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Abstract 

Introduction Diabetic nephropathy (DN) is a common diabetes-related complication with unclear underlying 
pathological mechanisms. Although recent studies have linked glycolysis to various pathological states, its role in DN 
remains largely underexplored.

Methods In this study, the expression patterns of glycolysis-related genes (GRGs) were first analyzed using 
the GSE30122, GSE30528, and GSE96804  datasets, followed by an evaluation of the immune landscape in DN. 
An unsupervised consensus clustering of DN samples from the same dataset was conducted based on differentially 
expressed GRGs. The hub genes associated with DN and glycolysis-related clusters were identified via weighted gene 
co-expression network analysis (WGCNA) and machine learning algorithms. Finally, the expression patterns of these 
hub genes were validated using single-cell sequencing data and quantitative real-time polymerase chain reaction 
(qRT-PCR).

Results Eleven GRGs showed abnormal expression in DN samples, leading to the identification of two distinct 
glycolysis clusters, each with its own immune profile and functional pathways. The analysis of the GSE142153 data-
set showed that these clusters had specific immune characteristics. Furthermore, the Extreme Gradient Boosting 
(XGB) model was the most effective in diagnosing DN. The five most significant variables, including GATM, PCBD1, 
F11, HRSP12, and G6PC, were identified as hub genes for further investigation. Single-cell sequencing data showed 
that the hub genes were predominantly expressed in proximal tubular epithelial cells. In vitro experiments confirmed 
the expression pattern in NC.

Conclusion Our study provides valuable insights into the molecular mechanisms underlying DN, highlighting 
the involvement of GRGs and immune cell infiltration.
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Background
DN is a serious diabetes-related complication and the 
leading cause of end-stage renal disease (ESRD), account-
ing for about 40% of all ESRD cases in the United States 
[1]. The prevalence of DN increases with the increas-
ing prevalence of diabetes and may worsen if treatment 
strategies to prevent DN are not developed. About one-
third of diabetics develop DN after the incubation period, 
which can last for several years [2]. The occurrence and 
frequency of DN in China have markedly increased 
over the last ten years, with about 24.3 million diabetes 
patients suffering from chronic kidney disease [3]. To 
date, the pathogenesis of DN is unclear due to its com-
plexity. Research has indicated that even with conven-
tional therapy, encompassing rigorous management 
of glucose levels and blood pressure, DN can progress 
to ESRD and increase mortality [4]. Therefore, under-
standing the pathophysiological mechanisms underly-
ing DN, critical risk factors, and effective management 
approaches is crucial for DN treatment.

Endothelial cells of blood vessels produce energy 
through glycolysis. Abnormal glycolysis occurs in 
endothelial cells in patients with diabetes, atheroscle-
rosis, pulmonary hypertension, and arthritis [5]. Recent 
studies have shown that glycolysis occurs in the proximal 
tubules based on multi-photon microscopy [6]. Never-
theless, the relationship between glycolysis-related genes 
(GRGs) and DN is unclear. Therefore, it is crucial to 
explore the molecular classification and genomic diver-
sity within the DN cohort, particularly regarding glyco-
lysis and its driver genes, to enhance our understanding 
of the fundamental pathogenic mechanisms that promote 
the progression and development of DN.

In this study, the expression profiles of GRGs were first 
assessed to identify differences between patients with 
DN and normal controls (NC), followed by a detailed 
analysis of the immune cell infiltration in these samples. 
Furthermore, DN samples were extracted from the train-
ing cohort. Consensus clustering was conducted utiliz-
ing the differentially expressed GRGs mentioned above. 
The results indicated that DN samples can be catego-
rized into two unique clusters related to glycolysis, each 
displaying a distinct immune profile, functional clas-
sification, and diverse pathways. Hub genes related to 
glycolytic clusters were identified via Weighted Gene 
Co-expression Network Analysis (WGCNA) algorithm. 
Shared genes between DN and those associated with the 
glycolytic modules were identified by intersecting these 
hub genes with GRGs. A diagnostic model for DN was 
then developed by evaluating and comparing different 
machine-learning techniques. Nomogram, calibration 
plot, decision curve analysis (DCA), and the independ-
ent verification dataset GSE142153 were used to verify 

the identification and stability of the model. By utilizing 
a high-glucose induced cell model, which was assessed 
through quantitative real-time polymerase chain reac-
tion (qRT-PCR). Additionally, the scRNA-seq dataset 
GSE183276 served as supplementary validation for sin-
gle-cell sequencing. The research flow chart is shown in 
Fig. 1.

Materials and methods
Data collection and sample details
Five unprocessed datasets were obtained from the Gene 
Expression Omnibus database (https:// www. ncbi. nlm. 
nih. gov/ geo/). A DN diagnostic model was established 
using GSE30122, GSE30528, and GSE96804 as training 
datasets, including tissue samples from 60 DN patients 
and 70 NC individuals. The model was verified using the 
scRNA-seq dataset GSE183276 via single-cell sequenc-
ing. An independently validated dataset GSE142153 was 
used to evaluate the forecasting capability of the model. 
The dataset included blood samples from 30 DN patients 
and 10 NC individuals.

