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Abstract
Background Acute kidney injury (AKI) remains a critical condition with limited therapeutic options, predominantly 
managed by renal replacement therapy. The challenge of developing targeted treatments persists.

Methods We integrated genetic data related to druggable proteins and gene expression with AKI genome-wide 
association study (GWAS) findings. Based on multi-omics Mendelian randomization (MR), we identified the potential 
causal influence of 5,883 unique proteins and genes on AKI. We also performed using reverse MR and external cohort-
based analysis to verify the robustness of this causal relationship. Expression patterns of these targets were examined 
using bulk transcriptome and single-cell transcriptome data. In addition, drug repurposing analyses were conducted 
to explore the potential of existing medications. We also constructed a molecular interaction network to explore the 
interplay between identified targets and known drugs.

Results Genetically predicted levels of seven proteins and twelve genes were associated with an increased risk of 
AKI. Of these, six targets (NCF1, TNFRSF1B, APEH, ACADSB, ADD1, and FAM3B) were prioritized based on robust evidence 
and validated in independent cohorts. Reverse MR showed a one-way causal relationship of targets. These targets are 
predominantly expressed in proximal tubular cells, endothelial cells, collecting duct-principal cells, and immune cells 
within both AKI-affected and normal tissues. Several promising drug repurposing opportunities were identified, such 
as telmisartan-NCF1, calcitriol-ACADSB, and ethinyl estradiol-ACADSB. The molecular interaction mapping and pathway 
integration analysis provided further insights, suggesting potential strategies for combinatorial therapies.

Conclusions This extensive investigation identified several promising therapeutic targets for AKI and highlighted 
opportunities for drug repurposing. These findings offer valuable insights that could shape future research and the 
development of targeted treatments.
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Background
Acute kidney injury (AKI) is a clinical syndrome charac-
terized by a rapid decline in renal excretory function [1], 
affecting over one-fifth of hospitalized adults and one-
third of hospitalized children globally [2]. Patients with 
AKI face heightened risks of both short-term and long-
term mortality [3], as well as increased susceptibility to 
cardiovascular complications [4], chronic kidney disease 
[5], and end-stage renal disease [6]. This significantly 
impacts survivors’ quality of life, often leading to work 
disabilities and considerable post-AKI medical expenses. 
Currently, a general management principle for AKI 
patients is fluid balance management, including neces-
sary fluid resuscitation [7], which is essential for prevent-
ing further kidney damage and promoting recovery [8]. 
For severe AKI, particularly in critically ill patients, renal 
replacement therapy remains the predominant treatment 
[9]. However, this approach is primarily reserved for life-
threatening conditions and cannot reverse the pathologi-
cal progression of AKI [10].

The development of pharmacological treatments for 
AKI represents an emerging and promising area of 
research. However, the pathophysiology of AKI encom-
passes multiple overlapping yet distinct pathways, such 
as oxidative stress [11], inflammatory response [12], cell 
death [13], and immune response [14]. The complexity of 
its pathogenesis, coupled with patient heterogeneity, has 
significantly impeded progress in drug development. To 
date, most drugs for AKI remain in clinical trials, demon-
strating uncertain efficacy and potential side effects [15], 
suggesting that widespread clinical use remains a distant 
goal. Given the escalating global incidence of AKI [16], 
there is an urgent need for more targeted and effective 
therapies to mitigate its adverse outcomes and socioeco-
nomic burden.

Precision medicine, grounded in molecularly targeted 
therapies, offers valuable insights into the treatment of 
AKI [17, 18]. Given the potential contribution of genetic 
factors to AKI susceptibility and severity, personal-
ized targeted therapies tailored to patients with diverse 
genetic backgrounds may represent a novel approach 
to managing AKI in the future [19]. Large-scale human 
genetic studies, enabled by the continuous advancement 
of gene sequencing technology, present opportunities 
for the development of targeted therapies for AKI. Pre-
vious genome-wide association studies (GWASs) have 
successfully identified single nucleotide polymorphisms 
(SNPs) associated with AKI risk by analyzing the genetic 
backgrounds of tens of thousands of individuals affected 
by AKI [20, 21]. However, these loci are upstream of 

biological mechanisms and are distant from being viable 
therapeutic targets. Genes encoding druggable human 
proteins can offer valuable clues for drug target discovery 
[22]. Nevertheless, identifying prospective targets from 
observational studies can be challenging due to the risk 
of confounding or reverse causation bias.

Mendelian randomization (MR), an innovative genetic 
statistical method for causal inference, can effectively 
avoid the confounding bias inherent in observational 
studies [23]. By integrating GWAS data of AKI with pro-
tein/expression quantitative trait loci (pQTL/eQTL) data, 
MR can assess whether genetically predicted variations 
in protein or gene expression levels have a causal role in 
AKI risk. Recent studies have effectively utilized drug-
gable QTL data and disease GWAS data to elucidate the 
underlying mechanisms of complex diseases and to pro-
vide insights into novel targets [24–26].

