to each group. Heat-
maps (generated using the “DoHeatmap” function), violin 
plots (“VlnPlot” function), and dimensionality reduction 
plots (“FeaturePlot” function) were utilized to visualize 
the differential expression of genes across clusters.

The R package “msigDB” was employed to access com-
monly used gene sets from the MSigDB database  (   h t  t p :  
/ / w w  w .  g s e a - m s i g d b . o r g / g s e a     ) . GSVA analysis was  p e 
r f o r m e d using the “msigdbr” function.Gene Ontology 
(GO) and KEGG pathway enrichment analyses were con-
ducted using the “enrichKEGG” and “enrichGO” func-
tions from the “clusterProfiler” R package. Visualization 
of the results was facilitated through the “enrichplot” and 
“ggplot2” packages.

Slingshot pseudotime analysis
To delineate gene expression patterns and evolutionary 
trajectories during pancreatic cancer progression, the 
Slingshot algorithm was employed to construct cell dif-
ferentiation lineage structures and infer pseudotemporal 
dynamics across different lineages.

After filtering genes, normalizing data, and performing 
dimensionality reduction via UMAP, the SingleCellEx-
periment package was used to convert Seurat objects into 
SingleCellExperiment objects. Cell coordinate matrices 
and cluster labels were input into the Slingshot package 
to identify global lineage structures via Minimum Span-
ning Tree (MST) and fit major curves.

The resulting differentiation trajectories and pseudo-
time inferences were projected onto the UMAP space, 
providing a comprehensive view of gene expression 
dynamics and evolutionary trajectories in distinct cell 
subpopulations.

Cellchat cell communication analysis
Cell communication analysis was performed using the 
CellChat package. The process began by creating a Cell-
Chat object from a Seurat object using the createCell-
Chat function, with the group.by parameter defined for 
grouping.The constructed CellChat object was then 
analyzed to identify overexpressed genes using the iden-
tifyOverExpressedGenes function and overexpressed 
ligand-receptor pairs with the identifyOverExpressed-
Interactions function. The computeCommunProb func-
tion was applied to infer the cell interaction probabilities 
within the CellChat object, followed by the compute-
CommunProbPathway function to calculate the commu-
nication results for all ligand-receptor interactions across 
different signaling pathways. Finally, visualization of the 
cell communication results was carried out using the net-
Visual_circle, netVisual_aggregate, netVisual_bubble, and 
plotGeneExpression functions.

NicheNet-based cell-cell communication analysis
To investigate ligand-receptor interactions, species-
specific datasets, including lr_network, ligand_tar-
get_matrix, and weighted_networks, were preloaded for 
subsequent analysis. Single-cell transcriptomic data pre-
processed using the Seurat package were then imported.

The receiver cell population was defined as “ductal cell 
(high).” Using the nichenet_seuratobj_aggregate func-
tion, cell-cell communication was analyzed between all 
cell types as potential senders and “ductal cell (high)” as 
the receiver. The results were visualized through ligand 
Expression Bubble Plots, which depicted the expression 
levels of key ligands across sender cells and ligand-Target 
Interaction Heatmaps, which highlighted the reliability 
and strength of signaling interactions between ligands 
and their corresponding target genes.

http://www.gsea-msigdb.org/gsea
http://www.gsea-msigdb.org/gsea
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Fig. 1 (See legend on next page.)
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ScDist distance analysis
Following normalization of the Seurat object using the 
SCTransform function, dimensionality reduction and 
clustering analyses were performed. Subsequently, the 
scale.data and meta.data were extracted to construct a 
list. Using the scDist function, the fixed.effects param-
eter was set to group cells based on high or low OSBPL3 
expression, while the clusters parameter was assigned 
to represent functional cell groupings. Distance scores 
between different cellular subpopulations and OSBPL3 
expression groups were calculated. Visualization of these 
scores was performed with the DistPlot function. Finally, 
the distGenes function was applied to evaluate the 
importance of genes between groups.

Data statistics and visualization
All statistical analyses were performed using R (version 
4.1.2) and GraphPad PRISM software (version 9.3.0). For 
differential expression analysis between groups of cells, a 
two-sided Wilcoxon rank-sum test with Bonferroni FDR 
correction was used. All graph constructions in this study 
were carried out by using R package software. To deter-
mine statistical differences in different groups, we use the 
Wilcox test. The statistical significance of differences was 
determined using the log-rank test. p < 0.05 was defined 
as statistically significant.

Results
OSBPL3 involvement in pancreatic cancer risk assessment 
and prognostic prediction model construction
We constructed a pancreatic cancer prognostic and 
risk assessment model based on a combination of 101 
machine learning algorithms, and identified key prog-
nostic genes to more accurately predict pancreatic can-
cer risk and overall survival (Figure S1A). Initially, we 
selected 189 genes upregulated in tumor tissues from 
the GSE16515 dataset as a gene set. The GSE62452 
pancreatic cancer dataset was used as the training set, 
while the GSE71729 and TCGA-PAAD datasets served 

as validation sets (Dataset1 and Dataset2). Using seven 
machine learning algorithms, we developed a risk predic-
tion model for pancreatic cancer. The results indicated 
that models constructed with five algorithms, includ-
ing “rf,” “svmRadiaWeights,” and “adaboost,” achieved 
good predictive performance across all three datasets 
(AUC > 0.7). Additionally, models from all seven algo-
rithms exhibited AUC values exceeding 0.9 in at least two 
datasets (Figure S1B). Notably, the model constructed 
using the “rf” algorithm showed an AUC of 1 in the train-
ing set, an AUC of 0.887 in Dataset1, and an AUC of 
0.977 in Dataset2 (Figure S1B and S1C).

