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Exploring the role of oxidative stress 
in carotid atherosclerosis: insights 
from transcriptomic data and single‑cell 
sequencing combined with machine learning
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Abstract 

Background  Carotid atherosclerotic plaque is the primary cause of cardiovascular and cerebrovascular diseases. It 
is closely related to oxidative stress and immune inflammation. This bioinformatic study was conducted to identify key 
oxidative stress-related genes and key immune cell infiltration involved in the formation, progression, and stabilization 
of plaques and investigate the relationship between them.

Results  We show that the up-regulation of oxidative stress-related genes such as IDH1 and CD36 in resident-like mac-
rophages and foam macrophages play a key role in the formation and progression of carotid atherosclerotic plaques.

Conclusions  We discuss the role of oxidative stress and immune inflammation in the formation, progression, and sta-
bilization of plaques by combining predictive models with analysis of single-cell data. It introduced novel insights 
into the mechanisms underlying carotid atherosclerosis formation and plaque progression and may assist in identify-
ing potential therapeutic targets for their treatment.

Keywords  Oxidative stress, Immune inflammation, Single-cell sequencing, Machine learning

Background
According to the World Health Organization, an esti-
mated 17.9 million people die from cardiovascular dis-
eases (CVDs) each year, accounting for 32% of global 
mortalities and remaining the leading cause of death [1]. 
Notably, carotid atherosclerosis is the principal cause of 

cerebrovascular diseases. Indeed, it can lead to partial 
or complete narrowing of the lumen of the blood ves-
sels, thus limiting blood flow to the brain and resulting 
in symptoms such as blurred and transient loss of vision. 
Furthermore, acute rupture of carotid atherosclerotic 
plaques can lead to local thrombosis and blood block-
age [2, 3], which is the primary cause of stroke and the 
second leading cause of death worldwide [4, 5]. While 
improvements in living standards and medical care, as 
well as health management practices, have significantly 
lowered the incidence and mortality rates of carotid ath-
erosclerosis [6], it remains a public health concern in 
most countries.

Decades ago, atherosclerosis was regarded as a dis-
ease induced by dyslipidemia [7, 8]. At present, mount-
ing evidence suggests that atherosclerosis is a chronic 
immune inflammatory disease [9–11]. Oxidative stress 
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is closely related to inflammation and the mutual promo-
tion between them play a vital role in the occurrence and 
progression of atherosclerotic plaques [12]. Oxidative 
stress is essentially triggered by the excessive produc-
tion of reactive oxygen species (ROS) and dysregula-
tion of the antioxidant system [13, 14]. Previous studies 
have reported that excessive ROS production can trig-
ger apoptosis of endothelial cells and vascular responses 
to external stimuli, thus leading to inflammation. Sub-
sequently, macrophages, T cells, B cells, tumor necro-
sis factor (TNF), other immune cells and inflammatory 
cytokines infiltrate the vascular wall, thereby promot-
ing the occurrence of atherosclerosis [15–17]. Mean-
while, some inflammatory cytokines (such as TNF and 
Interleukin-1) secreted in response to the inflammatory 
reactions can result in inhibitory kappa B kinase (IKK) 
phosphorylation-dependent activation of the NF-κB 
essential modulator (NEMO)  complex. These interac-
tions eventually activate the nuclear factor-κB (NF-κB) 
pathway, which contributes to more ROS generation. For 
example, enzymes such as NADPH oxidase (Nox), xan-
thine oxidase, inducible nitric oxide synthase (iNOS), or 
neuronal nitric oxide synthase (nNOS) are regulated by 
the NF-κB pathway, facilitating the production of ROS 
and peroxynitrites [18–20]. Eventually, the disbalance 
between ROS production and the anti-oxidant mecha-
nisms induces atherosclerosis. Therefore, the mutual pro-
motion between inflammation and oxidative stress may 
play an indispensable role in the initiation and develop-
ment of atherosclerosis. More importantly, studies have 
described that oxidative stress is closely associated with 
plaque rupture and intraplaque hemorrhage, which play 
a critical role in the prognosis of carotid atherosclerosis 
[21–24].

Therefore, exploring the interactions between key oxi-
dative stress genes and key inflammatory cells, as well as 
the mechanisms underlying the formation of atheroscle-
rotic plaques, may assist in the management, prevention, 
and development of innovative therapeutic strategies for 
atherosclerosis.

Methods
Data collection, collation, and oxidative stress‑related 
gene acquisition
Four carotid atherosclerosis-related datasets were 
retrieved from the Gene Expression Omnibus (GEO; 
https://​www.​ncbi.​nlm.​nih.​gov/​geo/), namely GSE28829 
[25], GSE163154 [26], GSE43292 [27] and GSE159677 
[28], as listed in Table 1. In brief, we searched the GEO 
database using ‘atherosclerosis’ as the keyword, restricted 
the sample type to Homo sapiens, and selected GSE28829 
(early and advanced carotid plaques), GSE43292 (carotid 
plaques and control group), and GSE163154 (intra-
plaque hemorrhage and non-intra-plaque hemorrhage 
carotid plaques) to explore the relationship between oxi-
dative stress and the occurrence, progression, and rup-
ture of carotid atherosclerotic plaque samples (CAS). 
Meanwhile, GSE159677 (calcified atherosclerotic core 
plaques and the patient-matched proximal adjacent por-
tions of carotid artery) was selected to conduct cluster 
analysis performed on single-cell data to identify key 
oxidative stress-related genes and key immune cell infil-
tration. A total of 444 genes related to oxidative stress 
were identified and acquired according to gene ontology 
annotation at AmiGO 2 tool (https://​amigo.​soyba​se.​org/​
amigo/​amigo/​landi​ng). The details of genes are presented 
in Supplementary Table 1. The main clinical characteris-
tics of the patients of each dataset were displayed in Sup-
plementary Table 2.

Single sample gene set enrichment analysis (ssGSEA)
Using "GSVA" (version 1.34.0) [29] in R software (4.1.2), 
single-sample gene set enrichment analysis (ssGSEA) 
was performed on the three datasets to analyze oxidative 
stress characteristics related to the identified oxidative 
stress-related genes. In brief, we organized three data-
sets into a gene expression matrix format, with genes as 
rows and samples as columns. We used oxidative stress-
related genes as the target gene set and calculated the 
enrichment of this gene set in each sample to generate an 
ssGSEA score. This score represents the enrichment level 

Table 1  The details of four carotid atherosclerosis-related datasets

Plaque (series) Platform Samples

28829 GPL570 Carotid plaque 29 [advanced 16(thin or thick fibrous cap atheroma);early 13(pathological intimal thickening and intimal 
xanthoma)]

163154 GPL6104 Carotid plaque 43 (non-IPH 16;IPH 27)
IPH:intra-plaque hemorrhage

43292 GPL6244 Carotid plaque 32;Control group(Macroscopically intact carotid tissue adjacent to the atheroma plaque) 32(they are all 
from media and neo-intima)

159677 GPL18573 Calcified atherosclerotic core (AC) plaques and patient-matched proximal adjacent (PA) portions of carotid artery were 
collected from three patients

https://www.ncbi.nlm.nih.gov/geo/
https://amigo.soybase.org/amigo/amigo/landing
https://amigo.soybase.org/amigo/amigo/landing
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of the target gene set in each sample. We then analyzed 
the ssGSEA results to examine the scores of the target 
gene set across different samples.

Differential analysis and screening of key oxidative 
stress‑related genes
Oxidative stress-related genes were identified from the 
three datasets, and differentially expressed genes were 
identified using the "limma" package [30] in R software 
(4.1.2) using the screening criteria of corrected p-value 
< 0.05 (Benjamini-Hochberg, to control the false posi-
tive rate) and false discovery rate of 0.05 (Used for large-
scale multiple hypothesis testing, it can more effectively 
balance the relationship between discovering truly sig-
nificant results and controlling the proportion of false 
positives). Oxidative stress-related genes differentially 
expressed across the three datasets were regarded as key 
oxidative stress-related genes.