Consequently, the primary objective of this study 
was to identify causal biomarkers and potential thera-
peutic targets for AKI. By integrating pQTL and eQTL 
data from druggable genes, we estimated their potential 
causal effects on AKI using MR and colocalization analy-
sis. Transcript-level analysis was performed to further 
elucidate our findings. Subsequently, drug-repurposing 
assessments were conducted through database que-
ries and molecular docking to identify promising drugs. 
Finally, a protein-protein interaction (PPI) network and 
enrichment analyses were utilized to further explore the 
association between candidate targets and experimental 
AKI drug targets, providing novel insights into multi-tar-
get combination therapies.

Methods
Study design
The study design is depicted in Fig. 1. The data collected 
in this study came from FinnGen Consortium and other 
public databases; the data were desensitized before 
uploading and did not involve personal privacy or identi-
fiable information. This study did not involve information 
and data and informed consent authorization of the insti-
tution, so no ethical review was not necessary.

Data source
Data source for AKI
We leveraged a recently released large-scale GWAS 
focusing on AKI [27], which was derived from a data-
set consisting of 7,695 individuals of European ancestry 
diagnosed with AKI and 482,266 controls of European 
ancestry. We used summary statistics from the FinnGen 
Consortium (R9) (https://www.finngen.fi/en) for  e x t e r 
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Fig. 1 Flowchart of the study design. AKI, acute kidney injury; MR, Mendelian randomization; PWMR, proteome-wide MR analysis; TWMR, transcriptome-
wide MR analysis; GWAS, genome-wide association study; pQTL, protein quantitative trait loci; eQTL, expression quantitative trait loci; SMR, summary-
data-based mendelian randomization; PP.H4, posterior probability of H4; HEIDI, heterogeneity in dependent instruments; FDR, false discovery rate
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n a l replication in an independent sample cohort which 
included 2,383 individuals with AKI, and 212,841 con-
trols. Regarding transcript-level data, the publicly acces-
sible bulk RNA-seq data were obtained from Famulski KS 
et al. (28 AKI samples and 19 controls) [28], Eadon M et 
al. (39 AKI samples and nine controls) [29], Langley RJ et 
al. (53 AKI samples and 58 controls) [30], and the Geno-
type Tissue Expression V.8 dataset (GTEx,  h t t p s : / / g t e x p 
o r t a l . o r g /     ) . Human single-cell nuclear RNA-seq data for 
AKI were provided by Legouis D et al. (two AKI samples 
and three controls) [31]. Details are provided in Table S1.

Identification of druggable genes
We identified druggable genes using data from the Drug–
Gene Interaction Database (DGIdb, version 4.2.0,  h t t p s : / 
/ w w w . d g i d b . o r g /     ) . We downloaded the “Categories Data” 
released in February 2022, which includes all genes clas-
sified as druggable in the DGIdb and mapped to Entrez 
genes. Additionally, we referenced a list of druggable 
genes provided in the review by Finan et al. [22]. The list 
of druggable genes is shown in Table S2.

Plasma protein/expression quantitative trait loci (pQTL/
eQTL) data
Genetic instrumental variables for the proteome were 
reported by Ferkingstad et al. [32]. Their study repre-
sents the largest pQTL analysis to date, encompassing 
4,907 proteins studied in 35,559 individuals of Icelan-
dic descent. The analysis identified 18,084 associations 
between genetic variants and plasma protein levels. Sub-
sequently, pQTLs were extracted from the deCODE study 
using aria2c ( h t t p  : / /  a r i a  2 .  s o u r c e f o r g e . n e t /). Besides, to 
mitigate concerns of horizontal pleiotropy, instrumen-
tal variables were restricted to cis-pQTLs (SNPs located 
within a 1,000  kb window around the target gene) for 
each protein. To generate eQTL instruments, genetic 
variants located within 1,000 kb on either side of the cod-
ing sequence (in cis) that are robustly associated with 
gene expression were extracted using eQTLs summary 
statistics obtained from the eQTLGene Consortium [33]. 
Details of these studies are presented in Table S1.

Main analysis
Multi-omics MR analysis
The validity of MR rests on three key assumptions: (1) 
Instrumental variables must be associated with the expo-
sure; (2) Instrumental variables must not be associated 
with potential confounders; and (3) Instrumental vari-
ables affect the outcome solely through their influence 
on the exposure [34]. To meet the assumptions presented 
earlier, we first mapped single-nucleotide polymorphisms 
(SNPs) to human genome Build 37 (GRCh37) for unifying 
genomic coordinates, and then rigorously derived instru-
mental variables from druggable pQTL and eQTL data 

