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Abstract 

Background Osteoporosis and kidney stones share several common pathophysiological risk factors, and their 
association is well-established. However, previous studies have primarily focused on environmental mediators, such 
as diet, and the precise mechanism linking these two conditions remains unclear.

Methods The relationship between osteoporosis and kidney stones was analyzed using weighted multivariate logis-
tic regression, employing data from five cycles of the National Health and Nutrition Examination Survey (NHANES) 
from 2007–2010, 2013–2014, and 2017–2020. Gene expression data from the Gene Expression Omnibus (GEO) 
microarray database were integrated with machine learning techniques to identify key genes involved in both osteo-
porosis and kidney stones. Common targets were then identified through the Comparative Toxicogenomics Database 
(CTD) and GeneCards. GMFA enrichment analysis was performed to identify shared biological pathways. Additionally, 
drug prediction and molecular docking were employed to further investigate the pharmacological relevance of these 
targets.

Results Analysis of the NHANES database confirmed a strong association between osteoporosis and kidney stones. 
Weighted multivariate logistic regression showed that osteoporosis (OR: 1.41; 95% CI 1.11–1.79; P < 0.001) and bone 
loss (OR: 1.24; 95% CI 1.08–1.43; P < 0.001) were significantly correlated with an increased risk of kidney stones. 
Three hub genes—WNT1, AKT1, and TNF—were identified through various analytical methods. GMFA revealed 
that the mTOR signaling pathway is a key shared pathway. Molecular docking studies further confirmed the pharma-
cological relevance of these targets, demonstrating strong binding affinity between drugs and the proteins involved, 
consistent with previous findings.

Conclusion Bone loss is associated with an increased risk of kidney stones. Targeting the mTOR signaling pathway 
may offer a potential therapeutic approach for treating both osteoporosis and kidney stones.
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Introduction
Osteoporosis and kidney stones, though seemingly unre-
lated conditions in orthopedics and urology, respectively, 
share several commonalities in their underlying mecha-
nisms and risk factors. Osteoporosis is a systemic bone 
disorder characterized by reduced bone mass, impaired 

Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by- nc- nd/4. 0/.

Biology Direct

*Correspondence:
Chunyu Liu
liuchunyu@tmu.edu.cn
1 Department of Urology, Tianjin Institute of Urology, The Second 
Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, 
Tianjin 300000, People’s Republic of China

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13062-025-00627-w&domain=pdf


Page 2 of 20Luo et al. Biology Direct           (2025) 20:42 

bone microarchitecture, increased bone fragility, and a 
higher risk of fractures [1]. In contrast, kidney stones are 
crystalline deposits that form in the kidneys and often 
lead to symptoms such as urinary tract obstruction, pain, 
and hematuria [2]. Despite their distinct clinical mani-
festations, recent studies have suggested the possibility 
of shared genetic or environmental risk factors between 
these two diseases.

The pathogenesis of osteoporosis is influenced by 
a variety of factors. Genetic factors play a critical 
role in determining an individual’s bone density and 
strength, with a family history of the disease conferring 
an increased risk. Deficiencies in calcium and vitamin 
D impair bone matrix formation and mineralization. 
Hormonal factors, particularly deficiencies in estro-
gen and androgen, promote increased bone resorption 
and decreased bone formation. With advancing age, the 
decline in endocrine and digestive system functions fur-
ther disrupts bone metabolism. Poor lifestyle choices, 
including lack of physical activity, poor dietary habits, 
smoking, and excessive alcohol consumption, also con-
tribute to the risk of osteoporosis. Additionally, certain 
medical conditions and medications can adversely affect 
bone metabolism [3, 4].

The mechanism underlying kidney stone formation 
is multifactorial and involves several factors, including 
urinary component imbalances, reduced inhibitor lev-
els, urinary tract obstruction and infection, metabolic 
abnormalities, genetic predisposition, and environmental 
influences [2]. Elevated concentrations of urinary compo-
nents, such as calcium and oxalate, exceed their solubil-
ity limits, leading to crystal precipitation. These crystals 
gradually increase in size and form stones. Urinary tract 
obstruction and infections facilitate the attachment and 
growth of these crystals [2, 5]. Metabolic disorders, such 
as hypercalciuria, further elevate the risk of stone forma-
tion. Genetic factors affect an individual’s metabolism 
and excretion of stone-forming components [6]. Addi-
tionally, environmental, dietary, medication, and psycho-
logical factors must also be considered [5].

Previous studies have found no direct relationship 
between kidney stones and osteoporosis but suggest 
that the two conditions may be indirectly linked in some 
cases. For instance, certain medications or treatments 
may affect both the urinary and skeletal systems, thereby 
influencing the development and progression of both 
kidney stones and osteoporosis [7]. Additionally, lifestyle 
factors such as physical inactivity and high-salt diets may 
increase the risk of both conditions [8, 9]. These findings 
highlight the potential interaction between kidney stones 
and osteoporosis, which may concurrently influence the 
development of both conditions. However, most current 
research has been conducted from a clinical perspective, 

with limited investigation into the genetic relationship 
between kidney stones and osteoporosis.

This study aims to investigate the relationship between 
osteoporosis and kidney stones by utilizing the National 
Health and Nutrition Examination Survey (NHANES) 
database. Additionally, bioinformatics approaches will be 
employed to elucidate the potential shared mechanisms 
underlying these two diseases. The NHANES database, 
managed by the U.S. Department of Health and Human 
Services (HHS) through the National Center for Health 
Statistics (NCHS), collects extensive health and nutri-
tion data from a representative sample of participants. 
This includes physiological measurements, health ques-
tionnaires, laboratory tests, and dietary surveys [10]. 
These data provide a valuable foundation for assessing 
the health status of the U.S. population and offer a rich 
resource for studying the relationship between osteopo-
rosis and kidney stones. Bioinformatics techniques ena-
ble the analysis of biological macromolecule interaction 
networks, gene expression regulation, and disease-related 
molecular markers, thereby offering new insights into the 
potential links between osteoporosis and kidney stones. 
This study aims to uncover the underlying biological links 
between osteoporosis/osteopenia and kidney stones, pro-
viding a scientific basis for early diagnosis, personalized 
treatment, and the development of prevention strategies. 
Additionally, it will enhance our understanding of the 
pathophysiological mechanisms of the skeletal and uri-
nary systems, thereby advancing both basic research and 
clinical applications in related fields. The research flow-
chart for this study is presented in Fig. 1.