Consistency cluster analysis, principal component analysis 
(PCA), and immune cell infiltration analysis
Consensus Cluster Plus [31] in R software (4.1.2) was 
utilized to conduct consensus clustering analysis of sam-
ples based on key oxidative stress-related genes, and 
different clusters were distinguished according to the 
results of consensus clustering matrix analysis. PCA 
analysis of different clusters was performed using the 
"limma" package [30] in R software (4.1.2). Then, GSVA 
(version 1.34.0) [29] in R software (4.1.2) was employed 
to perform ssGSEA, and the enrichment scores of 23 
immune-related cells and functions in the CAS group, 
control group, and different clusters were determined 
[32]. Lastly, we analyzed the clusters to identify differen-
tially expressed genes.

Gene ontology (GO) and kyoto encyclopedia of genes 
and genomes (KEGG) enrichment analyses
GO and KEGG enrichment analyses of differentially 
expressed genes in different clusters were performed 
using the cluster Profiler 4.0 package [33].

Construction and validation of oxidative stress prediction 
models
The "randomForest" and "kernlab" packages [34, 35] in 
the R software (4.1.2) were used to analyze the data. We 
used the random forest method (to handle classification 
problems in a nonlinear model) and the support vector 
machine (SVM) method (to handle classification prob-
lems in a nonlinear model with a polynomial kernel) to 
construct the predictive models. For the random forest 
method, we used fivefold cross-validation to select appro-
priate hyperparameters, setting n_estimators to 500, 
min_samples_split to 2, and max_depth to 20. For the 

SVM model, we applied a polynomial kernel of degree 
3, selected gamma = 0.1 as the kernel function param-
eter, and tuned the regularization parameter (C) using 
cross-validation to determine the optimal configura-
tion. The reliability of the predictive models constructed 
using the two methods was compared by comparing the 
residual values and the reverse cumulative distribution of 
residuals using receiver operating characteristic (ROC) 
curve analysis. The method with higher confidence was 
selected to construct the predictive model based on the 
top 5 genes identified by importance scores of oxidative 
stress-related genes calculated using the corresponding 
method. Finally, the accuracy of the predictive model was 
validated by comparing the accuracy curve of the predic-
tive model with the ideal curve and the bias correction 
curve.

Decision curve analysis and construction of nomogram
DCA was used to assess the clinical decision utility of 
the predictive model. We used predictive models to cal-
culate the predicted probabilities for each patient, apply 
decision curve analysis (DCA) to assess the net benefit of 
the model at different thresholds, and plot the decision 
curves by using "dcurves" package [36]. Comparison sub-
jects should include curves for full treatment (assuming 
everyone is treated) and no treatment (assuming no one 
is treated). The closer the decision curve is to the top, the 
higher the clinical value of the model.

The nomogram is constructed by converting gene 
expression levels from a predictive model into scores 
based on the model’s coefficients by using "nomogram-
Formula" package [37]. For individual patients, doctors 
can determine corresponding scores based on the values 
of each variable in the nomogram and sum the scores 
of all variables to obtain a total score. This total score is 
then used to predict the prognosis or the likelihood of an 
event occurring for the patient. The nomogram visually 
displays individual patient risk, aiding doctors in mak-
ing personalized treatment decisions based on specific 
patient characteristics.

ROC analysis and correlation analysis
The oxidative stress prediction model was applied to 
three different types of carotid atherosclerosis data, and 
ROC analysis was adopted to verify its accuracy based on 
"pROC" [38]. The correlation between genes and immune 
cells was evaluated by calculating the Pearson correla-
tion coefficient based on R (version 4.3.0) programming 
environment.

Analysis of single‑cell data from carotid plaques
"Seurat" package [39] was used for processing single-
cell data. We implemented a quality-control criterion 
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that required cells to have gene expression levels rang-
ing between 200 and 5,000, and a mitochondrial content 
exceeding 20%. A total of 48292 cells from GSE159677 
[28] were included in the analysis. Samples were inte-
grated using the top 2,000 hypervariable genes. Principal 
component analysis (PCA) was carried out to map high-
dimensional single-cell data into two-dimensional space. 
The resolution parameter (set to 0.6 in this study) deter-
mines the granularity of clustering in single-cell analysis. 
Based on data characteristics and preliminary testing, a 
resolution of 0.6 provided an optimal balance between 
cluster granularity and biological relevance, as verified 
through visualization techniques (cluster trees). We used 
t-Distributed Stochastic Neighbor Embedding (tSNE) 
for dimensionality reduction and visualization of high-
dimensional data, with parameters set to perplexity = 30, 
learning rate = 200, and 1000 iterations. t-SNE was also 
employed to visualize cell clusters. Cell clusters were 
manually annotated with reference to the cellmark data-
base and published studies [4–7]. Afterward, the expres-
sion of model genes was evaluated in each cell cluster.

Quantification and statistical analysis
Statistical analysis was performed using R (version 4.3.0). 
Data are expressed as mean ± standard deviation (SD) 
or as medians with interquartile ranges. Statistical sig-
nificance between two groups was determined using the 
Student’s unpaired t-test. A p-value < 0.05 was considered 
significant. One asterisk (*) indicates a p-value < 0.05, two 
asterisks (**) indicate a p-value < 0.01, three asterisks (***) 
indicate a p-value < 0.001, and four asterisks (****) indi-
cate a p-value < 0.0001.

Results
Oxidative stress profile and screening of key oxidative 
stress‑related genes in carotid atherosclerosis
The analysis revealed significant differences in oxi-
dative stress scores between healthy carotid samples 
and carotid atherosclerotic plaque samples (CAS), 
early CAS and advanced CAS, and non-intraplaque 
hemorrhage (non-IPH) and intraplaque hemorrhage 
(IPH) samples (Fig.  1A, C, E). In addition, the oxida-
tive stress scores were significantly higher in the CAS 
group compared with the control group, and higher in 
the advanced CAS and intraplaque hemorrhage groups 
compared with the early CAS and non-IPH groups, 
respectively. These results collectively indicated that 
the occurrence, progression, and plaque rupture of 
CAS are closely correlated with oxidative stress. We 
performed a differential analysis of oxidative stress-
related genes across three datasets and identify those 
with consistent expression differences in all three as 
key oxidative stress-related genes: 141 up-regulated 

oxidative stress-related genes and 96 down-regulated 
oxidative stress-related genes were identified In the 
control and CAS groups (Fig. 1B); 69 up-regulated oxi-
dative stress-related genes and 61 down-regulated oxi-
dative stress-related genes were identified in the early 
CAS group and advanced CAS group (Fig. 1D); 117 up-
regulated oxidative stress-related genes and 101 down-
regulated oxidative stress-related genes were identified 
in the non-IPH and IPH groups (Fig.  1F). Total of 83 
key oxidative stress-related genes were identified as the 
hub oxidative stress-related genes (Fig. 2A).