Subsequently, we used the aforementioned gene set to 
select independent prognostic risk factors for pancreatic 
cancer and constructed an optimal prognostic prediction 
model. As shown in Figure S1D, models constructed with 
various machine learning algorithms demonstrated good 
predictive performance. Among these, Ridge regression 
analysis yielded the highest C-index in both the training 
and validation sets (GSE62452 dataset: 0.81; GSE71729 
dataset: 0.63). For one-year survival prediction, Ridge 
regression analysis showed an AUC of 0.941 in the 
GSE62452 dataset and an AUC of 0.763 in the GSE71729 
dataset, indicating high predictive efficacy (Fig.  1A and 
B). Univariate Cox regression analysis of the models con-
structed using Ridge regression in both the training and 
validation sets revealed that they were independent risk 
predictors in both datasets (HRDataset1 = 7.10, HRData-
set2 = 2.37) (Fig. 1A).

However, in the one-year survival prediction model, 
Ridge regression did not provide the optimal predic-
tive performance in the training set (Fig. 1B). To further 
improve predictive efficacy, we used a combined Cox-
Boost and StepCox algorithm to construct the model. The 
C-index was 0.89 in the GSE62452 training set and 0.77 in 
the validation set (Fig. 1C). After dividing all samples into 
high and low-risk groups based on the risk factor scores 
derived from both models, survival analysis showed that 
patients in the high-risk group had significantly poorer 

(See figure on previous page.)
Fig. 1 OSBPL3 in Prognostic Prediction and Risk Assessment Model Construction for Pancreatic Cancer. (A) A forest plot illustrating the univariate regres-
sion analysis results of risk factor scores derived from the ridge regression model across different datasets. (B) A heatmap displaying the performance of 
10 machine learning algorithm combinations in constructing 1-year survival prediction models for pancreatic cancer. The training dataset is geneset1 
(GSE62452), and the validation dataset is geneset2 (GSE71729). The heatmap is ranked by the C-index values from the validation dataset, with colors 
representing the C-index scores.(C) Receiver operating characteristic (ROC) curves generated by the ridge regression model to evaluate the predictive 
performance for 1-year survival across different datasets. (D) Bar plots showing the integration of eight machine learning algorithms into 18 combina-
tions to identify core prognostic feature genes. The left bar plot displays the number of core feature genes identified by each algorithm combination, 
while the top bar plot highlights the number of shared genes among different combinations. (E) A lollipop plot illustrating the frequency of core feature 
genes identified by different algorithm combinations, highlighting the top 20 genes with the highest frequencies. The length of the bars and the size of 
the circles represent the frequency of each gene. (F) qRT-PCR and Western blot analyses demonstrate the knockdown efficiency of three OSBPL3 siRNA 
sequences at the transcriptional and protein levels. (G) A bar chart illustrates the expression levels of OSBPL3 in commonly used pancreatic cancer cell 
lines from the CCLE database. (H) A volcano plot shows the differentially expressed genes between OSBPL3 knockdown and control groups in the CFPAC-
1 pancreatic cancer cell line, based on transcriptomic sequencing. The threshold for differential expression was set to |Log2FC| > 1 and P-value < 0.05. 
Green dots represent genes that met the criteria for differential expression. Genes upregulated in the control group are shown on the left y-axis, while 
genes upregulated in the OSBPL3 knockdown group are shown on the right. (I) Pathway enrichment analysis of the differentially expressed genes in the 
OSBPL3 knockdown group
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Fig. 2 (See legend on next page.)
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prognosis (CoxBoost + StepCox (forward): P-value-Data-
set1 < 0.001, P-value-Dataset2 < 0.001; Ridge: P-value-
Dataset1 < 0.001, P-value-Dataset2 < 0.001), further 
demonstrating the robustness of the predictive models 
(Figure S2F).

After constructing both the pancreatic cancer risk 
prediction model and prognostic prediction model, we 
selected core prognostic features using 8 machine learn-
ing algorithms. As shown in Fig.  1D and 18 algorithm 
combinations were created by integrating the 8 machine 
learning algorithms, each of which identified a distinct 
set of prognostic core feature genes. Based on the fre-
quency of appearance of these core feature genes, the top 
20 genes were selected as candidate genes related to pan-
creatic cancer risk and prognosis (Fig. 1D and E).

Subsequently, we analyzed the single-cell transcrip-
tomic data (GSE141017) from the KC mouse model 
(Pdx1-Cre; KrasLSL−G12D/+) at various stages of disease 
progression using WGCNA. Two gene modules, blue 
(MEblue: R = 0.87, P = 3e-112) and brown (MEbrown: 
R = 0.8, P = 1e-84), showed the strongest correlation with 
disease progression (Figure S2A-C). MFUZZ time-course 
analysis revealed that genes within the blue and brown 
modules exhibited an increase in expression over time 
(Figure S2D). Based on these findings, we performed a 
combined analysis of the genes in the blue and brown 
modules from WGCNA with the 20 genes identified 
through the pancreatic cancer risk prediction model. 
The intersection of these two sets revealed a key gene, 
OSBPL3 (Figure S2E), suggesting that OSBPL3 may play 
an important role in the initiation and progression of 
pancreatic cancer.