as follows: (1) SNPs associated with each exposure were 
chosen based on genome-wide significance (P < 5 × 10− 8). 
(2) Cis-acting SNPs (cis-QTLs) located within 1,000  kb 
of transcription start sites for proteins and genes were 
chosen. Compared with the trans instruments, the cis 
instruments were less likely to violate the horizontal 
pleiotropy assumption [35]. (3) SNPs within the human 
major histocompatibility complex (MHC) region (chr6: 
from 26 Mb to 34 Mb) were removed, as the linkage dis-
equilibrium (LD) patterns of SNPs in the MHC region 
are complex [35]. (4) Linkage disequilibrium analysis was 
conducted within a 10,000  kb window to remove SNPs 
with an r2 > 0.001. (5) Strength of each SNP as an instru-
ment was assessed using the F-statistic, calculated as 
mean β2/σ2, where β represents the effect size of SNP on 
the exposure (i.e., the allelic difference in exposure) and 
σ is the standard error of β. A high F-statistic (> 10) indi-
cates minimal risk of weak instrument bias, which is cru-
cial in MR studies [36]. Thus, only SNPs with F-statistics 
exceeding 10 were retained for further analysis. (6) SNPs 
with ambiguous palindromic structures were removed to 
avoid ambiguity.

We also looked up each instrumental variable and its 
proxies in the PhenoScanner GWAS database ( h t t p  : / /  p h e 
n  o s  c a n  n e r  . m e d  s c  h l . c a m . a c . u k) to assess any associations 
with potential confounders (education, smoking, drink-
ing, blood pressure, and socioeconomic status). SNPs 
associated with potential confounders were removed 
(P < 1 × 10⁻⁵). The remaining SNPs were used to perform 
MR analysis. The Wald ratio was used if only one genetic 
instrumental variable was available for a given protein 
or gene, and the inverse-variance weighted method was 
applied when two or more instrumental variables were 
available. Significance of MR analysis was determined 
using false discovery rate (FDR)-corrected (FDR = 0.05).

Sensitivity analysis and reverse MR
Sensitivity analysis was used to verify the robustness of 
the results. For proteins or genes with more than two 
instrumental variables, Cochran’s Q and I2 statistic were 
calculated to test for heterogeneity. A significant p-value 
(P < 0.05) indicates the presence of heterogeneity [37]. If 
heterogeneity was present, the random-effects model of 
the inverse-variance weighted method was used, oth-
erwise inverse-variance weighted method with fixed 
effects was applied. The presence of horizontal pleiot-
ropy was tested using MR-Egger regression when three 
or more instrumental variables were included [38], and 
cis-QTLs with a significant MR-Egger regression inter-
cept (P < 0.05) would be removed. Moreover, to evaluate 
the impact of LD pruning choices, we performed MR 
analyses using alternative pruning windows (500  kb). 
Steiger filtering and reverse MR were conducted to 
check whether the MR analysis estimates assessed 

https://gtexportal.org/
https://gtexportal.org/
https://www.dgidb.org/
https://www.dgidb.org/
http://aria2.sourceforge.net/
http://phenoscanner.medschl.cam.ac.uk
http://phenoscanner.medschl.cam.ac.uk
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the true causal direction [39]. SNPs with a Steiger test 
p-value < 0.05 and a reversed causal direction (i.e., R²_
outcome > R²_exposure) were removed. The significance 
threshold for reverse MR analysis was set at FDR = 0.05 to 
detect potential reverse causality. Both the “Two Sample 
MR” and “MR-PRESSO” packages in R software (version 
4.3.1) were used to estimate the MR and sensitivity find-
ings [39, 40].

Colocalization analysis
Colocalisation analysis was conducted to determine if 
the associations between specific protein abundance or 
gene expressions and AKI were attributable to the same 
causal genetic variant. Colocalisation uses computed 
approximation Bayes factors and summary association 
data; the five mutually exclusive hypotheses were tested, 
which were as follows: (1) no causal SNP was found for 
either AKI GWAS or QTL (H0); (2) only AKI GWAS 
had a causal SNP (H1); (3) only QTL had a causal SNP 
(H2); (4) AKI GWAS and QTL had a causal SNP; how-
ever, the two causal SNPs differed (H3); (5) AKI GWAS 
and QTL had a causal SNP and shared the same SNP 
(H4). For proteomic or transcriptomics traits where an 
instrumental variable was located within a cis region 
(+/- 1 Mb) of the gene target, colocalization analysis was 
conducted using coloc [41]. Based on empirical evidence 
from similar studies, prior probabilities (p1, p2 = 1 × 10− 4 
and p12 = 1 × 10− 5) were adopted [24, 25], and a posterior 
probability ≥ 0.80 was considered indicative of strong 
support for a specific model. Additionally, we conducted 
a sensitivity analysis by varying prior probabilities (p1, 
p2 = 1 × 10⁻³ and 1 × 10⁻⁵) to evaluate the robustness of 
our colocalization findings.

Replication analysis based on FinnGen consortium research
We replicated the primary MR analysis of druggable pro-
teins and genes on AKI based on different GWAS data 
sources using Summary-based Mendelian randomization 
(SMR) analysis. As an extension of the MR concept, Sum-
mary-based Mendelian randomization was developed to 
estimate the pleiotropic association between genetically 
determined traits (e.g., gene expression, DNA meth-
ylation, or protein abundance as exposure) and complex 
traits of interest (e.g., disease phenotype as outcome) 
[42]. Here, we performed SMR using the Linux version 
1.0.3 of SMR software in the command line using default 
options ( h t t p  s : /  / y a n  g l  a b .  w e s  t l a k  e .  e d u  . c n  / s o f  t w  a r e / s m r 
/). HEIDI test was performed, which incorporates signifi-
cant SNPs other than the top SNP in the cis-QTL region 
to test whether genetic associations were due to LD. 
Results with HEIDI P-value < 0.01 were considered due to 
linkage rather than functional association.