Methods
The relationship between osteoporosis/osteopenia 
and kidney stones based on the NHANES database
Study population in NHANES
The data used in this analysis are publicly available 
through the NHANES database (https:// www. cdc. gov/ 
nchs/ nhanes/ index. htm). The NHANES study protocol 
was approved by the National Center for Health Statis-
tics (NCHS), and informed consent was obtained from all 
participants. Institutional review board approval was not 
required as the study utilized de-identified, publicly avail-
able data. A total of 64,929 participants were selected 
from five cycles: 2007–2010, 2013–2014, and 2017–2020. 
Participants younger than 20 years of age, as well as those 
with missing data on kidney stones, bone density, or 
BMI, were excluded. Ultimately, 13,357 participants were 
included in the final analysis (Supplementary Fig. 1).

Kidney stones
For participants aged ≥ 20 years, personal interview data 
on the history of kidney stones were provided in the 

https://www.cdc.gov/nchs/nhanes/index.htm
https://www.cdc.gov/nchs/nhanes/index.htm
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NHANES 2007–2010, 2013–2014, 2017–2020 (Kidney 
Conditions–Urology). As described by a previous study, 
participants who answered “Yes” to the question “Have 
you ever had kidney stones?” (KIQ026) were defined as 
KSD. The validity of self-reported kidney stones has been 
confirmed by previous studies [11].

Measurement of BMD
Bone mineral density (BMD) of the femur and lumbar 
spine was assessed using dual-energy X-ray absorpti-
ometry (DXA). Osteoporosis was defined as a T-score 
of < −2.5, while osteopenia was defined as a T-score 
between −1.0 and −2.5, following the criteria established 
by Looker et  al. In the present study, decreased bone 
mass was defined as BMD values 1 to 2.5 standard devia-
tions (SD) below the mean for males and females aged 
20 to 29 years. Osteoporosis was defined as BMD values 
more than 2.5 SD below the reference mean for young 
adults [12, 13].

Other covariates used in NHANES
To control for potential confounding factors, the fol-
lowing demographic characteristics were adjusted for: 

gender, age, race, education level, body mass index (BMI), 
smoking status, alcohol consumption, hypertension, and 
diabetes status. Information on smoking, alcohol use, 
hypertension, and diabetes status were obtained from 
the questionnaire responses, while BMI data was derived 
from the BMXBMI item. All other demographic informa-
tion was extracted from the demographics section of the 
NHANES dataset. The dietary intake data were obtained 
from the 24-h dietary recall interview (Dietary Inter-
view—Total Nutrient Intakes, First Day). The US Depart-
ment of Food and Nutrient Database for Dietary Studies 
(FNDDS) was used to calculate the dietary intakes. In the 
current study, dietary intakes selected as dependent vari-
ables for analysis included calcium, phosphate, magne-
sium, and vitamin D (a total of 25OHD2 and 25OHD3).

The relationship between osteoporosis and kidney stones 
based on bioinformatics research
Identification of common genes through DEGs analysis
We conducted a differential gene expression (DEG) anal-
ysis on the normalized GSE73680 and GSE56815 datasets 
using the "limma" package in R software. We selected the 
following thresholds after considering a combination of 

Fig. 1 Graphical workflow of this study. Identification of the workflow for exploring the association between osteoporosis and kidney stones, 
analysis of the databases, software, and tools used
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gene expression levels, statistical significance, and biolog-
ical significance. For the GSE73680 dataset, differentially 
expressed genes (DEGs) were identified with |logFC|≥ 1 
and a p value < 0.05, while for the GSE56815 dataset, the 
thresholds were set at |logFC|≥ 0.2 and p value < 0.05. 
The DEGs were visualized using volcano plots and heat-
maps. Next, upregulated and downregulated genes from 
both datasets were intersected to identify co-expressed 
genes. To pinpoint key co-expressed genes associated 
with KSD and OP, we applied two machine learning algo-
rithms, Lasso and Boruta, to select the most critical core 
genes.

Shared gene targets obtained from public database
Venn diagrams were employed to identify genes related to 
osteoporosis/bone loss and kidney stones that are shared 
between two public databases, CTD and GeneCards. The 
intersection of these gene sets was then analyzed to iden-
tify common gene targets between osteoporosis/bone 
loss and kidney stones. A protein–protein interaction 
(PPI) network was constructed using the Search Tool 
for the Retrieval of Interacting Genes (STRING; http:// 
string- db. org). Key target genes were selected using the 
CytoHubba plugin in Cytoscape software, complement-
ing the results of the machine learning algorithm.

Analysis of immune cell infiltration
Immune cells display distinct filtering and retention pat-
terns during disease onset and progression. These pat-
terns offer valuable insights into their roles in disease 
mechanisms and are crucial for the development of novel 
therapeutic strategies. CIBERSORT, based on linear 
support vector regression (SVR), estimates the relative 
abundance of individual immune cell subpopulations in 
a mixed-cell sample. It achieves this by training on gene 
expression profiles that are specific to immune cell types. 
We present the results of immune cell infiltration and 
associated features using box plots, stacked histograms, 
and correlation heatmaps.

Candidate drug prediction
Evaluating protein-drug interactions is crucial for 
determining whether a target protein is a viable candi-
date for drug development. In this study, we utilized the 
Drug Signature Database (DSigDB, http:// dsigdb. tan-
lab. org/ DSigD Bv1.0/) to achieve this objective. DSigDB 
contains data on 22,527 genes and 17,389 distinct com-
pounds, covering 19,531 genes, making it a comprehen-
sive resource for linking drugs and other compounds to 
their target genes. Specifically, we uploaded the geno-
morphic results of screened target proteins to DSigDB, 
enabling the prediction of drug candidates that interact 

with these target genes, thus facilitating the goal of tar-
geted gene therapy.