High expression of OSBPL3 in pancreatic cancer samples 
exhibits immunosuppressive characteristics
The pancreatic cancer cell line CFPAC-1, exhibiting high 
OSBPL3 expression, was selected for OSBPL3 knock-
down experiments. After successful knockdown, tran-
scriptomic sequencing analysis was performed to explore 
the downstream molecular changes (Fig. 1F and G). Tran-
scriptomic sequencing was performed on the CFPAC-1 
pancreatic cancer cell line after knockdown of OSBPL3. 
The results revealed that several immune-related 

pathways, including myeloid leukocyte migration, were 
significantly enriched in the knockdown group (Fig.  1H 
and I). These findings suggested that OSBPL3 may influ-
ence the immune microenvironment, thereby contribut-
ing to the development and poor prognosis of pancreatic 
cancer.

We performed multiplex immunofluorescence analy-
sis on multiple pancreatic cancer tissue samples, which 
revealed that the high-expression OSBPL3 group exhib-
ited lower infiltration of CD8+ T cells (CD8+) but higher 
infiltration of immunosuppressive cells, including Treg 
cells (CD4+ FOXP3+) and M2 macrophages (F4-80+ 
CD206+) (Fig.  2A). Expression analysis of M2 macro-
phage polarization and Treg-related marker genes across 
four pancreatic cancer transcriptomic datasets, includ-
ing GSE62452, showed that genes associated with M2 
macrophage polarization (e.g., CCL20 and CTSA), Treg-
related genes (e.g., BATF and GCNT1), and immune 
evasion genes were highly expressed in the OSBPL3 high-
expression group. In contrast, T cell co-stimulation genes 
were more highly expressed in the OSBPL3 low-expres-
sion group (Fig.  2B). Immunoinfiltration analysis fur-
ther confirmed the immunosuppressive characteristics 
of OSBPL3 high-expression samples (Fig. 2C and Figure 
S3A-C).

To further validate these findings, we utilized an 
OSBPL3 overexpression mouse subcutaneous tumor 
model for immunofluorescence staining. Compared to 
the control group, the OSBPL3 overexpression group 
(OSBPL3-OE) showed a decrease in the expression of 
CD8+ T cell (25.7 ± 4.2% and 15.3 ± 3.1%) and CD4 + T cell 
(21.5 ± 3.8% and 18.6 ± 2.8%) markers, while the expres-
sion of Treg cell markers (3.4 ± 0.2% and 6.5 ± 0.4%)was 
increased(Fig.  2D). In the spatial transcriptomic dataset 
GSE111672, the high-expression regions of OSBPL3 also 
showed co-localization with the M2 macrophage marker 
gene MRC1 (Fig. 2F). Cluster and deconvolution analysis 
of the spatial transcriptomic dataset GSE203612 revealed 
that OSBPL3 is highly expressed in the pancreatic can-
cer region and co-localizes with malignant cancer cells. 
Additionally, OSBPL3 exhibited co-localization with 
macrophages, particularly M2 macrophages (Fig.  2F). 

(See figure on previous page.)
Fig. 2 Immune Cell Infiltration in Pancreatic Cancer Samples with High OSBPL3 Expression. (A) Representative immunofluorescence co-staining im-
ages of human pancreatic cancer samples in the high OSBPL3 expression group (High-OSBPL3) and the low OSBPL3 expression group (Low-OSBPL3), 
magnification: 20X. (B) Heatmap showing the expression of genes associated with M2 macrophage polarization and regulatory T cells (Tregs) in high and 
low OSBPL3 expression samples across the GSE62452, GSE16515, GSE32676, and GSE101462 datasets. Colors represent gene expression levels, and “+” 
indicates the high-expression group. (C) Correlation between OSBPL3 expression and immune cell infiltration predicted by algorithms such as ESTIMATE 
and EPIC across various pancreatic cancer datasets. Rows represent different datasets, and colors indicate the strength and direction of the correlation. 
(D) Subcutaneous tumor images, tumor weight and growth curve statistics, and representative immunofluorescence co-staining images of T-cell marker 
genes following OSBPL3 overexpression in B6/C57 mice. Magnification: 20X. (E) Expression distribution of OSBPL3 and the macrophage marker gene 
MRC1 in the pancreatic cancer spatial transcriptomics dataset GSE111672. The bar chart on the left shows the proportion of MRC1-positive cells in areas 
with high and low OSBPL3 expression. (F) Expression of OSBPL3 in the pancreatic cancer spatial transcriptomics dataset GSM6177618 and the tumor and 
immune cell expression distribution derived from immune cell deconvolution analysis based on “SpaCET”



Page 9 of 18Sun et al. Biology Direct            (2025) 20:5 

Fig. 3 (See legend on next page.)

 



Page 10 of 18Sun et al. Biology Direct            (2025) 20:5 

Analysis of various T cell subtypes further demonstrated 
a co-localization between OSBPL3 and Treg cells.