Follow-up analysis
Bulk transcriptomic validation and tissue-specific expression
To observe the actual expression of identified genes, 
we analyzed publicly available bulk RNA-seq data from 
Famulski KS et al. [28], which included 28 AKI renal tis-
sue samples and 19 normal renal tissue samples. After 
extracting the gene expression matrix and grouping 
information from the dataset, we normalized, annotated, 
and cleaned the data using the “limma” package [43]. To 
assess the overall expression differences of target genes 
between AKI and normal tissues, we extracted their 
expression levels from the processed expression matrix 
and compared the two groups using an unpaired Stu-
dent’s t-test. Multiple comparisons were adjusted using 
the Benjamini-Hochberg method. To validate our find-
ings, we performed replication analyses using an alter-
native approach (limma) and additional datasets (Eadon 
M et al. and Langley RJ et al.) [29, 30], respectively. In 
addition, we obtained bulk RNA-seq data representing 
53 different tissues from the Genotype-Tissue Expression 
(GTEx, https://gtexportal.org/) project, and visualised 
the expression levels of each gene in different tissues.

Single-cell nuclear transcriptomic validation and cell-type-
specific expression
We examined the cell-type-specific expression of the 
candidate genes using human AKI single-cell nuclear 
RNA-seq data profiled by Legouis D et al. [31]. The raw 
snRNA-seq data were first subjected to preprocessing 
and conversion using the “Seurat” package [44]. After fil-
tering low-quality data, including nuclei with fewer than 
150 nFeature_RNA detected or more than 4 times the 
absolute median of nFeature_RNA, we normalized the 
data using the “NormalizeData” function. Next, we used 
the “FindVariableFeatures” function to identify highly 
variable genes (HVGs) and the “RunPCA” function to 
perform principal component analysis (PCA) based on 
HVGs. The “Harmony” package was used to eliminate 
batch effects in expression data between different samples 
[45]. Subsequently, the “FindNeighbors” and “FindClus-
ters” functions were used to cluster the cells. To annotate 
the cell clusters with cell types, we referred to relevant lit-
erature and the CellMarker 2.0 ( h t t p  : / /  b i o -  b i  g d a  t a .  h r b m  u 
.  e d u . c n / C e l l M a r k e r) to obtain cell types and their  m a r k e 
r s for human kidney tissues. Using the “FindAllMarkers” 
function, we assessed whether these genes were enriched 
in specific cell types. Finally, we visualized the expression 
levels of these candidate genes, identified differentially 
expressed genes in 10 renal cell types in AKI and normal 
tissues using a pseudobulk aggregation approach. The 
genes with an average Log2 fold change (Log2FC) more 
than 1, a false discovery rate (FDR) less than 0.05 were 
identified as differentially expressed genes.

https://yanglab.westlake.edu.cn/software/smr/
https://yanglab.westlake.edu.cn/software/smr/
https://gtexportal.org/
http://bio-bigdata.hrbmu.edu.cn/CellMarker
http://bio-bigdata.hrbmu.edu.cn/CellMarker
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Mouse knock-out models for druggable genes
To investigate evidence that modification of the tar-
get produces a phenotype relevant to AKI, we queried 
the Mouse Genome Informatics (MGI,  h t t p  : / /  w w w .  i n  f 
o r  m a t  i c s .  j a  x . o r g /) database for candidate targets from 
our MR analysis, focusing on all systemic abnormalities 
associated with the knock-out (KO) mouse models. For 
abnormalities related to the renal/urinary system, we 
documented specific phenotypes in detail.

Drug repurposing assessment and molecular docking
Utilizing the DrugBank and ChEMBL databases [46, 47], 
we searched all targeted drugs associated with the candi-
date targets and systematically evaluated their potential 
for repurposing. By querying the Comparative Toxicoge-
nomics Database (CTD) for the effects of drug interven-
tions on protein levels and gene expression levels [48], 
we identified 56 additional potential drug candidates. 
To further validate the potential for drug repurposing 
and optimize the design of potential drug candidates, 
we conducted molecular docking to analyze the bind-
ing affinity and interaction patterns between drugs and 
their targets. The 3D structures of the target proteins 
were sourced from the Protein Data Bank  (   h t t p s : / / w w w . 
r c s b . o r g /     ) , while the 3D structures of the drug molecules 
were retrieved from the PubChem database ( h t t p  s : /  / p u 
b  c h  e m .  n c b  i . n l  m .  n i h . g o v /). Subsequently, we employed 
AutoDock4 for molecular docking and utilized PyMol2.5 
for visualization [49, 50].