Molecular docking
To further investigate the effects of drug candidates 
on target proteins and assess the drug availability of 
these targets, this study performed molecular docking 
simulations at the atomic level to evaluate the binding 
affinity and interaction patterns between the drugs and 
their targets. Molecular docking allows for the analy-
sis of ligand-receptor binding affinity and interaction 
dynamics. By identifying ligands with high binding 
affinity and favorable interaction profiles, we can prior-
itize drug targets for experimental validation and opti-
mize the design of potential drug candidates. The 2D 
chemical structures of the drugs were retrieved from 
the PubChem database (https:// pubch em. ncbi. nlm. nih. 
gov), and the protein crystal structures were obtained 
from the Protein Data Bank (PDB, https:// www. rcsb. 
org/). Molecular docking simulations were conducted 
using the CB-Dock2 platform (https:// cadd. labsh are. 
cn/ cb- dock2/ php/ index. php).

Statistical analysis
For the NHANES analysis, multivariable-adjusted 
logistic regression was performed to assess the asso-
ciations between osteoporosis, bone loss, femoral neck 
BMD, lumbar spine BMD, and KSD. We assessed mul-
ticollinearity between variables using Variance Inflation 
Factor (VIF) before performing multivariate logis-
tics regression analysis. Three models were evaluated, 
each correcting for different sets of covariates: Model 
1 was unadjusted; Model 2 adjusted for sex, age, eth-
nicity, education level, and BMI; and Model 3 further 
adjusted for smoking, alcohol consumption, hyperten-
sion, diabetes mellitus, Vitamin D, Calcium, Phospho-
rus and Magnesium in addition to the covariates in 
Model 2. Results are presented as odds ratios (OR) with 
95% confidence intervals (95% CI). Due to the complex 
probabilistic sampling design of NHANES, weights 
were incorporated into the statistical analysis. For gene 
screening, Lasso regression and the Boruta algorithm 
were employed. Lasso regression is particularly suited 
for linear relationships and situations where the num-
ber of variables exceeds the number of samples, while 
the Boruta algorithm focuses on feature importance 
and automated feature selection. This study combines 
the strengths of both methods. All statistical analyses 
were conducted using R software version 4.3.2 (R Foun-
dation, Vienna, Austria).

http://string-db.org
http://string-db.org
http://dsigdb.tanlab.org/DSigDBv1.0/
http://dsigdb.tanlab.org/DSigDBv1.0/
https://pubchem.ncbi.nlm.nih.gov
https://pubchem.ncbi.nlm.nih.gov
https://www.rcsb.org/
https://www.rcsb.org/
https://cadd.labshare.cn/cb-dock2/php/index.php
https://cadd.labshare.cn/cb-dock2/php/index.php
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Results
Population characteristics of study subjects according 
to Kidney stones
A total of 13,357 patients participated in the study. 
The thresholds for osteoporosis in men were defined 
as femoral neck (FN) BMD below 0.609  g/cm2, lum-
bar spine L1 BMD below 0.692 g/cm2, L2 BMD below 
0.756 g/cm2, L3 BMD below 0.759 g/cm2, and L4 BMD 
below 0.754  g/cm2. The thresholds for bone loss in 
the femoral neck and L1-L4 lumbar vertebrae in men 
ranged from 0.609–0.825  g/cm2, 0.692–0.876  g/cm2, 
0.756–0.946  g/cm2, 0.759–0.952  g/cm2, and 0.754–
0.944  g/cm2, respectively. In women, the thresholds 
for osteoporosis were FN BMD below 0.551  g/cm2, 
L1 BMD below 0.640  g/cm2, L2 BMD below 0.744  g/
cm2, L3 BMD below 0.783 g/cm2, and L4 BMD below 
0.784 g/cm2. The thresholds for bone loss in the femo-
ral neck and L1-L4 lumbar vertebrae in women ranged 
from 0.551–0.756  g/cm2, 0.640–0.832  g/cm2, 0.744–
0.936  g/cm2, 0.783–0.973  g/cm2, and 0.784–0.965  g/
cm2, respectively (Table 1). Table 2 presents the clini-
cal and laboratory characteristics of the study partici-
pants. The participants were divided into two groups: 
1243 individuals with kidney stones and 12,114 
without. Compared to those without kidney stones, 
individuals in the kidney stone group were older, pre-
dominantly male, and of non-Hispanic white descent. 
Additionally, they had lower educational attainment, 
higher rates of smoking and alcohol consumption, and 
a greater prevalence of diabetes and hypertension.

Observational associations between osteoporosis/
osteopenia and KSD in NHANES
Univariate analysis revealed that patients with renal 
stones had lower femoral neck bone mineral density 
(BMD) (0.78 ± 0.14 vs. 0.81 ± 0.16), as well as a higher 
prevalence of bone loss (54.7% vs. 48.5%) and osteopo-
rosis (10.4% vs. 8.5%) compared to those without renal 
stones. However, no significant differences were observed 
in lumbar spine BMD at L1-L4 between the two groups. 
Upon stratification by gender, we found that lumbar 
spine BMD was lower in the kidney stone group among 
female patients (Supplementary Table  1). The Variance 
Inflation Factor (VIF) analysis revealed the absence of 
notable multicollinearity among the remaining covari-
ates, with the exception of data pertaining to bone min-
eral density. Consequently, we delved into the correlation 
between bone mineral density at various anatomical sites 
concurrently and the incidence of kidney stones (Supple-
mentary Fig. 2). Subsequent multifactorial analyses iden-
tified a significant negative association between BMD 
and the prevalence of kidney stones. Patients with osteo-
penia and osteoporosis, specifically, exhibited a higher 
risk of developing kidney stones (Table  3). In model 3, 
adjusted for all covariates, femoral neck BMD (OR = 0.35; 
95% CI = 0.18–0.68, P = 0.002), L1 BMD (OR = 0.43; 
95% CI = 0.25–0.74, P = 0.002), L2 BMD (OR = 0.47; 
95% CI = 0.28–0.78, P = 0.004), L3 BMD (OR = 0.49; 
95% CI = 0.30–0.80, P = 0.005), and L4 BMD (OR = 0.48; 
95% CI = 0.29–0.78, P = 0.003) were all inversely asso-
ciated with the risk of kidney stones. The prevalence of 
kidney stones was higher in patients with reduced bone 
mass (OR = 1.24; 95% CI = 1.08–1.43, P = 0.002) and 