GSEA analysis of TCGA-PAAD pancreatic cancer 
samples revealed significant enrichment of immune defi-
ciency-related pathways, including Immunodeficiency 
(NES = 1.35) and Impaired T Cell Function (NES = 1.46), 
in the OSBPL3 high-expression group. Pathways associ-
ated with macrophage proliferation and differentiation, 
as well as T cell immune negative regulation, also exhib-
ited consistent trends (Figure S3D). These findings fur-
ther confirm that high expression of OSBPL3 contributes 
to the establishment of an immunosuppressive microen-
vironment in pancreatic cancer.

Elevated expression of OSBPL3 in tumor-associated treg 
cells and M2 macrophages
To further elucidate the role of OSBPL3 in the tumor 
microenvironment, we leveraged the single-cell tran-
scriptomic dataset GSE205049 to dissect immune land-
scapes in pancreatic cancer samples stratified by OSBPL3 
expression. Following standardization, dimensionality 
reduction, clustering, and annotation, we identified 12 
distinct cellular subpopulations (Figure S4A). Figures 
S4B-D illustrate the expression of marker genes, pathway 
enrichment profiles, and sample distribution across these 
subpopulations.

Subsequently, we focused our analysis on immune cells 
within the OSBPL3 high- and low-expression groups. The 
results (Figure S4E) revealed a significant reduction in 
CD8 + T cells and NKT cells in the OSBPL3 high-expres-
sion group, coupled with an enrichment of macrophages, 
dendritic cells, and Treg cells. These findings are consis-
tent with prior immunofluorescence experiments and 
multi-dataset analyses. Differential gene expression anal-
ysis of immune cells highlighted upregulation of C1QB, 
APOE, and CD74 genes primarily implicated in immune 
evasion and the establishment of an immunosuppres-
sive microenvironment—in the OSBPL3 high-expression 
group (Figure S4F).

To investigate T cell differentiation dynamics, we per-
formed subclustering and pseudotime trajectory analysis 
using Slingshot, delineating the differentiation pathways 
of naïve T cells into mature T cell subsets (Figures S4G, 
S4I, S5A, and S5B). Functional annotation employ-
ing cytotoxicity and exhaustion markers demonstrated 

elevated cytotoxicity scores in NK and NKT cells, 
whereas Treg cells exhibited significantly higher exhaus-
tion scores (Figures S4J and S5D). UMAP dimensionality 
reduction analysis further revealed high OSBPL3 expres-
sion in naïve T cells and Treg cells. Using the scDist algo-
rithm, Treg cells emerged as the subpopulation most 
strongly associated with OSBPL3 expression differences 
(Figures S4K and S5C). This prompted us to delve deeper 
into the relationship between OSBPL3 expression and 
Treg cells.

Defining Treg cells through canonical markers such 
as CD4 and FOXP3 or IL2RA, we observed a marked 
increase in the proportion of double-positive Treg cells 
within the OSBPL3 high-expression group (Fig.  3A 
and B). Subsequent subclustering of Treg cells identi-
fied distinct subsets with differential gene expression 
profiles, which were utilized for functional annotation 
(Fig.  3C). Pseudotime analysis using Monocle revealed 
that subcluster 6 was predominantly composed of cells 
in the early differentiation phase, whereas subcluster 3 
represented cells in the terminal differentiation phase 
(Fig. 3D). Clustering genes along pseudotime trajectories 
identified four gene modules, with OSBPL3, CTLA4, and 
LAG3 exhibiting progressive upregulation, indicating 
that OSBPL3 is predominantly expressed in terminally 
differentiated Treg cells (Fig. 3E). Functional annotation 
of Treg subclusters based on markers such as FOXP3 and 
LAG3 categorized these cells into Follicular Treg, Acti-
vated Treg, and Tumor-infiltrating Treg subsets (Fig. 3F 
and G). In OSBPL3 high-expression cells, the proportions 
of Tumor-infiltrating Treg and Terminally mature Treg 
subsets were significantly elevated, and these subsets dis-
played the highest OSBPL3 expression levels among all 
clusters (Fig. 3H and I).

To assess the implications of OSBPL3 in myeloid cells, 
we further subdivided myeloid populations into distinct 
subclusters, including those marked by SPP1 and C1QC, 
alongside eight additional subsets (Fig.  4A, Figure S5F 
and S5G). Notably, M2 macrophage marker-positive cells 
(CD68-MRC1 or CD68-CD163) were significantly more 
abundant in the OSBPL3 high-expression group (Fig. 4B). 
Monocle pseudotime analysis demonstrated that sub-
cluster 0 comprised cells in the early and mid-differenti-
ation stages, subcluster 2 in the mid-stage, subcluster 1 
in the mid-to-late stage, and subcluster 3 in the terminal 