Identification and analysis of GRGs
First, a comprehensive review of previous studies related 
to glycolysis was conducted, followed by a comprehen-
sive search in the GeneCards database (https:// www. 
genec ards. org/) (relevant score threshold: 4.0). Finally, a 
total of 69 GRGs were identified. The differential expres-
sion of GRGs in DN and NC samples was analyzed using 
R package "limma" [7]. The results were visualized using 
the R package "ggpubr" and the R package "pheatmap". 
The relationship representation of diverse glycolysis was 
created utilizing the R package "circlize" [8].

Consensus clustering and Glycolysis patterns 
in the training set
The R package "ConsensusClusterPlus" [9] was employed 
for cluster analysis of the DN sample training dataset 
based on GRGs expression levels. The ideal number of 
clusters was identified using a consensus matrix plot, 
consensus cumulative distribution function (CDF) plot, 
and trace plots. Principal component analysis (PCA) 
was used to visually describe the distribution of glycol-
ysis-related patterns in a sample, concentrating on the 
first two principal components following the clustering 
process.

Gene set variation analysis (GSVA)
"GSVA" package in R is widely used for enrichment analy-
sis to investigate biological functions and pathways across 
different clusters [10]. Two gene  sets, "c5.go.symbols" 
and "c2.cp.Kegg.v7.2.symbols" were extracted from 
the Molecular Signature Database (https:// www. 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/
https://www.genecards.org/
https://www.gsea-msigdb.org/gsea/msigdb
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gsea- msigdb. org/ gsea/ msigdb). The significant items 
(P < 0.05) determined by the student T-test were repre-
sented using a barplot, with orange and cyan colors rep-
resenting up-regulated and down-regulated pathways, 
respectively.

Identification of key genes and their relationship 
with disease traits through WGCNA analysis of gene 
modules
The relationship between gene modules and dis-
ease traits was studied using the WGCNA algorithm 
to identify the key genes closely related to DN. The 
process included extracting 25% of genes with the 

highest variation rate from GSE30122, GSE30528, 
and GSE96804 datasets, hierarchical clustering of DN 
samples. Pearson correlation coefficient was used to 
support the establishment of a similarity matrix. This 
matrix was then converted to an adjacency matrix and 
topological overlay matrix using an appropriate soft 
threshold power. The genes were grouped into mod-
ules using a dynamic tree-cutting algorithm, identi-
fying hub genes with gene significance (GS) ˃0.2 and 
module membership (MM) ˃0.6. The threshold for 
minimum module size was established at 100 genes. 
Each module was assigned a random color. Every 
module’s eigengene profile represented global gene 
expression.
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Fig. 1 A flow chart of the study

https://www.gsea-msigdb.org/gsea/msigdb
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Immune cell infiltration analysis
The "CIBERSORT" R package is widely used to estimate 
the proportion of specific cell types by leveraging a ref-
erence gene expression signature matrix. This package 
relies on established gene expression profiles to pro-
vide insights into the cellular composition of samples. A 
unique machine learning method that resists noise, "CIB-
ERSORT", utilizes a specific selection process that adap-
tively chooses genes from a defined matrix using linear 
support vector regression, which requires an input matrix 
of transcriptome data [11]. This approach allows for the 
effective deconvolution of a given mixture. An overall P 
value for the deconvolution process is calculated based 
on empirical determination [12]. In this study, CIBER-
SORT was used to determine the relative composition of 
22 immune cells according to their expression profiles. 
The relative composition of these immune cell types in 
different groups and their correlation with glycolysis 
were also examined. The"ggplot2" and "ggpubr" package 
were used for visualization.

Establishment and validation of the diagnostic model 
for DN using various machine learning algorithms
Cross-profiling of genes in the most important modules 
using WGCNA led to the identification of key genes with 
significant potential for diagnosing specific aspects of 
glycolysis. To determine the significance of these genes, 
we utilized four separate machine learning algorithms. 
For this purpose, the R package "kernlab," "randomFor-
est," and "xgboost" were employed. In subsequent analy-
ses, we selected the disease phenotype as the dependent 
variable and the gene set identified by WGCNA as the 
primary variable. Next, we utilized the model of machine 
learning algorithms to construct the "caret" R package. 
Subsequently, exploratory analysis was conducted on 
the model using the "DALEX" R package explanation 
function. The plot function was utilized to generate a 
cumulative residual distribution map and a residual box 
plot to facilitate the determination of the best diagnos-
tic model. The performance of the model was evaluated 
based on the "pROC" R package. The analysis was refined 
by identifying the five most crucial features of the model. 
In addition, validation of the diagnostic model was per-
formed on another validation dataset.

Single‑cell RNA sequencing
To investigate single-cell characteristics, the R pack-
age "Seurat" was utilized to preprocess and analyze the 
scRNA-seq dataset GSE183276. Cells were rigorously fil-
tered, excluding those with fewer than 400 genes, more 
than 5000 total genes, or more than 30% mitochon-
drial genes. Data that met these criteria were analyzed 
using the R package "harmony" to mitigate batch effects 

between samples. Subsequently, cell cluster annotation 
was performed based on previous research, and visual-
ized using Uniform Manifold Approximation and Pro-
jection (UMAP). The R package "AUCell" was applied to 
score the feasibility of the diagnostic model gene set of a 
single cell.