Analysis of consistency clusters
According to the 83 key oxidative stress-related genes 
and the results of the consistency cluster matrix analy-
sis (Supplementary Fig.  1A, B), carotid atherosclerotic 
plaque samples were categorized into two clusters 
(Carotid atherosclerotic plaque samples are from 
GSE43292) (Fig.  2B). Also, PCA analysis determined 
that carotid atherosclerotic plaque samples in the two 
clusters could be well distinguished (Fig. 2C). This indi-
cates that carotid atherosclerotic plaque samples can be 
effectively divided into two clusters based on oxidative 
stress-related genes. Given the association of oxidative 
stress with immune inflammation and its link to ath-
erosclerosis, the level of immune cell infiltration was 
compared between the control and CAS groups, as well 
as between the two clusters. (cluster A and cluster B), 
was examined. We assessed immune cell infiltration in 
the samples based on the markers of various immune 
cell types. The percentage of infiltration of 23 immune-
related cells was significantly higher in the CAS group 
compared to the control group, indicating that carotid 
atherosclerosis is associated with immuno-inflamma-
tory processes (Fig.  2D). However, in the two clusters 
(A and B), with the exception of the higher abundance 
of type 2 helper T cells in cluster B, the remaining 22 
immune-related cells were highly expressed in clus-
ter A, suggesting that oxidative stress is significantly 
correlated with immune cell infiltration, with cluster 
A displaying a higher immune-inflammatory profile 
compared with cluster B (Fig.  2E). Following this, dif-
ferential analysis was performed between cluster A 
and cluster B samples, and 231 differentially expressed 
genes were identified. GO and KEGG enrichment 
analyses of these differentially expressed genes dem-
onstrated that these genes were largely involved in the 
regulation of adipocyte lipolysis, chemokine signaling 
pathway, peroxisome proliferators-activated receptors 
(PPAR) signaling pathway, oxygen binding, neutrophil 
activation, extracellular matrix tissue synthesis, and 
other processes (Fig. 2F, Supplementary Fig. 1C).
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(n =13)
(n =16)
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Fig. 1  A: Oxidative stress scores in the GSE43292 dataset (CAS and control samples). B: Volcano plot illustrating oxidative stress-related genes 
in the GSE43292 dataset (CAS and control samples). C: Oxidative stress scores in the GSE28829 dataset (Early plaque and advanced plaque groups). 
D: Volcano plot displaying oxidative stress-related genes in the GSE28829 dataset (Early plaque and advanced plaque groups). E: Oxidative stress 
scores in the GSE163154 dataset (non-IPH and IPH). F: Volcano plot depicting oxidative stress-related genes in the GSE163154 dataset (non-IPH 
and IPH). Analyzed with Student’s unpaired t-test. * p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001; **** p-value < 0.0001
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Fig. 2  A: Venn diagram presenting differentially expressed oxidative stress genes across the three datasets. B: Consistency matrix clustering 
analysis. C: PCA analysis of oxidative stress clusters (PCA plot showing the distribution of samples in the first two principal components. Dashed 
circles represent clusters of samples identified based on their proximity in the PCA space, illustrating groupings with shared characteristics). D: 
Infiltration level of 23 immune-related cells in the CAS and control groups. E: Infiltration of 23 immune-related cells in the oxidative stress cluster. F: 
GO and KEGG analysis of differentially expressed genes in the oxidative stress cluster (BP: biological process CC: cellular component MF: molecular 
function). * p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001; **** p-value < 0.0001
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Construction of the oxidative stress prediction model
We used 83 key oxidative stress-related genes to con-
struct predictive models using random forest and SVM 
methods. The model construction was based on the data-
set GSE43292. The predictive models constructed using 
the random forest method had lower residual values 
(i.e., higher confidence) (Supplementary Fig. 1D, Supple-
mentary Fig.  2A, B), whilst ROC analysis validated that 
the predictive model constructed using this method had 
higher area under the curve (AUC) values (Supplemen-
tary Fig. 2C). The importance scores of predictive model’s 
genes were determined from Supplementary Fig. 2D (cal-
culated according to the random forest method), and the 
top 5 genes (IDH1, EIF2S1, PRKCD, FBLN5, and CD36) 
were selected to construct the predictive model. The 
accuracy curve of the predictive model was consistent 
with the ideal curve and the deviation correction curve 
(Supplementary Fig.  2E), highlighting the high accuracy 
of the predictive model. Similarly, DCA analysis con-
firmed that, compared to ‘treat-all’ or ‘treat-none’ strat-
egies, the oxidative stress predictive model provides a 
higher net benefit, accurately predicts the prognosis of 
CAS patients, and helps doctors assess whether further 
interventions are necessary for these patients (Fig.  3A, 
B). Following this, the nomogram was established based 
on the predictive model composed of IDH1, EIF2S1, 
PRKCD, FBLN5, and CD36. As anticipated, the results 
demonstrated that the nomogram could accurately pre-
dict the risk of CAS (Fig. 3C).

The predictive model of oxidative stress for analysis 
of gene expression and immune characteristics
The expression of IDH1, EIF2S1, PRKCD, FBLN5, and 
CD36 in three different datasets of carotid atheroscle-
rosis samples was analyzed. As delineated in Fig.  3D-
F, the expression level of IDH1, PRKCD, and CD36 
was increased in the CAS, advanced, and IPH groups, 
whereas that of EIF2S1 and FBLN5 was lower. Similarly, 
the expression of these genes was assessed in clusters A 
and B, and the results showed that, with the exception of 
EIF2S1, the expression of the remaining four genes var-
ied across clusters. Among them, the expression level 
of IDH1, PRKCD, and CD36 was up-regulated in clus-
ter A, whereas that of FBLN5 was up-regulated in clus-
ter B (Fig. 3G, H). Our previous analysis established that 
cluster A was associated with high levels of immune cell 
infiltration (Fig. 2D). Therefore, the immune cell charac-
teristics of these five genes were investigated. Differences 
in the expression level of IDH1, PRKCD, FBLN5, and 
CD36 led to changes in the proportion of most immune 
cell infiltration. Meanwhile, EIF2S1 was not associated 
with immune cell infiltration (Fig. 4A–E). Further analy-
sis revealed that the expression levels of IDH1, PRKCD, 

and CD36 were positively correlated with immune infil-
tration. According to the expression heatmap which 
shows correlation between IDH1, PRKCD, FBLN5, CD36, 
EIF2S1 and 23 immune cells, IDH1 had the strongest 
positive correlation with T follicular helper cells, while 
the expression levels of FBLN5 was negatively corre-
lated with immune infiltration. Besides, FBLN5 had the 
strongest negative correlation with activated dendritic 
cells (Fig.  4F). GO analysis was performed for IDH1, 
EIF2S1, PRKCD, FBLN5, and CD36 and determined that 
these genes were mainly involved in response to oxida-
tive stress, cellular response to oxidative stress, response 
to stress, lipid metabolic process, and immune response 
(Fig. 5A). At the same time, KEGG analysis showed that 
IDH1, PRKCD, and CD36 were involved in insulin resist-
ance, 2-Oxocarboxylic acid metabolism, adipocytokine 
signaling pathway PPAR signaling pathway, and peroxi-
some (Fig. 5B).

Validation of oxidative stress prediction models
Based on GSE28829, GSE163154 and GSE43292, ROC 
analysis delineated the high discriminatory power of the 
model in identifying carotid atherosclerosis (Fig.  5C), 
plaque stability (Fig. 5D), and carotid plaque progression 
(Fig. 5E), with its predictive accuracy being substantially 
higher than that of individual genes. This finding signi-
fied that the model and the model genes were related to 
not only the occurrence of carotid atherosclerosis but 
also plaque stability and progression.

The relationship between the development 
and progression of carotid atherosclerosis 
and the abnormal expression of key genes in macrophages
Based on GSE159677, cluster analysis performed on sin-
gle-cell data identified 23 clusters at a resolution of 0.6 
(Fig. 5F, Supplementary Fig. 3A, B). According to the rel-
evant markers, the cells were divided into T cells (CD2, 
CD3D, CD3E, CD3G, TEK, and IL7R), NK cells (GNLY 
and NKG7), endothelial cells (PECAM1 and VWF), fibro-
blasts (DCN and FBLN1), vascular smooth muscle cells 
(ACTA2, MTH11, and TAGLN), macrophages (CD14, 
CD68, FCGR2A, and LYZ), B cells (JCHAIN), and mast 
cells (TPSAB1, KIT, CPA3, and MS4A2) (Fig.  6A, B). 
Supplementary Fig.  3C presents the top genes in the 
23 clusters. Then, the expression of five oxidative stress 
genes (IDH1, EIF2S1, PRKCD, FBLN5, and CD36) was 
detected, revealing that CD36 and IDH1 were highly 
expressed in macrophages, FBLN5 was abundantly 
expressed in fibroblasts and smooth muscle cells, EIF2S1 
was mainly expressed in T cells, and PRKCD expression 
was not expressed in all cell types (Fig. 6C, D).