(See figure on previous page.)
Fig. 3 Higher Tumor-Associated Treg Cell Infiltration in Pancreatic Cancer Samples with High OSBPL3. (A) Expression Proportion of FOXP3 and CD4 co-
expressing cells in pancreatic cancer samples and their relative abundance in high (High-OSBPL3) and low (Low-OSBPL3) OSBPL3 expression groups. (B) 
Proportion of IL2RA and CD4 co-expressing cells in pancreatic cancer samples and their relative abundance in High-OSBPL3 and Low-OSBPL3 groups. 
(C) Dimensionality reduction and clustering of Treg cell subpopulations. Different colors represent distinct subclusters, and the differential expression 
genes for each subcluster are displayed. (D) Monocle trajectory analysis of Treg cell subpopulations, illustrating the inferred pseudotime progression 
across different subclusters. (E) Heatmap showing gene sets and their enriched pathways identified through pseudotime analysis across all Treg cell sub-
populations. (F) Bubble plot depicting the expression of Treg cell marker genes across different Treg subpopulations. (G) Expression of FOXP3, LAG3, and 
OSBPL3 in Treg cells. (H) Proportions of different Treg subpopulations in High-OSBPL3 and Low-OSBPL3 groups. (I) Density plot showing the distribution 
of OSBPL3 expression across different Treg subpopulations



Page 11 of 18Sun et al. Biology Direct            (2025) 20:5 

differentiation stage. Cells from the OSBPL3 high-
expression group predominantly exhibited an advanced 
differentiation state compared to their low-expression 
counterparts (Fig.  4C). Cluster enrichment analysis 
(Fig. 4D) revealed that genes upregulated in later differ-
entiation phases were predominantly enriched in MHC-
II-associated pathways.

Finally, we evaluated M2 polarization characteristics in 
myeloid cells stratified by OSBPL3 expression. As shown 
in Fig.  4E-G, myeloid cells with high OSBPL3 expres-
sion exhibited markedly elevated M2 polarization scores. 
Both OSBPL3 high-expression macrophage subclusters 
(Macrophage-SPP1 and Macrophage-C1QC) demon-
strated prominent M2 polarization features. Moreover, 
knockdown of OSBPL3 in pancreatic cancer cells signifi-
cantly reduced the expression of M2 polarization-related 
regulatory genes (Fig.  4H). These observations strongly 
suggest that pancreatic cancer cells modulate M2 macro-
phage polarization through OSBPL3 expression.

In summary, within the pancreatic tumor microen-
vironment, Treg cells progressively differentiate into 
tumor-associated and terminally mature Treg cells, while 
macrophages differentiate into subpopulations character-
ized by C1QC and APOE. OSBPL3 expression is increas-
ingly upregulated during these differentiation processes, 
underscoring its potential role in shaping the immuno-
suppressive landscape of pancreatic cancer.

Pancreatic cancer cells induce immunosuppressive 
microenvironment formation via high expression of 
OSBPL3 and SPP1-mediated signals
The aforementioned results indicate a strong association 
between high OSBPL3 expression and tumor-associated 
Treg cells, as well as M2 macrophages characterized by 
APOE and C1QC expression. Knockdown or overexpres-
sion of OSBPL3 in pancreatic cancer cells significantly 
alters the expression of genes related to Treg cells and 
M2 macrophages, suggesting a pivotal role for OSBPL3 
in shaping the immunosuppressive tumor microenviron-
ment (TME).

To further investigate this mechanism, we utilized 
the single-cell transcriptomic dataset GSE155698, com-
prising 16 pancreatic cancer samples. Subclustering 
analysis revealed that OSBPL3 was highly expressed 
in tumor cells, whereas its expression was negligible 
in normal acinar cells (Fig.  5A). Defining a subset of 
tumor cells with high OSBPL3 expression, differential 
expression and enrichment analyses demonstrated sig-
nificant upregulation of genes such as MMP14, which 
are implicated in pancreatic cancer progression and 
immune evasion. This subset was also enriched in onco-
genic pathways, including TGF-β, MAPK, and WNT, 
while OSBPL3 low-expressing ductal cells were pre-
dominantly enriched in immune-related pathways, such 

as lymphocyte proliferation (Fig.  5B and C). Following 
OSBPL3 knockdown, the expression of WNT-related 
pathways, including the secretion of WNT ligands and 
canonical WNT target genes, was significantly reduced. 
Conversely, OSBPL3 overexpression in the PANC-1 cell 
line confirmed the association between high OSBPL3 
expression and WNT pathway activation in pancreatic 
cancer (Fig.  5D-F). Previous studies have demonstrated 
that activation of the WNT signaling pathway promotes 
immune evasion and immunosuppression by regulating 
immune cell functions and modulating tumor microen-
vironment cytokines such as TGFB and CXCL12. Single-
cell data analysis of pancreatic cancer revealed that genes 
encoding WNT ligands and Frizzled receptors were 
more highly expressed in the OSBPL3 high-expression 
group (Fig.  5G). Additionally, WNT pathway activation 
enhances the secretion of chemokines like CXCL12, 
contributing to the formation of an immunosuppressive 
microenvironment. In macrophages, T cells, and ductal 
cells, these chemokines were more abundantly expressed 
in OSBPL3 high-expression cells (Fig. 5H).