Regarding molecular docking, the grid box was cen-
tered on the binding site of each target protein, with 
dimensions as follows: NCF1 (30.0 × 30.0 × 30.0 Å), 
TNFRSF1B (48.0 × 44.0 × 64.0 Å), APEH (40.0 × 56.0 × 44.0 
Å), ACADSB (42.0 × 40.0 × 50.0 Å), ADD1 
(42.0 × 36.0 × 48.0 Å), and FAM3B (30.0 × 25.0 × 32.0 Å). 
The grid spacing was set to 0.375 Å. The Lamarckian 
Genetic Algorithm (LGA) was used for docking, with a 
population size of 150, 2.5 × 106 energy evaluations, and 
27,000 generations. The number of runs was set to 50 to 
ensure thorough sampling of the conformational space. 
The scoring function used was the AutoDock4 force field, 
which includes van der Waals, electrostatic, and hydro-
gen bonding terms. Default weighting parameters were 
applied for all energy terms. To validate the reliability 
of our docking protocol, we calculated the root-mean-
square deviation (RMSD) between the predicted bind-
ing poses of drug candidates and their experimentally 
determined structures using PyMOL 2.5. The RMSD 
values less than 2 Å confirm the accuracy of our docking 
method.

Protein interaction and enrichment analysis with 
experimental drug targets
The ClinicalTrials.gov (https://clinicaltrials.gov/) was 
queried to identify approved or clinical-stage drugs cur-
rently promising for AKI. A protein-protein interaction 
network was constructed using the STRING database 
(https://cn.string-db.org/) and Cytoscape software to 
explore the possible connections between candidate tar-
gets and current clinical trial drug targets for AKI [51]. 
In addition, Gene Ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) enrichment analyses 
were performed to investigate the functional characteris-
tics and biological relevance of these targets.

Results
Multi-omics MR analysis identified 19 causal biomarkers 
for AKI
To elucidate the functional relationships between 
genome-wide cis-pQTLs/eQTLs and AKI, we employed 
two sample MR to assess the associations (Table S3, 
S4). Seven proteins (TNFRSF1B, ACADSB, FAM3B, 
LTF, TCN2, SLITRK6, and PNLIPRP2) and twelve genes 
(NCF1, APEH, ADD1, BRD9, ESR2, CDKN2C, EGFL8, 
ADC, LCN8, LPAR5, HSD17B3, and CD244) passed our 
significance threshold (FDR < 0.05) (Fig. 2). Specifically, a 
positive correlation between genetically predicted plasma 
protein levels and AKI risk was detected for seven of the 
plasma proteins or genes: LCN8 (Beta: 0.11, SE: 0.03, 
p = 8.94E-04), NCF1 (Beta: 0.17, SE: 0.05, p = 2.37E-03), 
ESR2 (Beta: 0.24, SE: 0.08, p = 3.03E-03), BRD9 (Beta: 
0.31, SE: 0.11, p = 3.55E-03), EGFL8 (Beta: 0.34, SE: 0.12, 
p = 3.95E-03), FAM3B (Beta: 0.17, SE: 0.04, p = 4.82E-05), 
and SLITRK6 (Beta: 0.25, SE: 0.08, p = 2.61E-03). The 
other 12 druggable proteins or genes showed a negative 
correlation with AKI risk: CD244 (Beta: -0.16, SE: 0.05, 
p = 2.73E-03), LPAR5 (Beta: -0.17, SE: 0.06, p = 5.18E-03), 
APEH (Beta: -0.24, SE: 0.06, p = 8.22E-05), ADD1 (Beta: 
-0.34, SE: 0.11, p = 1.89E-03), ADC (Beta: -0.42, SE: 0.13, 
p = 1.35E-03), HSD17B3 (Beta: -0.44, SE: 0.13, p = 7.19E-
04), CDKN2C (Beta: -0.47, SE: 0.15, p = 2.08E-03), TCN2 
(Beta: -0.07, SE: 0.02, p = 4.82E-03), PNLIPRP2 (Beta: 
-0.07, SE: 0.02, p = 7.04E-03), TNFRSF1B (Beta: -0.21, SE: 
0.08, p = 5.72E-03), LTF (Beta: -0.22, SE: 0.07, p = 2.01E-
03), and ACADSB (Beta: -0.52, SE: 0.18, p = 3.65E-03) 
(Table  1). Sensitivity analysis of MR estimates under 
500KB LD clumping windows are shown in Table S5, 
which further supports the robustness of our results.

Moreover, the Cochrane’s Q test and MR-Egger 
intercept test did not yield any significant findings of 
heterogeneity or pleiotropy among these proteins or 
genes (P > 0.05). In terms of reverse causation, no sig-
nificant effects of AKI on plasma protein abundance 
or gene expression levels were found (Table  1), which 
demonstrates the robustness of the identified targets. 

http://www.informatics.jax.org/
http://www.informatics.jax.org/
https://www.rcsb.org/
https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://clinicaltrials.gov/
https://cn.string-db.org/
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Subsequently, we conducted several analyses to further 
minimize confounding and biases. For the proteins or 
genes that passed MR test, we performed genetic colo-
calization analysis to ensure the biomarkers were unlikely 
to be confounded by linkage disequilibrium (Figure S1). 
To further verify the observed findings, we performed 
SMR for these proteins or genes with GWAS summary 
statistics from external cohorts. The effect of all proteins 
or genes are presented in Table 2.