The comparison between calcified atherosclerotic 
core (AC) plaques and the patient-matched proximal 
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Fig. 3  A: Clinical impact curves of oxidative stress prediction models. B: DCA curve analysis of oxidative stress models. C: Nomogram 
of the oxidative stress prediction model. D: Relative expression levels of oxidative stress model genes in the CAS and control groups. E: Relative 
expression levels of oxidative stress model genes in the early plaque group and the advanced plaque group. F: Relative expression levels 
of oxidative stress model genes in the non-IPH and IPH groups. G: Relative expression of oxidative stress model genes in the oxidative stress clusters. 
H: Heatmap of expression of oxidative stress model genes in oxidative stress clusters. * p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001; **** 
p-value < 0.0001
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adjacent portions of carotid artery (PA) showed the most 
pronounced difference was in the macrophage clus-
ter, with macrophage counts being significantly higher 

in the plaque group (Supplementary Fig.  3B). Impor-
tantly, when comparing the expression of IDH1, EIF2S1, 
PRKCD, FBLN5, and CD36 between the two groups, it 
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Fig. 4  A: Infiltration characteristics of IDH1 and 23 immune cells. B: Infiltration characteristics of PRKCD and 23 immune cells. C: Infiltration 
characteristics of FBLN5 and 23 immune cells. D: Infiltration characteristics of CD36 and 23 immune cells. E: Infiltration characteristics of EIF2S1 
and 23 immune cells. F: Expression heatmap which shows correlation between IDH1, PRKCD, FBLN5, CD36, EIF2S1 and 23 immune cells. * 
p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001; **** p-value < 0.0001
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Fig. 5  A: GO analysis of oxidative stress prediction model genes. B: KEGG analysis of oxidative stress prediction model genes. C: ROC analysis 
of oxidative stress prediction model in the GSE43292 dataset (including 32 carotid plaques and 32 control samples). D: ROC analysis of the oxidative 
stress prediction model in the GSE28829 dataset (16 advanced and 13 early carotid plaques). E: ROC analysis of oxidative stress prediction model 
in the GSE16315 dataset (including 27 IPH samples and 16 non-IPH samples); F: tSNE plot of the carotid plaque group
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was found that IDH1, PRKCD, CD36, and EIF2S1 showed 
an upward trend in the plaque group, while FBLN5 exhib-
ited a downward trend. (Supplementary Fig. 3D). Given 
the association between IDH1, PRKCD, and CD36 with 

high levels of immune cell infiltration, they may poten-
tially be related to macrophage clusters in the plaque 
group. Moreover, the expression of IDH1 and CD36 was 
assessed in the plaque group, demonstrating that they 

Fig. 6  A: Visualization of marker gene expression in each cell type. B: Cluster analysis of carotid plaque groups. C: Graph of IDH1, PRKCD, FBLN5, 
CD36, and EIF2S1 expression in each cell population. D: Dot plot of IDH1, PRKCD, FBLN5, CD36, EIF2S1 expression in each cell population
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were highly expressed in macrophage clusters, which was 
in line with the results of previous studies (Supplemen-
tary Fig. 3E).

Our previous results demonstrated highly expressed 
IDH1 and CD36 may be related to macrophage infiltra-
tion in carotid atherosclerosis. To further investigate 
the relationship between them, macrophages were fur-
ther analyzed. We re-clustered macrophages to further 
explore the roles of IDH1 and CD36 in macrophage 
subpopulations (Fig.  7A). Figure  7B presents the top 

genes in each cluster. Subgroup analysis of macrophages 
according to relevant marks demonstrated that they can 
roughly be divided into inflammatory macrophages (clus-
ters 1, 3, 4, 6, and 7), resident-like macrophages (cluster 
0), foam macrophages (clusters 1, 2, 3, 4, 6, and 7), and 
proliferating macrophages (cluster 5) (Fig.  7C). CD36 
and IDH1 were significantly expressed in clusters 2 and 
0, respectively (Fig. 7D). Cluster 2 comprised foam mac-
rophages, and CD36 has been shown to be related to 
lipid phagocytosis by macrophages, consistent with our 
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results. In addition, cluster 0 represented resident-like 
macrophages, and the apparent expression of IDH1 in 
this cluster drove the generation of foam cells by pro-
moting macrophage ferroptosis, a crucial step in the 
pathogenesis of atherosclerosis. In addition, GO and 
KEGG analyses were performed on cluster 0 (Fig.  7E, 
F), demonstrating that cluster 0 was involved in positive 
regulation of leukocyte activation, leukocyte cell–cell 
adhesion, gene expression, regulation of leukocyte cell–
cell adhesion, human T-cell, leukemia virus 1 infection, 
and other immune response processes. GO and KEGG 
analyses were performed on cluster 2, unveiling that it 
participated in the generation of precursor metabolites 
and energy, the establishment of protein localization to 
organelle, oxidative phosphorylation, chemical carcino-
genesis- reactive oxygen species, and other metabolism 
processes (Fig. 7G, H).

Discussion
Increased oxidative stress and systemic inflammation 
are risk factors for carotid atherosclerosis. Recent stud-
ies have evinced that hyperlipidemia, smoking, and lack 
of physical activity, which are risk factors for atheroscle-
rosis, drive oxidative stress and inflammation [39, 40]. 
Increased oxidative stress and inflammation lead to 
endothelial cell dysfunction, shifting macrophages to the 
pro-inflammatory phenotype, and vascular smooth mus-
cle cell proliferation, which further accelerate the pro-
gression of carotid atherosclerosis and plaque formation.

Our study comprehensively analyzed the expression of 
oxidative stress-related genes and immune-inflammatory 
profiles in carotid atherosclerotic samples in silico. In 
agreement with the results of existing studies, the expres-
sion of oxidative stress-related genes was significantly 
higher in carotid atherosclerosis samples. Additionally, 
the samples were clustered according to the differentially 
expressed oxidative stress genes. The results showed 
that the samples could be well distinguished based on 
the expression of oxidative stress genes, and the infiltra-
tion level of the 23 immune inflammation-related cells 
varied across oxidative stress clusters. Among them, the 
difference in macrophages was more pronounced. Mac-
rophages play a central role in atherosclerosis as regula-
tors of inflammation. Activated macrophages and foam 
cells are implicated in the formation of atherosclerotic 
plaques, with the former promoting plaque necrosis and 
the thinning of protective collagen scars (fibrous caps) 
[40]. Ginhoux et al. demonstrated [41] that macrophages 
in plaques can adopt highly inflammatory characteristics, 
leading to tissue destruction, while M0 macrophages are 
non-activated macrophages that can differentiate into 
pro-inflammatory M1 or anti-inflammatory M2 mac-
rophages following exposure to inflammatory factors [42, 

43]. Therefore, oxidative stress may play a key role in the 
development of atherosclerosis by inducing macrophage 
differentiation. It is worth noting that activated CD4 T 
cells and activated CD8 T cells also showed strong het-
erogeneity. Previous studies have concluded that a large 
proportion of T cells in atherosclerotic plaques exhibit 
a memory phenotype. After stimulation by antigens, 
stimuli, and cytokines, these CD4 T cells differentiate 
into various T cell subsets and participate in immune and 
inflammatory processes [44, 45]. CD8 T cells are not as 
abundant as CD4 T cells in atherosclerotic plaque, but 
the content of the former markedly increases in severe 
atherosclerotic plaque lesions, signaling that CD8 T cells 
are closely related to inflammation and plaque progres-
sion. Earlier studies have pointed out that CD8 T cells 
contribute to inflammation and necrotic cores within 
plaques, which can lead to plaque instability and rupture, 
thereby promoting the development of severe cardiovas-
cular and cerebrovascular diseases [46]. Taken together, 
these findings suggest that T cells may be involved in the 
formation and progression of atherosclerotic plaques 
caused by oxidative stress, which is consistent with the 
results of the present study.

Herein, the random forest method was used to con-
struct an oxidative stress model incorporating five oxi-
dative stress-related genes (IDH1, EIF2S1, PRKCD, 
FBLN5, and CD36) to predict the risk of carotid ath-
erosclerosis. Of note, a retrospective study showed that 
polymorphisms in IDH1 were negatively associated with 
the development of ischemic brain damage in patients 
undergoing carotid endarterectomy, while another study 
determined that IDH1 was associated with oscillatory 
shear stress on endothelial progenitor cells [47, 48]. 
Hyperlipidemia and diabetes can increase the expres-
sion of PRKCD in monocytes, which has been shown 
to alter macrophage activity and foam cell formation by 
regulating PI3K (phosphatidylinositol 3-kinases) / PKB 
(protein kinase B) and ERK (extracellular signal-regu-
lated kinase) expression. Interestingly, mechanical stress 
can up-regulate PRKCD expression and enhance the 
proliferative and migratory abilities of vascular smooth 
muscle cells, suggesting that PRKCD may be a poten-
tial target for the treatment of atherosclerosis [49–51]. 
Smoking is an important risk factor for atherosclerosis. 
Zhou et  al. demonstrated that nicotine up-regulates the 
expression of CD36 and peroxisome proliferator-acti-
vated receptor-γ (PPARγ) in macrophages to accelerate 
the development of atherosclerosis. Similarly, Lin et  al. 
evinced that PRKCD can regulate the expression of CD36 
in macrophages and exert a coordinated effect [50, 52]. 
Extracellular superoxide dismutase (ecSOD) plays an 
instrumental role in atherosclerosis and endothelial func-
tion by governing the level of superoxide anion (O2