The results of CellChat analysis indicated that 
OSBPL3 high-expressing ductal cells exhibited signifi-
cantly increased interactions with T cells, macrophages, 
endothelial cells, and fibroblasts compared to their 
low-expressing counterparts (Fig.  5I and S6A). Using 
NicheNet cell-cell communication analysis, we identi-
fied macrophage-derived SPP1 as a key ligand interacting 
with OSBPL3 high-expressing ductal cells (Fig. 5J). SPP1 
is known to activate the WNT and MAPK/ERK signal-
ing pathways, thereby promoting pancreatic cancer cell 
proliferation and survival [19, 20]. Moreover, OSBPL3 
high-expressing ductal cells were found to produce sig-
nificantly higher levels of SPP1 compared to their low-
expressing counterparts, creating an autocrine feedback 
loop. These findings suggested that OSBPL3 facilitated 
SPP1 upregulation in tumor cells, promoting the recruit-
ment of Treg cells and macrophages, ultimately fostering 
an immunosuppressive microenvironment.

Additionally, macrophages exhibit a positive feedback 
loop by upregulating SPP1, which in turn acts on tumor 
cells to activate oncogenic signaling pathways, further 
driving tumor proliferation and metastasis. Concurrently, 
T cells were shown to transmit inhibitory signals to 
OSBPL3 high-expressing ductal cells via TIGIT ligands.

Prediction of target genes for these ligands revealed 
that SPP1 likely regulates VCAN, whereas TIGIT may 
target SMAD3 (Figure S6B). VCAN is known to enhance 
pancreatic cancer cell proliferation and survival through 
activation of the PI3K/AKT pathway. SMAD3, a criti-
cal mediator of the TGF-β signaling pathway, is involved 
in pancreatic cancer invasion and metastasis. Nota-
bly, SMAD3 can synergize with the PI3K/AKT pathway 
to promote tumor cell proliferation. Both VCAN and 
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SMAD3 contribute to immunosuppressive TME forma-
tion by inhibiting effector T cells, activating Treg cells, 
and recruiting immunosuppressive macrophages.

To validate these findings, we applied the CellChat 
package to further analyze cell-cell communication pat-
terns identified via NicheNet. Ligand-receptor pair 
analysis highlighted an immunosuppressive TIGIT-PVR 
interaction between OSBPL3 high-expressing ductal cells 
and T cells, which was absent in OSBPL3 low-express-
ing cells (Figures S6C and S6D). Sequencing data from 
OSBPL3 knockdown in CFPAC-1 cells further confirmed 
a reduction in PVR expression upon OSBPL3 silencing 
(Figure S6E). Ligand analysis of ductal cells with high 
and low OSBPL3 expression revealed that OSBPL3-low-
expressing ductal cells secreted significantly higher levels 
of the WNT pathway inhibitor DKK1, which is known to 
negatively regulate WNT signaling (Figure S6F). These 
findings suggest that high OSBPL3 expression may con-
tribute to the formation of an immunosuppressive micro-
environment in pancreatic cancer. This is likely mediated 
through the activation of pathways such as WNT and 
MAPK, which promote the secretion of immunosup-
pressive cytokines like TGFβ. This, in turn, facilitates the 
recruitment of macrophages and Treg cells, key immu-
nosuppressive cell types. Furthermore, interactions 
involving ligand-receptor pairs, such as VCAN-SPP1 
and PVR-TIGIT, may also play a role in reinforcing the 
immunosuppressive tumor microenvironment (Fig. 5K).

OSBPL3 is a potential therapeutic target in combination 
with anti-PD1 therapy
The potential impact of OSBPL3 on immunotherapy 
outcomes was further explored by evaluating its asso-
ciation with immune response-related gene signatures. 
Using the Immunophenoscore (IPS) framework, which 
incorporates key gene categories including MHC (anti-
gen processing), EC (effector cells), CP (checkpoints), 
and SC (suppressor cells), we assessed the TCGA-PAAD 
pancreatic cancer cohort. As shown in Fig. 6A, samples 
with low OSBPL3 expression exhibited relatively higher 
IPS scores, while those with high OSBPL3 expression 
had lower IPS scores, indicating a potential correlation 
between OSBPL3 overexpression and poor responsive-
ness to immunotherapy. The mean IPS score for the 
OSBPL3 high-expression group was significantly lower 

than that of the low-expression group. Further statisti-
cal analysis of specific IPS components revealed that 
the MHC and EC scores were markedly reduced in the 
OSBPL3 high-expression group, reflecting diminished 
antigen presentation and effector cell activity. Conversely, 
the CP scores, indicative of checkpoints enrichment, 
were significantly higher in the OSBPL3 high-expres-
sion group (Fig.  6B and C). These findings suggested 
that OSBPL3 overexpression not only contributed to an 
immunosuppressive microenvironment but may have 
also underlain resistance to immunotherapy, potentially 
by impairing key immune functions, such as antigen pre-
sentation and effector cell activity, while enhancing sup-
pressive mechanisms.

Given the low proportion of pancreatic cancer patients 
receiving immunotherapy, we sought to validate the role 
of OSBPL3 in pancreatic cancer immunotherapy. To this 
end, we utilized the melanoma dataset GSE78220 from 
the GEO database, which includes post-immunother-
apy transcriptomic data. Using the scAB algorithm, we 
mapped the transcriptomic data and group information 
from GSE78220 onto single-cell data from pancreatic 
cancer, enabling us to predict the relationship between 
OSBPL3 expression and immunotherapy response. 
As shown in Fig.  6D, high OSBPL3 expression exhib-
ited minimal overlap with scAB + cells (response cells), 
indicating that OSBPL3 may contribute to resistance 
to immunotherapy. We further analyzed the predictive 
role of OSBPL3 expression in immunotherapy response 
across other cancers. In the IMvigor210 mUC dataset 
and the GSE135222 lung cancer dataset, a lower propor-
tion of immunotherapy responders was observed among 
OSBPL3-high-expressing samples. Conversely, samples 
responding to immunotherapy exhibited significantly 
lower OSBPL3 expression (Fig. 6E and F). Finally, in lung 
cancer samples, high OSBPL3 expression was associated 
with shorter progression-free survival (PFS) following 
immunotherapy (Fig.  6G). These results underscore the 
potential of OSBPL3 as a biomarker for predicting immu-
notherapy efficacy and outcomes.