Among them, three proteins (TNFRSF1B, ACADSB, 
and FAM3B) and three genes (NCF1, APEH, and ADD1) 
passed the SMR test (Fig.  3A, B). We further used the 

HEIDI approach to test against the null hypothesis that 
the association detected by the SMR test is due to pleiot-
ropy (P-HEIDI > 0.01). All the targets passed this evalu-
ation. Besides, we found TNFRSF1B, NCF1, and APEH 
show strong evidence of colocalization (PP.H4 > 0.8), 
regardless of whether the priori probabilities (p1, p2) was 
10− 3,10− 4, or 10− 5 (Fig. 3C-E, Table S6). None of the bio-
markers that colocalized were within 500 KB of a known 
AKI GWAS loci. By integrating the findings from the 
main analyses, we categorized the identified proteins or 
genes into three tiers based on the strength of evidence. 
Tier 1 targets passed all tests, including MR, SMR, HEIDI 

Fig. 2 Manhattan plots showing 19 causal biomarkers for AKI identified from PWMR and TWMR. (A) Manhattan plot showing the − log10(P.adj value) of 
association for each protein from the PWMR analysis plotted on the y-axis against genomic position on the x-axis. The dotted line corresponds to the sig-
nificance threshold (Benjamini-Hochberg correction, P.adj < 0.05). (B) Manhattan plot showing the − log10(P.adj value) of association for each gene from 
the TWMR analysis plotted on the y-axis against genomic position on the x-axis. The dotted line corresponds to the significance threshold (Benjamini-
Hochberg correction, P.adj < 0.05)
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test, and colocalization analysis. Tier 2 targets passed 
MR, SMR, and HEIDI test but not colocalization analy-
sis. Tier 3 targets only passed MR. Based on this classi-
fication, TNFRSF1B, NCF1, and APEH were assigned to 
tier 1, while ACADSB, FAM3B, and ADD1 were assigned 
to tier 2. The remaining 13 proteins or genes were classi-
fied as tier 3 targets.

Bulk transcriptomic validation and tissue-specific 
expression
Three significantly differentially expressed potential tar-
gets were identified in comparisons between AKI renal 
tissues and normal renal tissues: ACADSB (P.adj = 0.042), 
LTF (P.adj = 5.7E-04), and APEH (P.adj = 0.018). Addition-
ally, TNFRSF1B (P.adj = 0.063) and NCF1 (P.adj = 0.084) 
approached significance (Fig.  4A). Except for ACADSB, 
all these targets were significantly overexpressed in AKI 

renal tissues, indicating their potential involvement in 
the pathophysiological processes of AKI. Replication 
analyses using additional approach and datasets are pro-
vided in Figure S2, S3.

Subsequently, we utilized RNA-seq data from the 
GTEx to examine the expression of the aforementioned 
genes across various tissues. Most genes were consider-
ably expressed in multiple tissues, including the kidney, 
and the expression levels in the blood exhibited clear dif-
ferences. ACADSB expression was substantially lower in 
the blood compared to other tissues, whereas TNFRSF1B 
and NCF1 demonstrated the opposite trend (Fig. 4B). The 
expression levels of other targets are shown in Figure S4.

Table 1 Results of proteome-wide and transcriptome-wide MR, reverse MR and sensitivity analyses for acute kidney injury
Druggable Target Method Nsnp Beta Se P-value Pheterogeneity Ppleiotropy Preverse

Protein TNFRSF1B Inverse variance weighted 3 -0.21 0.08 5.72E-03 0.77 0.65 0.13
ACADSB Inverse variance weighted 2 -0.52 0.18 3.65E-03 0.40 0.35
LTF Inverse variance weighted 3 -0.22 0.07 2.01E-03 0.79 0.66
SLITRK6 Inverse variance weighted 4 0.25 0.08 2.61E-03 0.48 0.51 0.52
TCN2 Inverse variance weighted 9 -0.07 0.02 4.82E-03 0.44 0.24 0.47
FAM3B Inverse variance weighted 4 0.17 0.04 4.82E-05 0.73 0.51 0.95
PNLIPRP2 Inverse variance weighted 8 -0.07 0.02 7.04E-03 0.87 0.23 0.49