Cell culture and treatment
The HK2 cell was purchased from Whelab (ShangHai, 
China, Cat.No:C1116) and cultured with DMEM-normal 
glucose (Gibco, China, Cat.No:11885084) and DMEM-
high glucose (Gibco, China, Cat.No:11965118) at 37  °C 
and 5%  CO2. The medium was changed daily. When the 
cell confluence reached 80–90%, the cells were passed 
in a 1:2 ratio by using 0.25% trypsin–EDTA (Gibco, 
China, REF:C25200-072). The cells were inoculated in a 
6-well plate at a density of 5 ×  105 cells per milliliter and 
attached to the wall overnight. The cells were inoculated 
to 90% confluent and treated with medium DMEM-high 
glucose (25 mMD-glucose) and DMEM-normal glucose 
(5.5 mMD-glucose) for 24 h.

qRT‑PCR
Total RNA was extracted from treated HK-2 cells using 
the HiPureUniversal RNA Kit (Magen, Shanghai, China, 
REF:R4130-02). The purity and concentration of the RNA 
was determined and then reverse transcribed to cDNA 
using the PrimeScript™ RT kit (Takara, Dalian, China, 
REF:RR092A). It was then processed using the Start-up 
reagent:  PowerUpTMSYBRTMGreen Master MIX (Thermo 
Fisher, USA, REF:A25742). Finally, PCR was conducted 
on the LightCycler®96 instrument (Roche Diagnostics 
Gmbh, Switzerland). The β-Actin primer pairs was used 
as the internal control. The primer sequences used are 
shown in Additional file 1: Table S1.

Statistical analysis
The non-parametric Wilcoxon test was used to compare 
two sets of data with smaller sample sizes, while the stu-
dent t-test was used for normally distributed data. Spear-
man correlation test was used to show the correlation. 
Statistical analyses were conducted using R software 4.3.3 
and Graphpad Prism 10.1.2., P < 0.05 was considered sta-
tistically significant.

Results
Identification of multiple glycolysis expression patterns 
in DN
First, 69 GRGs were obtained from public databases. 
The roles of the 69 GRGs in the glycolysis pathway are 
listed in Additional file  2: Table  S2. Gene expression 
data from 60 DN samples and 70 NC samples from the 
GSE30122, GSE30528, and GSE96804 datasets were 
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examined to investigate the expression patterns of these 
GRGs in DN. Batch effects were removed from the 
training sets using "SVA" R package. The PCA cluster 
plot was used to visualize the effects of removing inter-
batch differences (Additional file 3: Figure S1A-B). The 
distribution of the three datasets on PC1 and PC2 was 
closer after batch correction, indicating that the batch 
effect was effectively eliminated, thus improving com-
parability between the data. A total of 32 of 69 GRGs 
showed differential expression in DN samples. Specifi-
cally, 11 significantly differentially expressed genes with 
P < 0.001 were selected, and results showed that the 
expression levels of PFKL, MPC1, PC, PKLR, ALDOB, 

FBP1, and PCK1 genes were significantly reduced 
in DN samples, while the expression levels of PFKP, 
TPP2, HIF1A, and TP53 genes were elevated (Fig. 2A). 
The differential expression of GRGs in tissue samples 
of DN and NC individuals was visually represented in 
Heatmaps (Fig. 2B). In addition, the chromosomal loca-
tions of these Glycolysis genes are shown in Fig.  2C. 
Pro-inflammatory cytokine release and systemic and 
local low-grade inflammation (primarily due to innate 
immune system-driven inflammation) are associated 
with the onset and progression of DN [13]. The risk of 
developing DN is associated with systemic and local 
activation of inflammatory processes. Some studies 

Fig. 2 The mode of GRGs expression in DN. A Box plot showing the differential expression of 32 GRGs between NC and DN samples. *P < 0.05, 
**P < 0.01, ***P < 0.001. B The relative expression calorigrams of 32 differentially expressed GRGs, *P < 0.05, **P < 0.01, ***P < 0.001. C The 
chromosomal locations of 32 differentially expressed GRGs
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have shown that macrophages, T cells, B cells, ILC2, 
and other cells participate in DN pathogenesis[14], 
suggesting that immune cells are potential therapeu-
tic targets. In this study, a relative analysis of immune 
cell abundance in GSE30122, GSE30528, and GSE96804 
samples was detected using CIBERSORT algorithm, 
combined with visualization using a heatmap (Addi-
tional file 4: Fig. S2A). Correlation analysis (Additional 
file 4: Fig. S2B) showed that GRGs were strongly asso-
ciated with different populations of immune cells in 
the local environment. Additionally, we performed a 
correlation analysis between the relative abundance 
of immune cells and the expression of differential 
genes. The results indicate a significant association 
between GRGs and distinct immune cell subpopula-
tions in the local environment, with a notable correla-
tion between M2 macrophages and GRGs (Additional 
file  4: Fig. S2C). This concurrent occurrence of glyco-
lysis and immune cell subpopulations in the immune 
microenvironment suggests a potential link between 
glycolysis and the development of DN. Moreover, the 
distribution of various infiltrating immune cells var-
ied across the cohort, highlighting the complex inter-
play between glycolysis and immune responses in DN. 