Table 1 Mean femoral bone mineral density (BMD) of 20–29-year-old men and women in NHANES 2007–2010, 2013–2014, and 
2017–2020

For each of the four regions of interest, low bone density was defined as: (1) osteopenia: a BMD value between 1 standard deviation (SD) and 2.5 SD below the mean 
of men or women age 20–29 years; and (2) osteoporosis: a BMD value > 2.5 SD below the young reference mean

Region of interest Mean (gm/cm2) SD (gm/cm2) BMD cutoff values for

Osteopenia Osteoporosis

Men (n = 766)

  FN BMD 0.969 0.144 0.609–0.825  < 0.609

  L1 BMD 0.999 0.123 0.692–0.876  < 0.692

  L2 BMD 1.073 0.127 0.756–0.946  < 0.756

  L3 BMD 1.081 0.129 0.759–0.952  < 0.759

  L4 BMD 1.071 0.127 0.754–0.944  < 0.754

Women (n = 674)

  FN BMD 0.893 0.137 0.551–0.756  < 0.551

  L1 BMD 0.960 0.128 0.640–0.832  < 0.640

  L2 BMD 1.064 0.128 0.744–0.936  < 0.744

  L3 BMD 1.100 0.127 0.783–0.973  < 0.783

  L4 BMD 1.086 0.121 0.784–0.965  < 0.784
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osteoporosis (OR = 1.41; 95% CI = 1.11–1.79, P = 0.005) 
(Table 3).

Restricted cubic spline plots were used to assess the 
dose–response relationship between bone mineral den-
sity (BMD) and the risk of kidney stones. Our analy-
sis revealed a significant inverse association between 
BMD and the risk of kidney stones. This association 
remained consistent when stratified by sex. In the female 
group, femoral neck (FN) BMD, L2 BMD, and L4 BMD 

exhibited a linear negative association with the risk of 
kidney stones, whereas nonlinear negative associations 
were observed in the male group and across the entire 
population (Fig. 2).

Identification of DEGs in KSD and OP
After normalizing the required datasets, we identified a 
total of 1651 differentially expressed genes in the KSD 

Table 2 Patient demographics and baseline characteristics

1 Welch Two Sample t-test, 2Pearson’s Chi-squared test, 3Wilcoxon rank sum test

Characteristic Non-kidney stones (N = 12,114) Kidney stones (N = 1243) p value

Age, years 52 ± 16 57 ± 14  < 0.0011

Gender, %

  Male 5756 (47.5%) 709 (57.0%)  < 0.0012

  Female 6358 (52.5%) 534 (43.0%)

BMI, kg/m2 28.1 ± 5.8 29.3 ± 5.7  < 0.0011

Race/Ethnicity, %

  Mexican American 2004 (16.5%) 167 (13.4%)  < 0.0012

  Other hispanic 1348 (11.1%) 150 (12.1%)

  Non-hispanic white 4815 (39.7%) 654 (52.6%)

  Non-hispanic black 2556 (21.1%) 181 (14.6%)

  Other 1391 (11.6%) 91 (7.3%)

Education level, %

  Less than 9th grade 1282 (10.6%) 133 (10.7%)  < 0.0012

  9–11th grade 1704 (14.1%) 148 (11.9%)

  High school or equivalent 2876 (23.7%) 287 (23.1%)

  Some college or AA degree 3411 (28.2%) 407 (32.7%)

  College graduate or above 2826 (23.4%) 268 (21.6%)

Diabetes, %

  Yes 1569 (13.0%) 279 (22.4%)  < 0.0012

  No/borderline 10,545 (87.0%) 964 (77.6%)

Hypertensive, %

  Yes 4246 (35.1%) 616 (49.6%)  < 0.0012

  No 7868 (64.9%) 627 (50.4%)

Smoke, %

  Yes 5236 (43.2%) 592 (47.6%) 0.0032

  No 6878 (56.8%) 651 (52.4%)

Alcohol consumption, cup 2.00 (1.00, 3.00) 2.00 (1.00, 3.00)  < 0.0013

FNBMD, gm/cm2 0.81 ± 0.16 0.78 ± 0.14  < 0.0011

L1BMD, gm/cm2 0.95 ± 0.16 0.95 ± 0.17 0.5591

L2BMD, gm/cm2 1.02 ± 0.17 1.01 ± 0.17 0.2261

L3BMD, gm/cm2 1.05 ± 0.17 1.04 ± 0.17 0.1891

L4BMD, gm/cm2 1.05 ± 0.17 1.04 ± 0.17 0.2111

Vitamin D (mcg) 3.10 (1.20, 6.00) 3.30 (1.40, 5.60) 0.5313

Calcium (mg) 792.00 (506.75, 1157.00) 799.00 (524.00, 1145.00) 0.3583

Phosphorus (mg) 1214.00 (869.00, 1657.00) 1202.00 (887.00, 1633.00) 0.9983

Magnesium (mg) 269.00 (196.00, 365.00) 261.00 (198.00, 361.00) 0.1363

Osteopenia, % 5870 (48.5%) 680 (54.7%)  < 0.0012

Osteoporosis, % 1030 (8.5%) 129 (10.4%)  < 0.0012
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dataset (GSE73680), including 1548 upregulated genes 
and 103 downregulated genes. Similarly, 1651 differen-
tially expressed genes were identified in the OP data-
set (GSE56815), comprising 840 upregulated genes 
and 811 downregulated genes. Volcano and heatmap 
analyses revealed the differential expression patterns 
of genes in both the KSD and OP datasets (Fig. 3A-D). 
Further intersection analysis identified 14 co-expressed 
genes, including 9 commonly upregulated genes 
(WNT1, BTN2A1, MPZ, ACTN2, KLK3, ONECUT2, 
CRB1, ATMIN, CHI3L1) and 5 commonly downregu-
lated genes (FLNA, RECK, KANK2, RAMP1, ACTA2) 
(Fig.  3E-F). We employed two machine learning algo-
rithms, Lasso and Boruta, to identify the most critical 

core genes, ultimately pinpointing WNT1 as the key 
gene for both KSD and OP (Fig. 4A-G). 