Gene APEH Inverse variance weighted 4 -0.24 0.06 8.22E-05 0.99 0.91
HSD17B3 Inverse variance weighted 2 -0.44 0.13 7.19E-04 0.34
LCN8 Inverse variance weighted 3 0.11 0.03 8.94E-04 0.63 0.64
ADC Inverse variance weighted 3 -0.42 0.13 1.35E-03 0.43 0.42
ADD1 Inverse variance weighted 3 -0.34 0.11 1.89E-03 0.53 0.63
CDKN2C Inverse variance weighted 2 -0.47 0.15 2.08E-03 0.92
NCF1 Inverse variance weighted 2 0.17 0.05 2.37E-03 0.60
CD244 Inverse variance weighted 6 -0.16 0.05 2.73E-03 0.93 0.77
ESR2 Inverse variance weighted 3 0.24 0.08 3.03E-03 0.66 0.53
BRD9 Inverse variance weighted 2 0.31 0.11 3.55E-03 0.62
EGFL8 Inverse variance weighted 2 0.34 0.12 3.95E-03 0.39
LPAR5 Inverse variance weighted 5 -0.17 0.06 5.18E-03 0.38 0.19

Table 2 SMR results related to causal proteins and genes based on external cohort
Druggable Target Top snp Beta Se P-value PHEIDI PPH4 Tier
Protein TNFRSF1B rs2301258 -0.31 0.14 1.09E-02 0.04 0.82 1

ACADSB rs7913063 -0.15 0.05 4.70E-03 0.16 0.09 2
FAM3B rs60265870 0.10 0.03 2.60E-03 0.92 0.04 2
SLITRK6 rs9547179 -0.02 0.01 8.58E-02 0.40 0.22 3
TCN2 rs4820885 0.00 0.00 6.70E-02 0.91 0.14 3
PNLIPRP2 rs7910135 0.00 0.00 9.72E-01 0.84 0.09 3

Gene NCF1 rs3846966 0.05 0.02 1.61E-02 0.37 0.86 1
APEH rs1131095 -0.03 0.01 2.01E-02 0.32 0.93 1
ADD1 rs17833172 -0.01 0.00 3.10E-03 0.27 0.01 2
LCN8 rs2282259 0.00 0.03 9.19E-01 0.87 0.04 3
BRD9 rs28567708 0.06 0.12 5.95E-01 1.00 0.08 3
CD244 rs1412849 -0.06 0.03 2.95E-02 0.16 0.07 3
LPAR5 rs73264831 0.02 0.04 6.25E-01 0.70 0.15 3
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Fig. 3 SMR analysis and colocalisation evidence on the associations between PWMR-identified or TWMR-identified targets and the risk of AKI. (A) Forest 
plot shows the OR and P.adj value from proteome-wide SMR in the replication stage. (B) Forest plot shows the OR and P.adj value from transcriptome-
wide SMR in the replication stage. (C) The colocalization result of TNFRSF1B. (D) The colocalization result of NCF1. (E) The colocalization result of APEH
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Single-cell nuclear transcriptomic validation and cell-type-
specific expression
We obtained 20,538 high-quality nuclei and classified 
them into ten distinct cell types: endothelial cells (Endo), 
podocytes (Podo), proximal tubular cells (PT), loop of 
Henle cells (LOH), distal convoluted tubular cells (DCT), 
collecting duct-principal cells (CD-PC), collecting duct-
intercalated cells (CD-IC), renal progenitor cells (RPC), 
stromal cells, and immune cells (Fig. 5A, B). Among the 
druggable genes identified, expression data were avail-
able for 16 genes, while ADC, SLITRK6, and PNLIPRP2 

were not detected. Figure 5C displays the gene expression 
levels across each cell type in both AKI and normal tis-
sues. In Fig. 6A and B, larger bubbles and darker colors 
represent higher expression levels of the corresponding 
targets on the same scale. To rigorously assess differen-
tial expression, we employed a pseudobulk aggregation 
approach, where cells within each sample were aggre-
gated to create ‘pseudobulk’ profiles, followed by differ-
ential expression analysis using DESeq2. This analysis 
revealed that LTF was significantly up-regulated in spe-
cific cell types in AKI tissues compared to normal tissues 

Fig. 4 Tissue-specific expression of identified targets. (A) Comparison of differences in relative expression of identified targets in AKI renal tissues and nor-
mal renal tissues in the GSE30718 dataset (Student’s unpaired t-test, P.adj < 0.05). (B) Expression levels of identified targets in different tissues from the GETx
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Fig. 5 Cell types contained in AKI renal tissue. (A) TSNE plot depicting ten distinct cell types identified in AKI and normal renal tissues. (B) Bubble chart 
showing average expression of known markers in indicated cell clusters. The dot size represents percent of cells expressing the genes in each cluster. (C) 
TSNE plots illustrating the expression levels of 16 identified targets
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Fig. 6 Celltype-specific expression of identified targets in renal tissue. (A, B) Bubble chart illustrating the average expression levels of 16 identified targets 
in AKI tissues (A) and normal tissues (B). The dot size indicates the percentage of cells expressing the genes in each cluster. (C, D) Under the criteria of 
average Log2FC > 0.5, FDR < 0.05, and pct. > 10%, three identified targets showed evidence of cell-type-specific enrichment in AKI renal tissues (C), while 
four targets exhibited enrichment in normal tissues (D). (E, F) Immune cells are divided into three cell types. (G, H, I) Comparison of TNFRSF1B expression 
levels in the three cell types
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(P.adj < 0.05 and|log2FC| > 1), including CD-PC, DCT, 
Endo, LOH, and PT, suggesting a potential key role for 
LTF in the pathogenesis of AKI (Figure S5).