These findings underscore the role of GRGs in DN 
development and their potential impact on the immune 
microenvironment.

Unsupervised cluster analysis and machine learning 
algorithm for analysis of differential expression 
of glycolysis genes in DN samples
Sixty DN samples were selected from the training data-
sets to investigate the different expression patterns of 
GRGs in DN. Consensus clustering methods showed two 
different clusters based on the consensus matrix graph 
(k = 2), indicating clear differences (Fig.  3A). The mini-
mum fluctuation of the consensus CDF curve at different 
consensus indices confirmed the stability of the cluster 
(Fig. 3B). The trace plot also confirmed the cluster’s sta-
bility (Fig.  3C). Additionally, each cluster had a consist-
ency score ˃ 0.8 when k = 2 (Fig. 3D). As a result, the 60 
DN samples were categorized into two distinct clusters: 
Cluster 1 (C1), 43 samples) and Cluster 2 (C2), 17 sam-
ples). PCA delineated these clusters (Fig. 3E).

A systematic analysis was conducted to fully under-
stand the molecular characteristics of different glycolysis 
clusters. Eleven significantly different genes were selected 
(P < 0.001, Fig.  2A). Differential expression of multiple 

Fig. 3 Cluster analysis of differentially expressed GRGs in DN samples. A When k = 2, the sample was divided into 2 distinct clusters. B Consensus 
clustering CDF when k = 2 ~ 9. C A tracer showing the clustering results for each sample at different k values. (2–9) D Calculate a consistent 
clustering score when the value of k varies systematically from 2 to 9. (E) PCA analysis visually illustrates the distribution of two identified 
unsupervised consensus clusters of glycolytic clusters
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GRGs was observed between C1 and C2, with 9 out of 
the 11 glycolysis genes showing differential expression 
(Fig.  4A). Heatmap was used to describe the relative 
expression patterns of these 11 glycolytic genes in DN 
samples (Fig.  4B). In addition, GSVA highlighted the 
upregulation of metabolic-related pathway and carbo-
hydrate metabolism pathways in C2, including alanine 
aspartate and glutamate metabolism, peroxisome, citrate 
cycle, and PPAR signaling pathways. In contrast, C1 was 
enriched in immune signaling pathways, such as RIG-i-
like receptor signaling pathways (Fig.  4C). The CIBER-
SORT algorithm was used to estimate the proportion of 
infiltrating immune cells in the two clusters. The relative 
abundance of the immune cells was expressed using bar-
plot (Additional file 5: Fig. S3A), while different types of 
infiltrating immune cells were expressed using the box 
plot (Additional file 5: Fig. S3B). The relative abundance 
was significantly different between the two infiltrating 

immune cell types. This comprehensive analysis provided 
detailed insights into the differences between the two gly-
colysis clusters, further improving the understanding of 
the underlying mechanisms.

Identification of key genes related to DN and glycolysis 
using WGCNA
WGCNA algorithm was used to identify key genes 
associated with DN. The scale-free network was estab-
lished after selecting the top 25% of the variance genes 
and removing abnormal samples in the GSE30122, 
GSE30528, and GSE96804 datasets. The soft threshold 
and the scale-free  R2 value were 12 and 0.85, respec-
tively (Fig.  5A). Four distinct co-expression modules 
were identified (Fig.  5B). Notably, the brown mod-
ule had the highest correlation with DN (r = 0.49) 
and significant P-value (P =  3e−09) (Fig.  5C). Further 

Fig. 4 Differences in expression patterns of GRGs in two unsupervised consensus clusters. A Box plots displaying GRGs with differential expression 
between two glycolytic groups. B Heat maps showing the relative expression levels of 11 CRGs in glycolytic clusters C1 and C2. C GSVA enrichment 
analysis based on the HALLMARK pathway among samples of glycolytic clusters C1 and C2, sorted by T-value. *P < 0.05, **P < 0.01, ***P < 0.001
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examination of the 282 genes in the module demon-
strated a significant positive correlation (Fig. 5D).

Important genes related to glycolysis clusters in 
DN patients within the GSE30122, GSE30528, and 
GSE96804 dataset were identified using WGCNA algo-
rithm. A scale-free network was constructed using a 
soft threshold β = 8 and the  R2 value of 0.86 (Additional 
file 6: Fig. S4A-B). Similarly, turquoise module showed 
the strongest correlation (r = 0.69) with glycolysis clus-
ters and significant P-values (P =  8e−10) (Additional 
file  6: Fig. S4C). Further analysis of 482 genes in the 
module showed a significant correlation (Additional 
file 6: Fig. S4D).