Discussion
The complex pathogenesis of pancreatic cancer poses sig-
nificant challenges in accurately assessing patients’ risk 
and survival. Despite recent advances, the development 

(See figure on previous page.)
Fig. 4 Macrophages with High OSBPL3 Expression Exhibit a Stronger M2 Polarization Phenotype. (A) UMAP dimensionality reduction plot showing the 
distribution of myeloid cell subpopulations in pancreatic cancer samples, with differential marker genes identified for each subpopulation. (B) Bar plot dis-
playing the proportion of CD68 and MRC1 or CD163 co-expressing cells in the high (High-OSBPL3) and low (Low-OSBPL3) OSBPL3 expression groups. (C) 
Monocle pseudotime analysis showing the trajectory of different cell subpopulations and OSBPL3 expression groups. (D) Heatmap illustrating key genes 
and enriched pathways identified from gene sets derived through monocle pseudotime analysis. (E) Violin plot comparing M2 macrophage polarization 
scores between High-OSBPL3 and Low-OSBPL3 groups. (F) Violin plot showing M2 macrophage polarization scores across different cell subpopulations. 
(G) UMAP plot displaying the proportions of functional subpopulations of myeloid cells and the expression of OSBPL3 within these subpopulations. (H) 
Scatter plot comparing the differential expression of M2 polarization-related genes between OSBPL3 knockdown and control groups. The x-axis repre-
sents Log2FC values for the two groups
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of robust predictive biomarkers remains a pressing 
need [21]. In this study, we systematically constructed 
risk assessment and prognosis prediction models using 
multiple pancreatic cancer transcriptome datasets and 
identified key prognostic genes, including OSBPL3, that 
could serve as novel biomarkers for early diagnosis and 
therapeutic targeting [22]. Our models effectively distin-
guished pancreatic cancer patients from healthy controls, 
leveraging upregulated genes and a variety of machine 
learning algorithms to achieve optimal predictive perfor-
mance. Compared to existing prediction models, which 
often face limitations such as suboptimal efficacy, narrow 
applicability, or outdated methodologies, our approach 
employed a broad combination of advanced machine-
learning techniques and integrated risk and progno-
sis predictions [23]. This dual-model strategy not only 
enhanced predictive performance but also uncovered 
key genes linked to disease progression, such as ARNTL2 
and OSBPL3, underscoring their potential roles in pan-
creatic cancer pathogenesis [23].

A key finding of our study is the association of OSBPL3 
overexpression with an immunosuppressive tumor 
microenvironment (TME). Immune infiltration analy-
ses revealed reduced infiltration of immune-killing cells, 
such as CD4 + and CD8 + T cells, and increased infiltra-
tion of immunosuppressive cells, including macrophages 
and Tregs, in patients with high OSBPL3 expression. 
This pattern was further validated through immunohis-
tochemistry and cell-line experiments, as well as spatial 
transcriptomics, which confirmed the co-localization of 
OSBPL3 expression with markers of M2 macrophages 
and Tregs. These findings suggest that OSBPL3 may drive 
immune evasion by modulating the immune landscape 
of pancreatic cancer. Furthermore, single-cell analy-
ses highlighted that OSBPL3 was highly expressed in 
tumor-associated Tregs and macrophages characterized 
by SPP1 or C1QC expression, particularly in late differ-
entiation stages. Cell communication analysis demon-
strated increased immunosuppressive signaling between 
OSBPL3-high tumor cells and T cells, as well as enhanced 
activation signals between tumor cells and fibroblasts. 

Importantly, the co-inhibitory TIGIT-PVR signaling axis 
was unique to the OSBPL3-high group, and PVR expres-
sion decreased upon OSBPL3 knockdown. These findings 
align with previous studies that identified TIGIT signal-
ing as critical for CD8 + T cell exhaustion. The observed 
correlation between OSBPL3 expression and TIGIT-PVR 
signaling provides a mechanistic link to immune eva-
sion and suggests potential therapeutic opportunities 
targeting this pathway, such as the anti-TIGIT antibod-
ies currently in clinical trials [24]. Additionally, OSBPL3 
appears to play a role in reprogramming the metabolic 
and signaling environment of pancreatic cancer. Pathway 
enrichment analysis of OSBPL3-high tumor subpopula-
tions revealed significant activation of oncogenic path-
ways, including WNT, TGFβ, PI3K-AKT, and MAPK, 
which are known to be associated with resistance to 
immune checkpoint inhibitors [25]. Ligand-receptor 
pair analysis identified VCAN and SMAD3 as key tar-
gets in these pathways, further implicating OSBPL3 
in driving immune suppression via inhibitory cell-cell 
communication.