−) in 
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the extracellular space. Nguyen et al. [53] identified fibu-
lin-5 as the major binding protein of ecSOD. Its inter-
action with fibulin-5 is a prerequisite for the binding of 
ecSOD to vascular tissue, which regulates vascular O2

− 
levels. Further studies have found that ecSOD-fibulin-5 
interactions can regulate vascular redox status in extra-
cellular space, which is a novel mechanism that mediates 
the development of various cardiovascular disorders, 
including atherosclerosis [53]. Although EIF2S1 was not 
differentially expressed in the oxidative stress cluster, 
it was identified as a differential gene in carotid athero-
sclerosis. However, studies on EIF2S1 and atherosclerosis 
are scarce. Nevertheless, previous studies have reported 
that EIF2S1 is an endoplasmic reticulum stress gene that 
can predict the prognosis of hepatocellular carcinoma 
[54]. Moreover, EIF2S1-mediated chronic ER stress pro-
motes placental malformation, which is associated with 
adverse pregnancy outcomes [55]. Importantly, Bai et al. 
found that the dephosphorylation of EIF2S1 contributes 
to ROS accumulation and insulin resistance sensitivity in 
triple-negative breast cancer cells by disrupting activat-
ing transcription factor 4 (ATF4)  -mediated glutathione 
biosynthesis [56]. These studies highlight the role of 
EIF2S1 in oxidative stress and cell damage [54–56]. We 
constructed an oxidative stress model, which was initially 
applied to CAS samples. The results demonstrated high 
discriminatory power, and DCA analysis was used to 
evaluate the necessity and benefits of treatment, provid-
ing a theoretical reference for clinical decision-making. 
In addition, the oxidative stress model was also validated 
across two types of samples. As expected, the oxidative 
stress model was highly accurate for predicting the risk of 
carotid atherosclerosis and plaque progression and sta-
bility in the two types of samples. The above-mentioned 
results also corroborated that oxidative stress genes play 
a crucial role in carotid atherosclerosis.

Next, the single-cell data derived from calcified ath-
erosclerotic core (AC) plaques and patient-matched 
proximal adjacent (PA) portions of carotid artery were 
investigated. Following normalization and quality con-
trol of samples, 23 clusters were identified. According 
to the relevant markers, these clusters were divided into 
8 groups of cells (T cells, NK cells, endothelial cells, 
fibroblasts, vascular smooth muscle cells, macrophages, 
B cells, and mast cells). The macrophage and smooth 
muscle cell clusters were significantly enriched in the 
carotid plaque group. Macrophages are known to play 
a central role in atherosclerosis, and IDH1 and CD36 
were observed to be enriched in macrophages. There-
fore, subgroup analyses were performed on the mac-
rophage clusters, and the expression of five oxidative 
stress genes (IDH1, EIF2S1, PRKCD, FBLN5, and CD36) 
was analyzed in each subgroup. The results showed that 

IDH1 and CD36 were highly expressed in resident mac-
rophages and foam cells, respectively. Moreover, they 
were also highly expressed in macrophage clusters in 
the carotid plaque group. CD36 has been associated 
with phagocytosis of lipids by macrophages, which 
is consistent with our results. Macrophage foams are 
known to play a vital role in atherosclerosis progression 
owing to their strong affinity and uptake of oxidized 
LDL. However, following IDH mutation, the bind-
ing of CD36 with NRF-2 resulted in decreased GPX4 
expression, a key enzyme participating in the clear-
ance of lipid ROS [57]. This disruption also accelerated 
glutathione depletion, promoted ROS accumulation, 
increased oxidized LDL content, and promoted mac-
rophage foam cell formation [58]. At the same time, the 
levels of ferrous ions were also increased, which further 
promoted the ferroptosis of macrophages and aggra-
vated the formation of foam cells [59]. After foam cell 
death, lipids accumulate on the arterial wall, thereby 
exacerbating atherosclerotic lesions [60]

By the best of our knowledge, this study is the first to 
integrate transcriptomic data, single-cell sequencing, 
and machine learning algorithms to identify key oxida-
tive stress-related genes and immune cell infiltration fac-
tors involved in the formation, progression, and stability 
of carotid plaques, thus enhancing our understanding of 
the pathophysiology of carotid atherosclerosis. Through 
single-cell resolution data analysis, we further examined 
expression patterns of key genes across various cell types, 
revealing that the high expression of IDH1 and CD36 in 
resident macrophages and foam cells may play a crucial 
role in influencing plaque stability [57, 61]. These findings 
not only deepen our understanding of the mechanisms 
by which oxidative stress and immune cells contribute to 
plaque instability but also provide a theoretical basis for 
potential therapeutic targets (e.g., IDH1 and CD36) for 
carotid atherosclerosis, laying the groundwork for future 
therapeutic strategies.

In addition, our predictive model, comprising five 
oxidative stress-related genes (IDH1, EIF2S1, PRKCD, 
FBLN5, and CD36), demonstrated significant predic-
tive value for identifying carotid plaque stability and 
progression. Unlike single-gene biomarkers, this multi-
gene model enhances prediction accuracy, aiding early 
screening of high-risk populations, supporting personal-
ized treatment strategies, and showing promise for clini-
cal application in early intervention and risk assessment 
of plaques. However, as a bioinformatics-based study, 
these results require further validation through prospec-
tive studies and clinical data to confirm the functionality 
of the key genes. Future studies should also gather more 
clinical data to improve the robustness and accuracy of 
the model developed.
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Compared with existing studies, such as the model by 
Wang et al. [62], which used machine learning to pre-
dict carotid plaque progression without incorporating 
single-cell sequencing data, our study integrated single-
cell data, allowing a more refined analysis of cell–cell 
interactions and specifically identifying the contribu-
tions of foam cells and resident macrophages to plaque 
instability. Additionally, our findings align with those of 
Wang et  al. [62], who identified M1 macrophages as a 
primary factor in plaque instability. Our study not only 
confirmed the role of these genes in oxidative stress but 
also revealed their distinct expression patterns across 
various immune cell types, offering a comprehensive 
understanding of the regulatory mechanisms underly-
ing carotid plaque stability.

This study may facilitate clinical translation. High 
expression levels of IDH1 and CD36 may serve as ther-
apeutic targets for carotid atherosclerosis by mitigating 
oxidative stress and lipid accumulation, thereby slow-
ing plaque progression and enhancing stability. The 
oxidative stress model demonstrated high discrimina-
tory power in detecting and predicting carotid plaque 
progression, facilitating early identification of high-risk 
patients and enabling personalized treatment strate-
gies. This study advances fundamental knowledge and 
informs clinical practice.

Abbreviations
CVDs	� Cardiovascular diseases
ROS	� Reactive oxygen species
TNF	� Tumor necrosis factor
IKK	� Inhibitory kappa B kinase
NF-κB	� Nuclear factor-κB
NEMO	� NF-κB essential modulator
Nox	� NADPH oxidase
iNOS	� Inducible nitric oxide synthase
nNOS	� Neuronal nitric oxide synthase
ssGSEA	� Single sample gene set enrichment analysis
PCA	� Principal component analysis
CAS	� Carotid atherosclerotic plaque samples
AC	� Calcified atherosclerotic core plaques
PA	� Proximal adjacent portions of carotid artery
IPH	� Intraplaque hemorrhage
non-IPH	� Non-intraplaque hemorrhage
GO	� Gene ontology
KEGG	� Kyoto encyclopedia of genes and genomes
SVM	� Support vector machine
ROC	� Receiver operating characteristic
DCA	� Decision curve analysis
tSNE	� T-distributed stochastic neighbor embedding
UMAP	� Uniform manifold approximation and projection
PPAR	� Peroxisome proliferator-activated receptors
AUC​	� Area under the curve
PI3K	� Phosphatidylinositol 3-kinases
PKB	� Protein kinase B
ERK	� Extracellular signal-regulated kinase
ecSOD	� Extracellular superoxide dismutase
ATF4	� Activating transcription factor 4

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13062-​025-​00600-7.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Supplementary Material 5

Acknowledgements
Not applicable.