Cross-analysis of key genes obtained through 
WGCNA showed that there were 261 shared genes 

related to DN patients and NC individuals, as well as 
module-related genes in glycolysis clusters (Additional 
file  7: Fig. S5A). Further Gene Ontology (GO) func-
tional enrichment analysis revealed the main role of 
shared genes in regulating oxidative stress signaling 
pathways and metabolic responses (Additional file  7: 
Fig. S5B). Similarly, the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway signal enrichment anal-
ysis highlighted that the shared genes were enriched in 
carbon metabolism, fatty acid degradation, and trypto-
phan metabolism (Additional file 7: Fig. 5C).

Fig. 5 Construction and module analysis of WGCNA. A Network topology analysis under different soft threshold powers. B Clustering Dendrogram, 
illustrating the hierarchical grouping of genes by topological overlap, with the specified module colors representing different gene clusters. C 
Correlation analysis for the relationship between different coexpression modules and clinical features. D Correlation between brown module 
members and DN
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Construction of DN diagnostic model and external cohort 
validation 5 gene‑diagnostic model via multiple machine 
learning methods
About 70% of the samples from GSE30122, GSE30528, 
and GSE96804 datasets were used to screen out the 
hub genes that can diagnose DN from 261 shared genes 
obtained from WGCNA operation. A diagnostic model 
was then built using four machine-learning methods 
(RF, SVM, XGB, and GLM). The analysis of the cumula-
tive residual distribution maps (Fig. 6A) and the residual 
boxplots (Fig.  6B) for the four algorithms showed that 
the residual values for both XGB and RF were small. The 
top ten variables for each model are displayed in Fig. 6C, 
ranked according to their root-mean-square error. The 
diagnostic performance of the models was assessed using 
receiver operating characteristic (ROC) curves, focusing 
on the remaining 30% of the samples from GSE30122, 
GSE30528, and GSE96804 (Fig. 6D). The models showed 
excellent recognition abilities, and the area under the 
curve (AUC) was more than 0.97. However, XGB was 
considered to be the best diagnostic model for DN based 
on its predictive power and reliability. The five most vital 
variables in the model, GATM, PCBD1, F11, HRSP12, and 
G6PC, were identified as hub genes for further analysis. 
The predictive potential of the 5-gene diagnostic model 
was evaluated using the independent validation dataset 
GSE142153. ROC analysis showed a high AUC value of 
0.722 (Fig. 6E).

Moreover, the nomogram was constructed based on 
the five hub genes: GATM, PCBD1, F11, HRSP12, and 
G6PC (Additional file  8: Fig. S6A). The correction plot 
indicated that the model’s predictions closely matched 
the actual outcomes, demonstrating strong predictive 
accuracy (Additional file  8: Fig. S6B). Additionally, the 
DCA supported the model’s usefulness in clinical deci-
sion-making (Additional file 8: Fig. S6C), highlighting its 
relevance and practicality in real-world scenarios.

GRGs are associated with PT cells in human DN model
scRNA-seq analysis of the diabetic kidney of the human 
model was conducted to better characterize the relation-
ship between glycolysis and DN at the single-cell level. 
Gene expression profiles of 9235 cells from the NC sam-
ple and 27,929 cells from DN samples were obtained 
after data screening and integration as described in the 
Methods (Fig.  7A). Thirteen types of cell clusters were 
annotated and visualized, including proximal tubule 
cells (PT), thick ascending branch cells (LOH), and dis-
tal convoluted tubule cells (DCT) (Fig. 7B). A bar chart 
(Fig. 7C) was used to show the different cell composition 
ratios in DN and NC samples, suggesting differences in 
PT, LOH, and other cell types. Moreover, the DN sam-
ples had significantly lower proportions of PT than 

the NC samples. Interestingly, the hub genes (GATM, 
PCBD1, F11, HRSP12, G6PC) of 13 major cell types were 
verified. The results suggested that GATM and PCBD1 
were highly expressed in PT, and PCBD1 was differen-
tially expressed in LOH, DCT, and other cells (Fig.  7D-
H). In addition, the expression of hub genes sets in the 
DN was evaluated using AUCell score (Fig.  7I-J). The 
results showed that the AUC score was highest in PT 
cells, indicating its specific expression in PT. In conclu-
sion, cell composition and gene expression were signifi-
cantly altered in DN samples, particularly a reduction in 
PT cells. The identification of hub genes, such as GATM 
and PCBD1, and their high expression in PT cells sug-
gests that these genes may play a pivotal role in DN pro-
gression. Therefore, these genes offer potential targets for 
therapeutic intervention of DN in the future.

Construction of a cell model to verify the hub genes
A high-glucose-induced cell model was established to 
further evaluate the expression of the hub genes in HK-2 
cells. Briefly, HK-2 cells were treated with 25 mMD-glu-
cose, and control HK-2 cells were treated with 5.5 mMD-
glucose. The corresponding cells were collected after 
24  h to extract cDNA. qRT-PCR was used to verify the 
differential expression of hub genes (GATM, PCBD1, F11, 
HRSP12) in the constructed high-sugar-induced HK2 cell 
model (Fig. 8). Notably, G6PC and part of the F11 in the 
samples had a large Cq value, and its data did not have 
clear confidence, thus no comparison was added to the 
analysis. The results showed that the gene expressions of 
GATM, PCBD1, F11, and HRSP12 in the DN group were 
significantly decreased compared with the NC group. 
This finding indicates that the hub genes play a pivotal 
role in GRGs-related function in DN. Nonetheless, fur-
ther studies should explore the mechanism and mode of 
action of the hub genes.