Interestingly, the metabolic characteristics of the 
OSBPL3-high TME may contribute to its immunosup-
pressive nature. Immunosuppressive cells like Tregs and 
M2 macrophages predominantly rely on lipid oxidation 
rather than glycolysis, making them better adapted to 
high-lipid environments. This high-lipid TME, poten-
tially driven by OSBPL3 overexpression, supports the 
survival and function of these cells while simultaneously 
promoting immunosuppression [26]. These observa-
tions align with prior studies demonstrating that lipid 
metabolism can modulate T cell function and exhaus-
tion, particularly via pathways such as AKT-mTORC1-
SREBP1 [27, 28]. Taken together, our findings highlight 
OSBPL3 as a critical mediator of the immunosuppres-
sive TME in pancreatic cancer. By driving immune eva-
sion through mechanisms such as enhanced TIGIT-PVR 
signaling, altered metabolic pathways, and recruitment 
of immunosuppressive cells, OSBPL3 contributes to 
poor responsiveness to immunotherapy. Furthermore, 
its involvement in key oncogenic signaling pathways 

(See figure on previous page.)
Fig. 5 Increased Inhibitory Cell-Cell Communication Between High OSBPL3 Expression Tumor and Immune Cells. (A) Dimensionality reduction and 
clustering of single-cell pancreatic cancer data from the GSE155698 dataset. (B) Volcano plot showing differentially expressed genes between OSBPL3 
high-expression and low-expression ductal cell subpopulations. Genes upregulated in the low-expression group are on the left, while those upregulated 
in the high-expression group are on the right. (C) GO pathway enrichment analysis of differentially expressed genes in OSBPL3 high- and low-expression 
ductal cell subpopulations. Blue bars represent pathways enriched in the high-expression group, and red bars represent pathways enriched in the low-
expression group. The x-axis indicates -Log10(p-value). (D) GSEA analysis of WNT-related pathways following OSBPL3 knockdown in the CFPAC-1 cell line. 
(E) Western blot analysis of WNT pathway gene expression after OSBPL3 knockdown or overexpression. (F) Expression changes of various WNT-related 
genes following OSBPL3 knockdown in the CFPAC-1 cell line. The x-axis represents gene names, and the y-axis shows the Log2FC values for differential 
expression between the knockdown and control groups. (G) Expression of key WNT pathway genes in OSBPL3 high- and low-expressing cell populations 
from the single-cell pancreatic cancer dataset GSE155698. (H) Violin plot showing the expression of WNT pathway-related immunosuppressive cytokines 
in macrophages, epithelial cells, and T cells with high or low OSBPL3 expression. (I) Cell-cell communication intensity across different cell subpopula-
tions. Different colors represent signals emitted by various cell subpopulations. (J) Bubble plot depicting the expression of ligands generated by OSBPL3 
high-expressing ductal cells across different cell subpopulations. (K) A schematic illustrating the role of high OSBPL3 expression in contributing to the 
immunosuppressive microenvironment in pancreatic cancer



Page 16 of 18Sun et al. Biology Direct            (2025) 20:5 

Fig. 6 (See legend on next page.)

 



Page 17 of 18Sun et al. Biology Direct            (2025) 20:5 

suggests that OSBPL3 may also promote pancreatic can-
cer cell proliferation and progression.

Our study underscores the potential of OSBPL3 as a 
dual biomarker for risk assessment and prognosis predic-
tion in pancreatic cancer. Moreover, OSBPL3 represents 
a promising therapeutic target for combination strategies 
aimed at overcoming immunotherapy resistance [29]. For 
instance, combining anti-TIGIT antibodies with inhibi-
tors targeting lipid metabolism pathways or oncogenic 
signaling cascades may enhance immune activation and 
improve therapeutic efficacy [30]. Future studies should 
focus on further elucidating the mechanistic role of 
OSBPL3 in TME remodeling and exploring its therapeu-
tic potential in preclinical and clinical settings. In partic-
ular, integrating OSBPL3-targeted therapies with existing 
immunotherapy regimens could open new avenues for 
improving outcomes in pancreatic cancer, a malignancy 
notoriously resistant to conventional treatments [31]. 
In conclusion, this study provides valuable insights into 
the role of OSBPL3 in shaping the immunosuppressive 
TME and highlights its potential as a therapeutic target 
to enhance immunotherapy efficacy. These findings con-
tribute to our understanding of pancreatic cancer biol-
ogy and offer new strategies for tackling this challenging 
disease.
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Fig. 6 High OSBPL3 Expression Predicts Poorer Response to Immunotherapy. (A) Z-scores of MHC, EC, CP, and SC in the top 5 samples with low and high 
OSBPL3 expression. (B) Density plot showing the distribution of Immunotherapy Prediction Score (IPS) values, derived from the integration of MHC, EC, 
CP, and SC scores, in pancreatic cancer samples with high and low OSBPL3 expression. (C) MHC, EC, and CP values in high- and low-expression OSBPL3 
groups. Non-parametric tests were performed, with * indicating P < 0.05, ** indicating P < 0.01, and *** indicating P < 0.001. (D) Distribution of immune-
positive cells (scAB + cells) and other cells in pancreatic cancer ductal cell subpopulations with high and low OSBPL3 expression, predicted by the scAB 
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