Author contributions
D.M and Y.Y performed the data analysis and wrote the manuscript.

Funding
Not applicable.

Availability of data and materials
The data are available in Gene Expression Omnibus (GEO; https://​www.​ncbi.​
nlm.​nih.​gov/​geo/) and AmiGO 2 website (https://​amigo.​soyba​se.​org/​amigo/​
amigo/​landi​ng).

Declarations

Ethics approval and consent to participate.
Not applicable.

Consent for publication.
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 20 September 2024   Accepted: 7 January 2025

References
	1.	 World Health Organization. Health topics, Cardiovascular diseases (CVDs). 

Available online at: https://​www.​who.​int/​health-​topics/​cardi​ovasc​ular-​
disea​ses. Accessed Mar 22, 2023.

	2.	 Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868–74. 
https://​doi.​org/​10.​1038/​natur​e01323.

	3.	 Kanter JE, Kramer F, Barnhart S, et al. Diabetes promotes an inflamma-
tory macrophage phenotype and atherosclerosis through acyl-CoA 
synthetase 1. Proc Natl Acad Sci USA. 2012;109(12):E715–24. https://​doi.​
org/​10.​1073/​pnas.​11116​00109.

	4.	 Golledge J, Greenhalgh RM, Davies AH. The symptomatic carotid plaque. 
Stroke. 2000;31(3):774–81. https://​doi.​org/​10.​1161/​01.​str.​31.3.​774.

	5.	 GBD 2015 DALYs and HALE Collaborators. Global, regional, and national 
disability-adjusted life-years (DALYs) for 315 diseases and injuries and 
healthy life expectancy (HALE), 1990–2015: a systematic analysis for the 
Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1603–58. 
https://​doi.​org/​10.​1016/​S0140-​6736(16)​31460-X.

	6.	 Herrington W, Lacey B, Sherliker P, et al. Epidemiology of atherosclerosis 
and the potential to reduce the global burden of atherothrombotic dis-
ease. Circ Res. 2016;118(4):535–46. https://​doi.​org/​10.​1161/​CIRCR​ESAHA.​
115.​307611.

	7.	 Tabas I, Williams KJ, Borén J. Subendothelial lipoprotein retention 
as the initiating process in atherosclerosis: update and therapeutic 

https://doi.org/10.1186/s13062-025-00600-7
https://doi.org/10.1186/s13062-025-00600-7
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://amigo.soybase.org/amigo/amigo/landing
https://amigo.soybase.org/amigo/amigo/landing
https://www.who.int/health-topics/cardiovascular-diseases
https://www.who.int/health-topics/cardiovascular-diseases
https://doi.org/10.1038/nature01323
https://doi.org/10.1073/pnas.1111600109
https://doi.org/10.1073/pnas.1111600109
https://doi.org/10.1161/01.str.31.3.774
https://doi.org/10.1016/S0140-6736(16)31460-X
https://doi.org/10.1161/CIRCRESAHA.115.307611
https://doi.org/10.1161/CIRCRESAHA.115.307611


Page 16 of 17Yang and Dong ﻿Biology Direct           (2025) 20:15 

implications. Circulation. 2007;116(16):1832–44. https://​doi.​org/​10.​
1161/​CIRCU​LATIO​NAHA.​106.​676890.

	8.	 Camejo G, Lalaguna F, López F, Starosta R. Characterization and proper-
ties of a lipoprotein-complexing proteoglycan from human aorta. Ath-
erosclerosis. 1980;35(3):307–20. https://​doi.​org/​10.​1016/​0021-​9150(80)​
90129-x.

	9.	 Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 
1999;340(2):115–26. https://​doi.​org/​10.​1056/​NEJM1​99901​14340​0207.

	10.	 Libby P, Ridker PM, Hansson GK. Progress and challenges in translating 
the biology of atherosclerosis. Nature. 2011;473(7347):317–25. https://​
doi.​org/​10.​1038/​natur​e10146.

	11.	 Tabas I, García-Cardeña G, Owens GK. Recent insights into the cellular 
biology of atherosclerosis. J Cell Biol. 2015;209(1):13–22. https://​doi.​
org/​10.​1083/​jcb.​20141​2052.

	12.	 Montezano AC, Touyz RM. Reactive oxygen species and endothelial 
function—role of nitric oxide synthase uncoupling and Nox family 
nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin 
Pharmacol Toxicol. 2012;110:87–94.

	13.	 Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Bio-
chem. 2017;86:715–48. https://​doi.​org/​10.​1146/​annur​ev-​bioch​
em-​061516-​045037.

	14.	 Li H, Horke S, Förstermann U. Oxidative stress in vascular disease and 
its pharmacological prevention. Trends Pharmacol Sci. 2013;34(6):313–
9. https://​doi.​org/​10.​1016/j.​tips.​2013.​03.​007.

	15.	 Libby P. Current concepts of the pathogenesis of the acute coronary 
syndromes. Circulation. 2001;104(3):365–72. https://​doi.​org/​10.​1161/​
01.​cir.​104.3.​365.

	16.	 Kaartinen M, Penttilä A, Kovanen PT. Mast cells of two types differing in 
neutral protease composition in the human aortic intima. Arterioscler 
Thromb. 1994;14(6):966–72. https://​doi.​org/​10.​1161/​01.​atv.​14.6.​966.

	17.	 Döring Y, Manthey HD, Drechsler M, et al. Auto-antigenic protein-DNA 
complexes stimulate plasmacytoid dendritic cells to promote athero-
sclerosis. Circulation. 2012;125(13):1673–83. https://​doi.​org/​10.​1161/​
CIRCU​LATIO​NAHA.​111.​046755.

	18.	 Liu F, Xia Y, Parker AS, Verma IM. IKK biology. Immunol Rev. 
2012;246:239–53.

	19.	 Hoffmann A, Levchenko A, Scott ML, Baltimore D. The IκB-NF-κB signal-
ing module: temporal control and selective gene activation. Science. 
2002;298:1241–5.

	20.	 Morgan MJ, Liu Z. Crosstalk of reactive oxygen species and NF-κB 
signaling. Cell Res. 2011;21(1):103–15. https://​doi.​org/​10.​1038/​cr.​2010.​
178.

	21.	 Pelisek J, Eckstein HH, Zernecke A. Pathophysiological mechanisms of 
carotid plaque vulnerability: impact on ischemic stroke. Arch Immunol 
Ther Exp. 2012;60(6):431–42. https://​doi.​org/​10.​1007/​s00005-​012-​0192-z.

	22.	 Dunmore BJ, McCarthy MJ, Naylor AR, Brindle NP. Carotid plaque instabil-
ity and ischemic symptoms are linked to immaturity of microvessels 
within plaques. J Vasc Surg. 2007;45(1):155–9. https://​doi.​org/​10.​1016/j.​
jvs.​2006.​08.​072.

	23.	 Sluimer JC, Gasc JM, van Wanroij JL, et al. Hypoxia, hypoxia-inducible 
transcription factor, and macrophages in human atherosclerotic 
plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol. 
2008;51(13):1258–65. https://​doi.​org/​10.​1016/j.​jacc.​2007.​12.​025.

	24.	 Chistiakov DA, Orekhov AN, Bobryshev YV. Contribution of neovasculari-
zation and intraplaque haemorrhage to atherosclerotic plaque progres-
sion and instability. Acta Physiol. 2015;213(3):539–53. https://​doi.​org/​10.​
1111/​apha.​12438.

	25.	 Döring Y, Manthey HD, Drechsler M, Lievens D, et al. Auto-antigenic 
protein-DNA complexes stimulate plasmacytoid dendritic cells to pro-
mote atherosclerosis. Circulation. 2012;125(13):1673–83. https://​doi.​org/​
10.​1161/​CIRCU​LATIO​NAHA.​111.​046755.

	26.	 Jin H, Goossens P, Juhasz P, et al. Integrative multiomics analysis of human 
atherosclerosis reveals a serum response factor-driven network associ-
ated with intraplaque hemorrhage. Clin Transl Med. 2021;11(6): e458. 
https://​doi.​org/​10.​1002/​ctm2.​458.