Discussion
DN is a diabetes-related complication and a major cause 
of ESRD [15], affecting up to 40% of patients with type 
1 and type 2 diabetes [16]. Biomarkers, such as urinary 
albumin and creatinine ratios, have improved early detec-
tion and monitoring of DN [17]. Nonetheless, the bur-
den of the disease remains high, necessitating continued 
research and development of new treatment strategies 
to improve patient outcomes [15]. Besides, understand-
ing the underlying mechanisms, determining the severity 
of DN, and developing targeted interventions are critical 
in improving patient outcomes. Therefore, addressing 
knowledge gaps and classifying DN subtypes are nec-
essary priorities in both research and clinical practice. 
This study aimed to investigate the related factors and 
pathological mechanisms of DN. The incidence of DN is 
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Fig. 6 Residual and performance assessment of machine learning models on different feature sets. A Cumulative residual Distribution: The 
reverse cumulative distribution of residual for four machine learning models (XGB, RF, SVM, and GLM). The curve displays differences in accuracy 
of the diverse models in fitting the data. B Residual box plot: Comparison of the residual distribution of the four models. The red dots represent 
the residual root-mean-square error (RMSE) of each model. C The top ten variables in the RMSE ranking used for evaluating the feature importance 
of the models (GLM, RF, SVM, XGB), and the significance contribution of each model to the input features was analyzed. D The ROC curves for RF, 
SVM, XGB, and GLM models and their corresponding AUC values. E ROC curve and AUC values obtained by the XGB model were verified using 
the GSE142153 dataset
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Fig. 7 Characterization of cell populations and gene expression patterns in DN and NC samples through scRNA-seq data. A UMAP displaying 
the cellular gene expression profiles of NC and DN samples in the dataset GSE183276. B. Annotations and visualizations illustrating the cell 
clusters based on the expression profiles. C Histogram showing the proportion of major cell types in DN and NC samples. D Differential expression 
of GATM in 13 cell clusters (E) Differential expression of G6PC in 13 cell clusters (F) Differential expression of HRSP12 in 13 cell clusters (G) Differential 
expression of PCBD1 in 13 cell clusters (H) Differential expression of F11 in 13 cell clusters (I) illustrating the spatial coordinate system, the regional 
distribution of different cell clusters and their corresponding AUC values. J Violin plot showing the distribution density of AUC values by cell type
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significantly increased in patients with diabetes. Besides, 
DN is significantly associated with multiple clinical bio-
markers, such as blood glucose levels, blood pressure, 
and serum creatinine [18, 19]. In addition, a key gap in 
literature was assessed to conduct a comprehensive and 
systematic exploration of glycolysis between DN patients 
and healthy individuals.

This research uncovers notable discrepancies in the 
expression patterns of glycolysis within the DN domain, 
confirming a profound interaction between glycolysis 
and DN pathogenesis. Interestingly, a different immune 
landscape was revealed in the DN microenvironment, 
emphasizing the diverse subtypes of macrophage and 
T cells. These discoveries show a significant propensity 
for heterogeneity compared with NC individuals and 
highlight the close involvement of immune cells in DN 
progression. Specifically, relative T cell abundance, espe-
cially T cells CD4 memory resting [20], T cells gamma 
delta [21], M2 macrophages [22]. Monocytes [23] and 
neutrophils [14] were more abundant in NC individu-
als than in DN samples. Both in vitro and in vivo stud-
ies have shown that chronic hyperglycemia increases the 
polarization of M2 macrophages [24]. M1 macrophages 
produce large amounts of pro-inflammatory cytokines 
iNOS, TNF-α, MCP-1, and other pro-inflammatory 
mediators that amplify inflammation, resulting in fur-
ther damages during DN pathogenesis. M2 macrophages, 
on the other hand, suppress kidney inflammation and 
reduce damage by secreting anti-inflammatory cytokines 
such as IL-10 and Arg-1 [25]. Therefore, regulation of 

M1/M2 macrophage phenotypes has anti-proteinuria 
and renal protective effects on DN progression [26–28]. 
You et  al. suggested that renal tissue can be better pro-
tected by clearing macrophages from mice in DN mod-
els molded using streptozotocin (STZ) [29]. In this study, 
two distinct glycolytic clusters were identified in DN 
patients using consensus clustering methods, revealing a 
unique innate immune environment, particularly involv-
ing T cells. Moon et  al. also showed that activated T 
cells are associated with abnormal diabetic kidney dam-
age and hyperglycemia in a mouse model of STZ [30]. 
Taken together, these observations suggest that multiple 
immune cells in the microenvironment promote highly 
complex interactions, with innate and adaptive immu-
nity playing a conductive role. This phenomenon cre-
ates a connection between the atypical immune response 
within the immune microenvironment and the clinical 
manifestations of DN.