Analysis of common gene targets from two public 
databases
To integrate the existing biological data, we searched 
for relevant genes in the CTD and GeneCards databases 
using "osteoporosis/osteopenia" and "kidney stone" as 
keywords. We then combined the osteoporosis/osteope-
nia- and kidney stone-related genes from these databases 
using Venn diagrams, identifying 267 common gene 
targets, indicating a substantial overlap between osteo-
porosis/osteopenia and kidney stone (Fig.  5A-B). Sub-
sequently, we conducted core target screening with the 
Centiscape 2.2 plugin in Cytoscape, integrating the MCC, 
MNC, Radiality, Stress, BottleNeck, and EcCentricity 

Table 3 Logistic regression analysis of BMD and kidney stone

Results with significant differences are shown in bold

Model 1: unadjusted

Model 2: adjusted for age, gender, race/ethnicity, education level and BMI

Model 3: further adjusted for diabetes, hypertensive, smoke, alcohol consumption, Vitamin D, Calcium, Phosphorus and Magnesium

Variables Model 1 Model 2 Model 3

OR (95%CI) P OR (95%CI) P OR (95%CI) P

FN BMD 0.32 (0.22 ~ 0.48)  < 0.001 0.36 (0.21 ~ 0.60)  < 0.001 0.35 (0.18 ~ 0.68) 0.002
L1 BMD 0.90 (0.63 ~ 1.28) 0.548 0.54 (0.36 ~ 0.82) 0.003 0.43 (0.25 ~ 0.74) 0.002
L2 BMD 0.80 (0.56 ~ 1.14) 0.216 0.57 (0.39 ~ 0.85) 0.006 0.47 (0.28 ~ 0.78) 0.004
L3 BMD 0.79 (0.55 ~ 1.12) 0.179 0.58 (0.40 ~ 0.84) 0.004 0.49 (0.30 ~ 0.80) 0.005
L4 BMD 0.80 (0.57 ~ 1.13) 0.206 0.53 (0.37 ~ 0.77)  < 0.001 0.48 (0.29 ~ 0.78) 0.003
Osteopenia 1.39 (1.23 ~ 1.58)  < 0.001 1.25 (1.08 ~ 1.43) 0.002 1.24 (1.08 ~ 1.43) 0.002
Osteoporosis 1.50 (1.22 ~ 1.85)  < 0.001 1.39 (1.09 ~ 1.77) 0.007 1.41 (1.11 ~ 1.79) 0.005

(See figure on next page.)
Fig. 2 Dose–response relationship analysis between BMD and kidney stone. Restricted cubic spline plots of the association between BMD 
and kidney stone. RCS regression was adjusted for age, race, sex, marital status, education level, smoking status, drinking status, hypertension, 
diabetes Vitamin D, Calcium, Phosphorus and Magnesium. (Model 3). The blue solid line represents ORs, blue shaded region represents 95% CI. 
The P value indicates the degree of significant difference between the model and the observed data. The smaller the P value, the more significant 
the difference. The P Nonlinear value reflects whether there is a nonlinear relationship in the data. If the P Nonlinear value is small, it suggests 
that a nonlinear relationship may exist. Among all participants, FN BMD (femoral neck bone mineral density) has a nonlinear negative correlation 
with the prevalence of kidney stones (P value ≤ 0.001, P Nonlinear = 0.013), L1 BMD (first lumbar vertebra bone mineral density) has a nonlinear 
negative correlation with the prevalence of kidney stones (P value ≤ 0.001, P Nonlinear ≤ 0.001), L2 BMD (second lumbar vertebra bone mineral 
density) has a linear negative correlation with the prevalence of kidney stones (P value = 0.018, P Nonlinear = 0.164), L3 BMD (third lumbar vertebra 
bone mineral density) has a linear negative correlation with the prevalence of kidney stones (P value = 0.013, P Nonlinear = 0.085), and L4 BMD 
(fourth lumbar vertebra bone mineral density) has a nonlinear negative correlation with the prevalence of kidney stones (P value = 0.002, P 
Nonlinear = 0.021). In the male population, FN BMD has a nonlinear negative correlation with the prevalence of kidney stones (P value = 0.004, P 
Nonlinear = 0.031), L1 BMD has a nonlinear negative correlation (P value ≤ 0.001, P Nonlinear ≤ 0.001), L2 BMD has a linear negative correlation (P 
value = 0.017, P Nonlinear = 0.075), L3 BMD has a nonlinear negative correlation (P value = 0.002, P Nonlinear = 0.015), and L4 BMD has a nonlinear 
negative correlation (P value = 0.004, P Nonlinear = 0.011). In the female population, FN BMD has a linear negative correlation with the prevalence 
of kidney stones (P value = 0.026, P Nonlinear = 0.731), L1 BMD has a nonlinear negative correlation (P value = 0.001, P Nonlinear = 0.003), L2 BMD 
has a linear negative correlation (P value = 0.063, P Nonlinear = 0.699), L3 BMD has a linear negative correlation (P value = 0.075, P Nonlinear = 0.137), 
and L4 BMD has a linear negative correlation with the prevalence of kidney stones (P value = 0.017, P Nonlinear = 0.996)
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Fig. 2 (See legend on previous page.)
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Fig. 3 Differential gene expression analysis. A Volcano plots depict the differential expression genes (DEGs) in GSE73680. B Heatmaps illustrate 
the expression patterns of corresponding DEGs in GSE73680. C Volcano plots depict the DEGs in GSE56815. D Heatmaps illustrate the expression 
patterns of corresponding DEGs in GSE56815. E Co-up-regulated genes in GSE73680 and GSE56815. F Co-down-regulated genes in GSE73680 
and GSE56815
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algorithms in a joint analysis. This approach led to the 
identification of AKT1 and TNF as the most prominent 
core targets (Fig. 5C-I). These targets, together with the 
core genes identified in the previous machine learning 
analysis, were then used for drug prediction.