	27.	 Ayari H, Bricca G. Identification of two genes potentially associated in 
iron-heme homeostasis in human carotid plaque using microarray analy-
sis. J Biosci. 2013;38(2):311–5. https://​doi.​org/​10.​1007/​s12038-​013-​9310-2.

	28.	 Alsaigh T, Evans D, Frankel D, Torkamani A. Decoding the transcriptome 
of calcified atherosclerotic plaque at single-cell resolution. Commun Biol. 
2022;5(1):1084. https://​doi.​org/​10.​1038/​s42003-​022-​04056-7.

	29.	 Hänzelmann S, Castelo R, Guinney A. GSVA: gene set variation analysis for 
microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. https://​doi.​
org/​10.​1186/​1471-​2105-​14-7.

	30.	 Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression 
analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 
2015;43(7): e47. https://​doi.​org/​10.​1093/​nar/​gkv007.

	31.	 Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery 
tool with confidence assessments and item tracking. Bioinformatics. 
2010;26(12):1572–3. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btq170.

	32.	 Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Gar-
cia W, Treviño V, Shen H, Laird PW, Levine DA, Carter SL, Getz G, Stemke-
Hale K, Mills GB, Verhaak RG. Inferring tumour purity and stromal and 
immune cell admixture from expression data. Nat Commun. 2013;4:2612. 
https://​doi.​org/​10.​1038/​ncomm​s3612.

	33.	 Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, 
Fu X, Liu S, Bo X, Yu G. clusterProfiler 4.0: A universal enrichment tool for 
interpreting omics data. Innovation. 2021;2(3):100141. https://​doi.​org/​10.​
1016/j.​xinn.​2021.​100141.

	34.	 Liaw A, Wiener M. Classification and regression by random forest. R News. 
2002;2(3):18–22.

	35.	 Karatzoglou A, Smola A, Hornik K, Zeileis A. kernlab - An S4 Package for 
Kernel Methods in R. J Stat Softw. 2004;11(9):1–20.

	36.	 Pfeiffer RM, Gail MH. Estimating the decision curve and its preci-
sion from three study designs. Biometrical J Biometrische Zeitschrift. 
2020;62(3):764–76. https://​doi.​org/​10.​1002/​bimj.​20180​0240.

	37.	 Hong H, Hong S. simpleNomo: a python package of making nomograms 
for visualizable calculation of logistic regression models. Health Data Sci. 
2023;3:0023. https://​doi.​org/​10.​34133/​hds.​0023.

	38.	 Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Müller M. 
pROC: an open-source package for R and S+ to analyze and compare 
ROC curves. BMC Bioinformatics. 2011;12:77. https://​doi.​org/​10.​1186/​
1471-​2105-​12-​77.

	39.	 Hao Y, Stuart T, Kowalski MH, Choudhary S, Hoffman P, Hartman A, 
Srivastava A, Molla G, Madad S, Fernandez-Granda C, Satija R. Dic-
tionary learning for integrative, multimodal and scalable single-cell 
analysis. Nat Biotechnol. 2024;42(2):293–304. https://​doi.​org/​10.​1038/​
s41587-​023-​01767-y.

	40.	 Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a 
dynamic balance. Nat Rev Immunol. 2013;13(10):709–21. https://​doi.​org/​
10.​1038/​nri35​20.

	41.	 Ginhoux F, Schultze JL, Murray PJ, Ochando J, Biswas SK. New insights 
into the multidimensional concept of macrophage ontogeny, activation 
and function. Nat Immunol. 2016;17(1):34–40. https://​doi.​org/​10.​1038/​ni.​
3324.

	42.	 Frostegård J, Ulfgren AK, Nyberg P, Hedin U, Swedenborg J, Andersson 
U, Hansson GK. Cytokine expression in advanced human atherosclerotic 
plaques: dominance of pro-inflammatory (Th1) and macrophage-stim-
ulating cytokines. Atherosclerosis. 1999;145(1):33–43. https://​doi.​org/​10.​
1016/​S0021-​9150(99)​00011-8.

	43.	 Huang SC, Everts B, Ivanova Y, O’Sullivan D, Nascimento M, Smith AM, 
Beatty W, Love-Gregory L, Lam WY, O’Neill CM, Yan C, Du H, Abumrad NA, 
Urban JF Jr, Artyomov MN, Pearce EL, Pearce EJ. Cell-intrinsic lysosomal 
lipolysis is essential for alternative activation of macrophages. Nat Immu-
nol. 2014;15(9):846–55. https://​doi.​org/​10.​1038/​ni.​2956.

	44.	 Tabas I, Lichtman AH. Monocyte-macrophages and T cells in atheroscle-
rosis. Immunity. 2017;47(4):621–34. https://​doi.​org/​10.​1016/j.​immuni.​
2017.​09.​008.

	45.	 Kyaw T, Winship A, Tay C, Kanellakis P, Hosseini H, Cao A, Li P, Tipping P, 
Bobik A, Toh BH. Cytotoxic and proinflammatory CD8+ T lymphocytes 
promote development of vulnerable atherosclerotic plaques in apoE-
deficient mice. Circulation. 2013;127(9):1028–39. https://​doi.​org/​10.​1161/​
CIRCU​LATIO​NAHA.​112.​001347.

	46.	 Kolbus D, Ramos OH, Berg KE, Persson J, Wigren M, Björkbacka H, Fre-
drikson GN, Nilsson J. CD8+ T cell activation predominate early immune 
responses to hypercholesterolemia in Apoe-/- mice. BMC Immunol. 
2010;11:58. https://​doi.​org/​10.​1186/​1471-​2172-​11-​58.

	47.	 Vasuri F, de Biase D, Vacirca A, Acquaviva G, Sanza V, Gargiulo M, 
Pasquinelli G. Gene polymorphism in tissue epidermal growth factor 
receptor (EGFR) influences clinical and histological vulnerability of carotid 
plaques. Pathol Res Pract. 2022;229: 153721. https://​doi.​org/​10.​1016/j.​prp.​
2021.​153721.

https://doi.org/10.1161/CIRCULATIONAHA.106.676890
https://doi.org/10.1161/CIRCULATIONAHA.106.676890
https://doi.org/10.1016/0021-9150(80)90129-x
https://doi.org/10.1016/0021-9150(80)90129-x
https://doi.org/10.1056/NEJM199901143400207
https://doi.org/10.1038/nature10146
https://doi.org/10.1038/nature10146
https://doi.org/10.1083/jcb.201412052
https://doi.org/10.1083/jcb.201412052
https://doi.org/10.1146/annurev-biochem-061516-045037
https://doi.org/10.1146/annurev-biochem-061516-045037
https://doi.org/10.1016/j.tips.2013.03.007
https://doi.org/10.1161/01.cir.104.3.365
https://doi.org/10.1161/01.cir.104.3.365
https://doi.org/10.1161/01.atv.14.6.966
https://doi.org/10.1161/CIRCULATIONAHA.111.046755
https://doi.org/10.1161/CIRCULATIONAHA.111.046755
https://doi.org/10.1038/cr.2010.178
https://doi.org/10.1038/cr.2010.178
https://doi.org/10.1007/s00005-012-0192-z
https://doi.org/10.1016/j.jvs.2006.08.072
https://doi.org/10.1016/j.jvs.2006.08.072
https://doi.org/10.1016/j.jacc.2007.12.025
https://doi.org/10.1111/apha.12438
https://doi.org/10.1111/apha.12438
https://doi.org/10.1161/CIRCULATIONAHA.111.046755
https://doi.org/10.1161/CIRCULATIONAHA.111.046755
https://doi.org/10.1002/ctm2.458
https://doi.org/10.1007/s12038-013-9310-2
https://doi.org/10.1038/s42003-022-04056-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1002/bimj.201800240
https://doi.org/10.34133/hds.0023
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1038/s41587-023-01767-y
https://doi.org/10.1038/s41587-023-01767-y
https://doi.org/10.1038/nri3520
https://doi.org/10.1038/nri3520
https://doi.org/10.1038/ni.3324
https://doi.org/10.1038/ni.3324
https://doi.org/10.1016/S0021-9150(99)00011-8
https://doi.org/10.1016/S0021-9150(99)00011-8
https://doi.org/10.1038/ni.2956
https://doi.org/10.1016/j.immuni.2017.09.008
https://doi.org/10.1016/j.immuni.2017.09.008
https://doi.org/10.1161/CIRCULATIONAHA.112.001347
https://doi.org/10.1161/CIRCULATIONAHA.112.001347
https://doi.org/10.1186/1471-2172-11-58
https://doi.org/10.1016/j.prp.2021.153721
https://doi.org/10.1016/j.prp.2021.153721


Page 17 of 17Yang and Dong ﻿Biology Direct           (2025) 20:15 	

	48.	 Yu J, Fu J, Zhang X, Cui X, Cheng M. The integration of metabolomic and 
proteomic analyses revealed alterations in inflammatory-related protein 
metabolites in endothelial progenitor cells subjected to oscillatory shear 
stress. Front Physiol. 2022;13: 825966. https://​doi.​org/​10.​3389/​fphys.​2022.​
825966.