Machine learning-based biological image analysis is 
promising in the field of nephrology, including diagno-
sis of kidney pathology. As a result, it is considered the 
ultimate standard for identifying kidney disease. This 
diagnostic approach directly affects the range of treat-
ment options and patient outcomes [31]. Diabetes is 
the leading cause of kidney failure in the Western Hem-
isphere [32–34]. The initial clinical sign of DN is usu-
ally the presence of microalbuminuria, defined as 
excretion ≥ 30 mg/ day or 20 µg/min. However, kidney 
biopsy studies have shown that microalbuminuria is 
not a complete indicator of type 2 DN because only 

Fig. 8 Validation of hub genes in in vitro hyperglycemic cell models: qRT-PCR validation of GATM, PCBD1, F11, HRSP12, and G6PC expression 
between DN patients and NC individuals. *P < 0.05, **P < 0.01
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20–40% of patients progress to significant kidney dis-
ease without targeted therapy. In contrast, about 20% of 
patients with type 2 diabetes maintain normal urinary 
albumin levels when they progress to stage 3 CKD, 
characterized by a GFR of less than 60 mL/min/1.73  m2 
[32]. Therefore, new non-invasive biomarkers that can 
more accurately detect the early stages of DN and pre-
dict progression to kidney damage or kidney failure are 
necessary. Previous studies had various limitations, 
such as small sample size, cohort size, and fewer learn-
ing algorithms [35]. Therefore, a new approach is 
needed to break through these constraints that hinder 
research goals. Genetic diagnostic models provide new 
insights for the prediction of multiple diseases in the 
clinic [36, 37], We combined the expression matrix of 
DN patients in the training sets, extracted the charac-
teristic gene expression of all DN samples as the origi-
nal expression matrix for consensus clustering, 
determined the optimal cluster number to enhance the 
stability of the model and avoid overfitting, and 
explored potential related GRGs. However, a powerful 
DN diagnostic model should be constructed according 
to different machine learning algorithms, such as XGB 
and Lasso Cox regression analysis [38], to provide suffi-
cient diagnostic feasibility. In this study, a unique DN 
diagnostic model was built using four different 
machine-learning algorithms. IN our dataset, there 
may be nonlinear relationships or complex feature 
interactions that affect GLM performance, leading to 
poor feasibility of GLM model. Notably, XGB was the 
most reliable and precise algorithm, demonstrating 
superior predictive capability compared with other 
algorithms. The diagnostic model based on five genes 
demonstrated exceptional recognition performance 
and stability when evaluated with an independently val-
idated dataset. These findings confirm that the con-
structed model had good clinical value. Mutations in 
trexate 4α methylamine dehydrogenase 1 (PCBD1) 
cause hyperphenylalaninemia, hypomagnesemia, and 
diabetes. PCBD1 is mainly expressed in the kidney and 
liver [39]. Silvia Ferre et al. noted that hepatic nuclear 
factor-1 β (HNF-1β, vHNF1) is a development-regu-
lated transcription factor required for tissue-specific 
gene expression in epithelial cells of many organs, 
including the kidney. HNF-1β forms a heterotetrameric 
complex with dimeric cofactors of protein trexin-4α-
methylamine dehydrogenase/hepatic nuclear factor 1 
homeobox A (PCBD 1 [MIM 126090]) [40]. HNF-1β-
related disorder, Renal Cysts and Diabetes (RCAD; 
MIM:137,920) is syndrome characterized by autosomal 
dominant inheritance, renal cystic abnormalities, matu-
rity-onset diabetes of the young type 5 (MODY5) [41, 
42]. Notably, homozygous or complex heterozygous 