GeneMANIA-based functional association
The Protein–Protein Interaction (PPI) network con-
structed using GeneMANIA (https:// genem ania. org/) 
included 20 additional genes that could potentially 
interact with the three core targets we identified, in 

addition to the three core targets themselves (Fig. 6A). 
These interactions comprised Physical Interactions 
(77.64%), Co-expression (8.01%), and other types. 
Functional analysis of the network highlighted the 
roles of the drug targets and related genes, as well as 
their functions. The results revealed correlations with 
exogenous apoptotic signaling pathways and the mod-
ulation of inflammatory responses, demonstrating a 
strong functional connection between immunity and 
inflammation, consistent with the pathogenesis of oste-
oporosis and kidney stones. The GMFA approach inte-
grates co-expression, genetic interactions, and physical 

Fig. 4 Identification using machine learning algorithms. A Lasso regression was used to screen the key genes of GSE73680, with the optimal 
gene count (n = 7) at the curve’s lowest point. B-C Core genes were screened by Boruta algorithm, and a total of 2 genes were screened. D Lasso 
regression was used to screen the key genes of GSE56815, with the optimal gene count (n = 10) at the curve’s lowest point. E–F Core genes were 
screened by Boruta algorithm, and a total of 9 genes were screened. G Common genes identified by the two algorithms

https://genemania.org/
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interactions to capture a wide array of genes associated 
with disease [14]. In subsequent KEGG enrichment 
analysis, GMFA identified the mTOR signaling pathway 
as the most significant pathway in the shared mecha-
nism (Fig. 6B).

Analysis of immune cell infiltration
To investigate the pathogenesis of Alzheimer’s disease 
(AD) and ankylosing spondylitis (AS), we examined 
immune cell infiltration patterns in patient tissues. 
Using the CIBERSORT algorithm, we obtained infiltra-
tion scores for various immune cell types. Analysis of 
the GSE73680 dataset revealed a significantly higher 

infiltration of resting dendritic cells and M1 mac-
rophages, as well as a significantly lower infiltration of 
resting mast cells in the KSD group compared to the 
normal group (Fig. 7A-C). In contrast, the OP dataset, 
which detected mononuclear cells, showed no signifi-
cant differences in immune cell infiltration between the 
normal and osteoporosis groups, further confirming 
the reliability of our study (Fig. 7D-F).

Fig. 5 Shared genes were screened based on public databases. A Venn diagram of interaction between common targets and genes from CTD 
and GeneCards analysis. B The PPI network and clusters analysis of common targets. C-H The top 10 core genes were sequentially calculated 
by MCC, MNC, Radiality, Stress, BottleNeck and EcCentricity algorithms. I The key targets obtained were comprehensively analyzed
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Candidate drug prediction
In this study, we employed DSigDB to predict potential 

therapeutic interventions. Based on our screening 
results and a review of the literature, we identified nine 
drugs that may offer potential for allopathic treatment. 
These include butein, diosgenin, tylophorine, garcinol, 

Fig. 6 GeneMANIA functional association (GMFA) network analysis. A PPI network built with GeneMANIA. Each circle is coloured to indicate 
the functional pathway in which each gene is involved. B KEGG enrichment analysis
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sphingosine 1-phosphate, evodiamine, linalool, cilosta-
zol, and naringenin (Table 4). Most of these drugs possess 
anti-inflammatory, antioxidant, and hormone-modulat-
ing properties, which align with the pathogenesis of oste-
oporosis and kidney stones, as well as their comorbidity.

Molecular docking
To evaluate the affinity of drug candidates for their tar-
gets and assess the druggability of these targets, molecu-
lar docking was conducted in this study. The CB-Dock2 
platform was used to identify the binding sites and inter-
actions of nine drug candidates with their respective 
target proteins. For each interaction, we calculated the 
binding energy, resulting in a total of 18 successful dock-
ing outcomes between the proteins and drugs (Fig. 8A-R 
and Supplementary Table  2). In this analysis, we found 
that Evodiamine exhibited the most stable binding to 
AKT1, cilostazol also bound stably to AKT1, and dios-
genin showed stable binding to TNF, with binding ener-
gies of −10  kcal/mol, −10.7  kcal/mol, and −10.2  kcal/
mol, respectively.

Discussion
In this study, we conducted a cross-sectional analysis of 
nationally representative NHANES data to examine the 
association between osteoporosis/bone loss and kidney 
stones. Our findings indicate that individuals with kidney 
stones exhibit lower femoral neck and lumbar spine bone 
mineral density (BMD) and have a higher prevalence of 

osteoporosis compared to those without kidney stones. 
Mechanistic investigations revealed that the mTOR sign-
aling pathway is a key shared mechanism underlying 
both osteoporosis and kidney stones. Additionally, the 
following compounds—butein, diosgenin, tylophorine, 
garcinol, sphingosine 1-phosphate, evodiamine, linalool, 
cilostazol, and naringenin—may serve as potential thera-
peutic agents targeting this association.

Studies have demonstrated that individuals with met-
abolic bone disease are at a higher risk of developing 
kidney stones [24, 25]. Shared risk factors for both osteo-
porosis and kidney stones, such as physical inactivity, 
may contribute to the increased risk of kidney stones in 
patients with osteoporosis [26]. Additionally, comor-
bidities can heighten susceptibility to both conditions. In 
patients with ankylosing spondylitis, low bone mineral 
density (BMD) is associated with the presence of kidney 
stones [27]. Reduced BMD and elevated bone resorption 
markers can collectively influence the risk of multi-organ 
calcification. Specifically, low BMD and increased bone 
resorption are linked to mitral valve calcification and 
kidney stones [28]. Our adjusted multifactorial logistic 
regression analysis revealed that decreased femoral neck 
and lumbar spine BMD were associated with a higher 
risk of kidney stones, a finding that remained consist-
ent after stratification by sex. Similarly, Kim et  al. used 
stratified Cox proportional hazards modeling to examine 
the impact of osteoporosis on the National Health Ser-
vice health screening cohort (2002–2015) in individuals 