	49.	 Li Q, Park K, Xia Y, Matsumoto M, Qi W, Fu J, Yokomizo H, Khamaisi M, 
Wang X, Rask-Madsen C, King GL. Regulation of macrophage apoptosis 
and atherosclerosis by lipid-induced PKCδ isoform activation. Circ Res. 
2017;121(10):1153–67. https://​doi.​org/​10.​1161/​CIRCR​ESAHA.​117.​311606.

	50.	 Lin CS, Lin FY, Ho LJ, Tsai CS, Cheng SM, Wu WL, Huang CY, Lian CH, Yang 
SP, Lai JH. PKCδ signalling regulates SR-A and CD36 expression and foam 
cell formation. Cardiovasc Res. 2012;95(3):346–55. https://​doi.​org/​10.​
1093/​cvr/​cvs189.

	51.	 Li C, Wernig F, Leitges M, Hu Y, Xu Q. Mechanical stress-activated PKCdelta 
regulates smooth muscle cell migration. FASEB J. 2003;17(14):2106–8. 
https://​doi.​org/​10.​1096/​fj.​03-​0150f​je.

	52.	 Zhou MS, Chadipiralla K, Mendez AJ, Jaimes EA, Silverstein RL, Webster K, 
Raij L. Nicotine potentiates proatherogenic effects of oxLDL by stimulat-
ing and upregulating macrophage CD36 signaling. Am J Physiol Heart 
Circ Physiol. 2013;305(4):H563–74. https://​doi.​org/​10.​1152/​ajphe​art.​
00042.​2013.

	53.	 Nguyen AD, Itoh S, Jeney V, Yanagisawa H, Fujimoto M, Ushio-Fukai M, 
Fukai T. Fibulin-5 is a novel binding protein for extracellular superoxide 
dismutase. Circ Res. 2004;95(11):1067–74. https://​doi.​org/​10.​1161/​01.​RES.​
00001​49568.​85071.​FB.

	54.	 Liu P, Wei J, Mao F, Xin Z, Duan H, Du Y, Wang X, Li Z, Qian J, Yao J. Estab-
lishment of a prognostic model for hepatocellular carcinoma based on 
endoplasmic reticulum stress-related gene analysis. Front Oncol. 2021;11: 
641487. https://​doi.​org/​10.​3389/​fonc.​2021.​641487.

	55.	 Capatina N, Hemberger M, Burton GJ, Watson ED, Yung HW. Exces-
sive endoplasmic reticulum stress drives aberrant mouse trophoblast 
differentiation and placental development leading to pregnancy loss. J 
Physiol. 2021;599(17):4153–81. https://​doi.​org/​10.​1113/​JP281​994.

	56.	 Bai X, Ni J, Beretov J, Wasinger VC, Wang S, Zhu Y, Graham P, Li Y. Activa-
tion of the eIF2α/ATF4 axis drives triple-negative breast cancer radiore-
sistance by promoting glutathione biosynthesis. Redox Biol. 2021;43: 
101993. https://​doi.​org/​10.​1016/j.​redox.​2021.​101993.

	57.	 Wang TX, Liang JY, Zhang C, Xiong Y, Guan KL, Yuan HX. The oncome-
tabolite 2-hydroxyglutarate produced by mutant IDH1 sensitizes cells 
to ferroptosis. Cell Death Dis. 2019;10:755. https://​doi.​org/​10.​1038/​
s41419-​019-​1995-9.

	58.	 Li B, Wang C, Lu P, Ji Y, Wang X, Liu C, Lu X, Xu X, Wang X. IDH1 promotes 
foam cell formation by aggravating macrophage ferroptosis. Biology 
(Basel). 2022;11(10):1392. https://​doi.​org/​10.​3390/​biolo​gy111​01392.

	59.	 Luo Y, Duan H, Qian Y, Feng L, Wu Z, Wang F, Feng J, Yang D, Qin Z, Yan X. 
Macrophagic CD146 promotes foam cell formation and retention during 
atherosclerosis. Cell Res. 2017;27:352–72. https://​doi.​org/​10.​1038/​cr.​2017.​
10.

	60.	 Zhang J, Zu Y, Dhanasekara CS, Li J, Wu D, Fan Z, Wang S. Detection and 
treatment of atherosclerosis using nanoparticles. Wiley Interdiscip Rev 
Nanomed Nanobiotechnol. 2017;9: e1412. https://​doi.​org/​10.​1002/​wnan.​
1412.

	61.	 Ben-Aicha S, Anwar M, Vilahur G, Martino F, Kyriazis PG, de Winter N, Pun-
jabi PP, Angelini GD, Sattler S, Emanueli C. Small extracellular vesicles in 
the pericardium modulate macrophage immunophenotype in coronary 
artery disease. JACC Basic Transl Sci. 2024;9(9):1057–72. https://​doi.​org/​
10.​1016/j.​jacbts.​2024.​05.​003.

	62.	 Wang J, Kang Z, Liu Y, Li Z, Liu Y, Liu J. Identification of immune cell infil-
tration and diagnostic biomarkers in unstable atherosclerotic plaques by 
integrated bioinformatics analysis and machine learning. Front Immunol. 
2022;13: 956078. https://​doi.​org/​10.​3389/​fimmu.​2022.​956078.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.3389/fphys.2022.825966
https://doi.org/10.3389/fphys.2022.825966
https://doi.org/10.1161/CIRCRESAHA.117.311606
https://doi.org/10.1093/cvr/cvs189
https://doi.org/10.1093/cvr/cvs189
https://doi.org/10.1096/fj.03-0150fje
https://doi.org/10.1152/ajpheart.00042.2013
https://doi.org/10.1152/ajpheart.00042.2013
https://doi.org/10.1161/01.RES.0000149568.85071.FB
https://doi.org/10.1161/01.RES.0000149568.85071.FB
https://doi.org/10.3389/fonc.2021.641487
https://doi.org/10.1113/JP281994
https://doi.org/10.1016/j.redox.2021.101993
https://doi.org/10.1038/s41419-019-1995-9
https://doi.org/10.1038/s41419-019-1995-9
https://doi.org/10.3390/biology11101392
https://doi.org/10.1038/cr.2017.10
https://doi.org/10.1038/cr.2017.10
https://doi.org/10.1002/wnan.1412
https://doi.org/10.1002/wnan.1412
https://doi.org/10.1016/j.jacbts.2024.05.003
https://doi.org/10.1016/j.jacbts.2024.05.003
https://doi.org/10.3389/fimmu.2022.956078

	Exploring the role of oxidative stress in carotid atherosclerosis: insights from transcriptomic data and single-cell sequencing combined with machine learning
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Methods
	Data collection, collation, and oxidative stress-related gene acquisition
	Single sample gene set enrichment analysis (ssGSEA)
	Differential analysis and screening of key oxidative stress-related genes
	Consistency cluster analysis, principal component analysis (PCA), and immune cell infiltration analysis
	Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses
	Construction and validation of oxidative stress prediction models
	Decision curve analysis and construction of nomogram
	ROC analysis and correlation analysis
	Analysis of single-cell data from carotid plaques
	Quantification and statistical analysis

	Results
	Oxidative stress profile and screening of key oxidative stress-related genes in carotid atherosclerosis
	Analysis of consistency clusters
	Construction of the oxidative stress prediction model
	The predictive model of oxidative stress for analysis of gene expression and immune characteristics
	Validation of oxidative stress prediction models
	The relationship between the development and progression of carotid atherosclerosis and the abnormal expression of key genes in macrophages

	Discussion
	Acknowledgements
	References