PCBD1 mutations in humans are associated with 
MODY diabetes and renal Mg2 + consumption, with 
different penetrance. These findings are consistent with 
functional deficiencies of PCBD1 as a cofactor of 
HNF-1β dimerization [43]. These findings indicate that 
PCBD1 may participate in metabolic adaptation during 
DN. However, further studies are needed to clarify the 
potential relationship between PCBD1 and DN patho-
genesis. The gene HRSP12 encodes human heat 
response protein, and its expression level is positively 
correlated with HbA1c, indicating that it may partici-
pate in renal stress response induced by hyperglycemia. 
The expression level of HRSP12 in urinary extracellular 
vesicles can reflect the changes in renal function in dia-
betic patients. The DN candidate marker HRSP12 has 
protective effects on cells or cell proteins under stress, 
such as GPX3, HRSP12, MSRA, MSRB1, and CRYAB. 
GPX3, GPX1, and GPX4, belonging to the GPX family, 
are involved in reducing oxidative stress damage in 
cells, indicating that they may play a role in protecting 
the kidneys by reducing kidney stress caused by hyper-
glycemia [44]. The GATM gene encodes L-arginine, gly-
cine amidinotransferase [45]. GATM may be involved 
in creatinine production rather than renal function 
since it encodes glycine aminotransferase, an enzyme 
involved in creatine biosynthesis [46], which may be 
related to DN severity. The level of GATM is negatively 
correlated with the degree of type 2 diabetes. The PI3K-
AKT and AMPK pathways may be potential targets for 
IR-related glucose metabolism regulation in type 2 dia-
betes and obese patients. Furthermore, the expression 
of GATM is down-regulated in the liver tissues of 
mouse models and may affect the liver AMPK pathway, 
induce glucose metabolism disorders, and further affect 
the development of type 2 diabetes [47]. The mRNA of 
GATM shows immune cell specificity [46], indicating 
the correlation between DN and immune cells. The glu-
cose-6-phosphatase catalytic (G6PC) subunit is associ-
ated with the severity of complications in diabetic 
patients, indicating that G6PC may be involved in met-
abolic adaptation during DN. G6PC catalyzes the 
hydrolysis of glucose-6-phosphate to glucose, which is 
the final step in gluconeogenesis and glycogen degrada-
tion. Glucose catalyzed by G6PC leaves the liver 
through glucose transporter 2 [48]. G6PC plays a key 
role in maintaining normal blood glucose. G6PC gene 
is up-regulated in diabetic patients due to insulin toler-
ance or hypoinsulinemia [49]. However, further studies 
are needed to clarify the potential relationship between 
G6PC and the pathogenesis of the disease. The gene 
F11 encodes coagulation factor XI, which is involved in 
the endogenous coagulation pathway of humans. F11 is 
also expressed in Langerhans islands of pancreas and 
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renal tubular cells in humans [50]. Several studies have 
shown that the blood system of diabetic patients is 
often in a hypercoagulable state. Blood clots are more 
likely to form in diabetic patients than in healthy peo-
ple [51]. The thrombus activation in diabetic patients is 
stronger than that in normal people. Multiple plasma 
coagulation factors are increased in diabetic patients, 
further aggravating kidney injury [52]. Sun et  al. 
showed that the level of renal function-related indica-
tors is significantly higher in DN patients than in dia-
betic patients without kidney damage. DN patients also 
have shorter APTT than diabetic patients, suggesting 
that endogenous coagulation function is enhanced in 
DN patients [53]. In summary, F11 is involved in the 
pathophysiological immune response regulation and 
oxidative stress pathway of DN. However, further 
research should unravel the complex mechanism by 
which glycolysis controls the pro-coagulant activity of 
bone marrow cells. In this study, a high coagulation 
state and low fibrinolytic activity were detected in adi-
pose tissue macrophages isolated from HFD-fed mice, 
further supporting the key role of enhanced glycolytic 
activity in driving immune thrombotic activity in vivo. 
Several studies have extensively elucidated the specific 
involvement of F11 in the pathophysiology of DN [54]. 
It should be noted that we used the entire GSE30122 
dataset, which includes glomerular and tubule samples. 
DN is a systemic kidney disease that affects the entire 
nephron. While the glomeruli are usually the initial site 
of injury, pathological processes, such as metabolic dis-
orders and altered signaling pathways, can extend to 
other compartments, including the tubules. Therefore, 
by including glomerular and tubule data, we aim to 
fully capture the transcriptional landscape of DN and 
its systemic effects, ensuring a more complete under-
standing of the disease. To address potential biases 
caused by differences in tissue origin, we performed 
rigorous batch effect correction using the sva software 
package. We further evaluated the effectiveness of this 
correction using PCA analysis (Additional file  3: Fig. 
S1A-B) to compare the data distribution before and 
after correction. At the same time, we observed signifi-
cant differences in the proportion of PT cells in single-
cell sequencing, with the five-gene diagnostic model 
having the highest PT activity score across cell types in 
the AUCell algorithm. Therefore, we propose the fol-
lowing hypothesis: The core genes in the diagnostic 
model are mainly expressed in PT cells. Because of the 
kidney mitochondrial dysfunction associated with dia-
betes, Increased transport through glucose transport-
ers may result in PT cells requiring increased glycolytic 
flux to maintain nutrient flux in diabetic capacity [55]. 

Based on these findings, we selected the HK-2 cell line 
for experimental verification. This selection was not 
intended to show that DN was limited to tubules, but 
rather to focus on elucidating the mechanistic role of 
GRGs in specific and related cell types.

However, this study has some limitations. The poten-
tial associations between immune cells and the identi-
fied gene expression in the scRNA-seq data could be 
explored and additional datasets are needed to validate 
the robustness of the diagnostic model further. Inte-
grating in vivo data is essential to fully understand the 
mechanism of action of hub genes in the pathophysiol-
ogy of DN. Besides, Validation of cell line experiments 
should also add multiple experimental time conditions 
to better simulate chronic processes. Integrating vari-
ous data sets and experimental data may improve the 
future development of DN research. In addition, the 
analysis should be stratified according to sex, early or 
late stages of DN.

Conclusion
Various glycolytic-related clusters were detected within 
diseased samples through consensus clustering, each 
characterized by distinct immune signatures. A diag-
nostic model was developed for DN utilizing the XGB 
algorithm, and five specific genes were identified. The 
model showed strong performance, accurately classi-
fying samples from both qRT-PCR and independently 
validated datasets. In conclusion, these findings explain 
the understanding of DN heterogeneity and immune 
microenvironment and may provide a new diagnostic 
method for DN.
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