Fig. 7 Immune cell infiltration analysis of KSD and OP. A-C Analysis of the proportions of various immune cell infiltrates in GSE73680 using 
the CIBERSORT algorithm. D-F Analysis of the proportions of various immune cell infiltrates in GSE56815 using the CIBERSORT algorithm
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over 40 years of age. Their analysis showed that the haz-
ard ratio (HR) for kidney stones in patients with osteo-
porosis was 1.36 times higher than in controls (95% CI 
1.28–1.45) [24]. This result aligns with our findings from 
multifactorial logistic regression analysis (Model 3), 
which showed that osteoporotic patients (OR = 1.41; 95% 
CI = 1.11–1.79, P = 0.005) had a significantly higher inci-
dence of kidney stones.

mTOR is an atypical serine/threonine protein kinase 
that integrates upstream signaling with downstream 
effectors, including transcription and translation, to regu-
late essential cellular processes such as energy utilization, 
protein synthesis, autophagy, cell growth, and prolifera-
tion [29]. The mTOR signaling pathway plays a crucial 
role in bone metabolism by regulating osteoblast prolif-
eration, differentiation, autophagy, survival, and apopto-
sis, thereby significantly influencing bone mass [30, 31]. 
Specifically: Regulation of Bone Metabolism through 
Osteoblast Autophagy: The mTOR signaling pathway 
can inhibit autophagy, the cellular process responsible 
for degrading damaged or excess proteins and organelles. 
In osteoblasts, mTOR inhibition enhances autophagy, 
reducing bone resorption and improving bone qual-
ity. Regulation of Bone Metabolism through Osteoblast 
Maturation and Differentiation: mTORC2, a key regula-
tor of osteoblast maturation, promotes the proliferation 

and activity of osteoblasts, thereby improving bone qual-
ity and density. Regulation of Bone Metabolism through 
Osteoblast Survival and Apoptosis: mTORC1 can induce 
osteoblast apoptosis, while mTORC2 enhances osteo-
blast survival by inhibiting acylated proteases. Drugs spe-
cifically targeting the mTOR signaling pathway have the 
potential to emerge as a novel therapeutic strategy for 
osteoporosis. For instance, the application of mTORC1 
inhibitors can effectively quell the proliferation and dif-
ferentiation of osteocytes, consequently diminishing 
bone resorption. This, in turn, leads to an augmentation 
in bone density and bone mass, thereby enhancing the 
stability of bone tissue. By finely tuning the mTOR signal-
ing pathway, the differentiation and activity of osteoblasts 
can be encouraged, further bolstering bone quality and 
bone mineral density. This approach offers osteoporosis 
patients a fresh alternative in their treatment options.

The mTOR signaling pathway is a crucial intracellular 
pathway that regulates cell division, gene transcription, 
and protein translation, primarily through the activa-
tion of the PI3K/Akt/mTOR axis. This pathway controls 
protein synthesis, thereby influencing cell growth [32]. 
Inhibition of the mTOR signaling pathway can effectively 
disrupt abnormal signaling triggered by various growth 
factors, thereby preventing excessive cell proliferation 
and metabolic activity, which is critical for reducing 

Fig. 8 Docking results of available proteins small molecules. A AKT1 docking butein. B TNF docking butein. C AKT1 docking cilostazol. D TNF 
docking cilostazol. E AKT1 docking diosgenin. F TNF docking diosgenin. G AKT1 docking evodiamine. H TNF docking evodiamine. I AKT1 docking 
garcinol. J TNF docking garcinol garcinol. K AKT1 docking linalool. L WNT1 docking linalool. M AKT1 docking naringenin. N TNF docking naringenin. 
O AKT1 docking sphingosine 1-phosphate. P TNF docking sphingosine 1-phosphate. Q AKT1 docking tylophorine. R TNF docking tylophorine
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renal stone formation [33, 34]. Regulation of Cellular 
Metabolism: Inhibition of the mTOR pathway lowers 
cellular metabolic activity, reducing the production and 
deposition of crystalline substances in the urine. By mod-
ulating the metabolic processes of renal tubular epithe-
lial cells, mTOR inhibition reduces the oversaturation of 
crystalline substances, such as calcium oxalate, thereby 
decreasing the risk of kidney stone formation. Influence 
on Cell Proliferation and Differentiation: The mTOR 
pathway plays a vital role in regulating cell proliferation 
and differentiation. Its inhibition slows the proliferation 
of renal tubular epithelial cells and decreases the likeli-
hood of their differentiation into cell types involved in 
stone formation. This reduction in abnormal cell num-
bers and activity helps mitigate kidney stone formation. 
Regulation of Inflammatory Response [35]: Kidney stone 
formation is frequently accompanied by inflammation. 
Inhibiting the mTOR pathway reduces the inflammatory 
response in renal tubular epithelial cells and lowers the 
release of inflammatory mediators. This helps prevent 
damage to renal tissues and reduces both the formation 
and recurrence of kidney stones. Promotion of Cellular 
Autophagy: As a major negative regulator of autophagy, 
the mTOR pathway inhibits this process. By blocking 
mTOR signaling, autophagy is enhanced in renal tubu-
lar epithelial cells, enabling them to remove damaged or 
excess proteins and organelles. This process helps main-
tain intracellular homeostasis and reduces the deposition 
of crystalline material, thereby lowering the risk of kid-
ney stone formation. Drugs targeting the mTOR signal-
ing pathway may help to reduce the deposition of urinary 
salt crystals and damage to renal tubular epithelial cells, 
thereby preventing or treating kidney stones. By regulat-
ing mTOR signaling pathway, it can improve the metabo-
lism and function of renal tubular epithelial cells, reduce 
the formation and retention of urinary salt crystals, and 
provide a new treatment for patients with kidney stones.

Potential clinical translation value summary, drug 
development: Drug development targeting mTOR signal-
ing pathway may provide new options for the treatment 
of osteoporosis and kidney stones. These drugs can exert 
therapeutic effects by regulating the mTOR signaling 
pathway to affect bone metabolism and urinary salt crys-
tal formation. Personalized treatment: By detecting the 
activity of mTOR signaling pathway in patients, person-
alized treatment plans can be provided for patients. For 
example, in patients with osteoporosis, if reduced activ-
ity of the mTOR signaling pathway is detected, drugs that 
promote mTOR activity can be considered to increase 
bone formation; For patients with kidney stones, if exces-
sive mTOR signaling activity is detected, drugs that 
inhibit mTOR activity may be considered to reduce the 
formation of urinary salt crystals. Combination therapy: 

There are complex interactions between mTOR signal-
ing and other signaling pathways. Therefore, the combi-
nation of drugs targeting mTOR signaling pathway with 
other drugs may produce better therapeutic effects. For 
example, in the treatment of osteoporosis, drugs that 
promote mTOR activity can be combined with drugs that 
promote osteoblast differentiation; In the treatment of 
kidney stones, drugs that inhibit mTOR activity can be 
combined with drugs that promote urinary salt excretion.

Butein, diosgenin, tylophorine, garcinol, sphingosine 
1-phosphate, evodiamine, and linalool are natural prod-
ucts or compounds with significant biological activities, 
making them potential candidates for drug development 
and medicinal applications. Butein has been shown to 
suppress the proliferation and survival of tumor cells by 
inhibiting the activity of mTORC1, thereby modulating 
the phosphorylation levels of its downstream target pro-
teins, such as 4E-BP1 and p70S6K [15, 36]. Diosgenin, on 
the other hand, exerts its effects by inhibiting PI3K activ-
ity, which subsequently reduces the production of PIP3 
and inhibits AKT phosphorylation. Given that AKT is a 
key activator of mTORC1, the inhibition of AKT by Dios-
genin indirectly suppresses mTORC1 activity, ultimately 
leading to decreased cell proliferation and increased 
apoptosis [16]. Tylophorine may also inhibit mTORC1 
activity, affecting the expression of cyclin D1 and E, and 
thereby arresting the cell cycle progression and inhibiting 
tumor cell proliferation [17]. Garcinol has been found to 
reduce inflammatory responses by inhibiting the TLR4/
NF-κB signaling pathway, thereby decreasing the pro-
duction of inflammatory factors. Since there is cross-talk 
between inflammatory signaling and the mTOR path-
way, Garcinol’s anti-inflammatory effects may indirectly 
influence the mTOR signaling pathway [18]. Sphingo-
sine 1-phosphate (S1P) can activate the PI3K/AKT path-
way through its receptor S1PR1, which in turn activates 
mTORC1. Additionally, S1P may affect mTORC2 activity 
through other mechanisms, either directly or indirectly 
[37]. Evodiamine inhibits FAK activity, leading to reduced 
AKT phosphorylation and subsequent inhibition of the 
mTOR signaling pathway. Furthermore, Evodiamine may 
also influence the activity of mTORC1 and mTORC2 
through other mechanisms [20]. Linalool, with its anti-
oxidant properties, may reduce cellular oxidative stress 
levels, thereby affecting the mTOR signaling pathway. 
Given that oxidative stress is a significant regulator of the 
mTOR pathway, Linalool’s antioxidant effects may indi-
rectly modulate mTOR signaling [21]. These compounds 
exhibit a range of biological activities, including antican-
cer, antibacterial, anti-inflammatory, and neuroprotec-
tive effects, and could play a role in the heterogeneous 
treatment of osteoporosis and kidney stones [36–42]. 
mTOR signaling pathway plays an important role in the 
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pathogenesis of osteoporosis and kidney stones. By reg-
ulating this pathway, some natural compounds and tra-
ditional Chinese medicine monomers may provide new 
strategies for the treatment of related diseases. However, 
the specific mechanisms of action and clinical applica-
tions of these compounds need to be further investigated.

The primary strength of this study lies in the integra-
tion of data from NHANES, GEO, CTD, and GeneCards. 
The comprehensive evaluation of various factors, coupled 
with the large sample size, enabled us to effectively adjust 
for multiple confounders in multivariate regression 
models, thereby providing sufficient statistical power to 
investigate the pathogenic associations between BMD, 
osteoporosis, and kidney stones. Additionally, the study 
contributes to a deeper understanding of biological con-
nections by exploring the shared molecular mechanisms 
underlying these conditions.

However, several limitations must be acknowledged. 
Firstly, excluding participants with missing data could 
introduce potential bias, typically categorized as miss-
ing-not-at-random (MNAR), which may further result in 
selection bias. To mitigate this, we meticulously designed 
the study to anticipate missing data and employed mul-
tiple imputation techniques to handle such instances. 
Additionally, self-reported data from questionnaires are 
prone to recall bias. Future studies could address this lim-
itation by supplementing self-reported data with objec-
tive measures, such as biomarkers or direct observations, 
to provide a more comprehensive understanding of the 
associations under investigation. Secondly, despite con-
trolling for numerous relevant covariates, residual and 
unmeasured confounders may still influence the results. 
Thirdly, our findings primarily reflect the European 
American population, which limits the generalizability of 
our conclusions to other ethnic groups. To enhance the 
generalizability of future studies, it is crucial to include 
participants from diverse racial and ethnic backgrounds. 
This would provide a broader perspective and enable 
more inclusive conclusions regarding the associations 
studied. Future studies with larger, more diverse sample 
populations are necessary to validate our results. Lastly, 
while the underlying mechanisms of renal stone forma-
tion vary according to different stone compositions, the 
lack of data on stone composition in the NHANES data-
set may have compromised the reliability of our findings. 
The absence of detailed information on stone composi-
tion limits the interpretation of findings related to kid-
ney stones. Different types of kidney stones (e.g., calcium 
oxalate, uric acid) may have distinct underlying causes 
and management strategies. Future studies should aim to 
collect comprehensive data on stone composition, which 
will allow for a more nuanced analysis and may iden-
tify specific risk factors associated with different types 

of stones. Therefore, further well-designed prospec-
tive studies, along with investigations into the biological 
mechanisms, are essential to uncover the complex links 
between osteoporosis/osteopenia and kidney stones. 
Such research will provide a scientific foundation for 
early disease diagnosis, personalized treatment strategies, 
and the development of preventive measures. Moreover, 
it will enhance our understanding of the pathophysiologi-
cal interactions between the skeletal and urinary systems 
and promote advancements in both basic research and 
clinical applications in these fields.

Conclusions
Bone loss is associated with an increased risk of kidney 
stones. Targeting the mTOR signaling pathway may offer 
a potential therapeutic approach for treating both osteo-
porosis and kidney stones.
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