Furthermore, several genes exhibited cell type specific-
ity. In AKI tissues, three druggable genes had cell-type-
specific enrichment at average log2(FC) > 0.5, FDR < 0.05, 
and pct. > 10% level: FAM3B was enriched in CD-PC; 
LTF and BRD9 were enriched in PT (Fig.  6C). In nor-
mal tissues, four druggable genes had cell-type-specific 
enrichment at the same level: FAM3B was enriched in 
CD-PC and CD-IC; TNFRSF1B was enriched in immune 
cells and Endo; ADD1 was enriched in Endo; ESR2 was 
enriched in RPC and PT (Fig.  6D). We further classi-
fied the immune cells and observed that TNFRSF1B was 
significantly more highly expressed in monocytes and T 
cells compared with B cells (Fig. 6E-I).

Mouse knock-out models for druggable genes
Models involving NCF1, BRD9, ESR2, CDKN2C, and 
HSD17B3 displayed phenotypes such as kidney cysts, 
renal carcinoma, cortical renal glomerulopathy, abnor-
mal kidney morphology, and abnormal urinary bladder 
morphology, suggesting an intrinsic role in the regulation 
of renal function (Table S7).

Drug repurposing and molecular docking
Searching DrugBank and ChEMBL databases, these 
druggable genes or proteins were identified as targets for 
91 unique drugs that have been approved or are under 
investigation. Of these, spironolactone (targeting ESR2) 
is in Phase III clinical trials for the prevention of AKI, 
and arginine (targeting ADC) has been approved for the 
prevention of kidney injury. Other drugs are approved for 
the prevention or treatment of tumours, nutritional defi-
ciencies, psychiatric disorders, menopause, and various 
other conditions. Detailed information on these drugs is 
summarized in Table S8.

To discover more promising drugs, we can use MR 
results to infer the type of pharmacological action needed 
to treat AKI and compare it to the action type of existing 
drugs. We prioritized the targets of tier 1 and tier 2 as the 
potential drug targets, and selected FDA-approved drug 
with a corresponding effect in the same direction as the 
SMR findings. Through this process, we observed two 
drug-target relationship matches: Dextromethorphan-
NCF1 and Tasonermin-TNFRSF1B. We also broadened 
the scope of potential drugs by querying CTD for the 
impact of pharmacological interventions on protein lev-
els and gene expression levels. The promising drug-target 
relationships were shown in Table 3.

To determine the binding affinity between these 
small-molecule drugs and potential targets, we con-
ducted molecular docking. To better contextualize bind-
ing affinities, we docked a clinically relevant AKI drug 

(Theophylline) as a positive control (Figure S6) [52]. 
All the valid docking results are presented in Fig.  7, 
among which, telmisartan-NCF1 (-9.72  kcal/mol), cal-
citriol-ACADSB (-8.15  kcal/mol), and ethinyl estradiol-
ACADSB (-8.87  kcal/mol) exhibited the lowest total 
binding free energies, indicating extremely stable interac-
tions. Notably, ethinyl estradiol, acetaminophen, valproic 
acid, and propylthiouracil simultaneously target two 
or more significant AKI targets, with ethinyl estradiol 
exhibiting a high binding affinity for nearly all significant 
targets (Table 3). To validate the reliability of our docking 
protocol, we calculated the root-mean-square deviation 
(RMSD) between the predicted binding poses of known 
inhibitors and their experimentally determined struc-
tures using PyMOL 2.5. The RMSD values were less than 
2 Å, confirming the accuracy of our docking approach.

Protein interaction and enrichment analysis with 
experimental drug targets
Through ClinicalTrials.gov, we identified 47 promising 
drugs undergoing AKI clinical trials corresponding to 92 
unique targets (Table S9). Utilizing the STRING database 
and Cytoscape software, we constructed a PPI network 
comprising 19 candidate targets and 92 experimental 
drug targets for AKI (Fig. 8A, B). NCF1 and ESR2 dem-
onstrated strong interactions with the targets of existing 
drugs (Fig. 8C). We then conducted Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses based on these targets, with the 
top enriched biological pathways presented in Fig.  8D, 
E. Furthermore, several candidate targets (e.g., NCF1, 
TNFRSF1B, and ADD1) were significantly enriched with 
existing targets in pathways such as positive regulation 
of the MAPK cascade, regulation of muscle system pro-
cesses, endothelium development, regulation of inflam-
matory response, and cellular response to inorganic 
substances (Table S10).

Discussion
Developing novel drugs for AKI poses significant chal-
lenges due to its complex pathophysiological mecha-
nisms. Based on druggable pQTLs and eQTLs, we 
identified 19 causal biomarkers (seven proteins and 
twelve genes) for AKI. These proteins and genes were 
classified into three tiers based on MR, SMR and colo-
calization evidence. We further verified whether these 
biomarkers have any tissue-specific or cell-type-specific 
expression. Subsequently, we assessed the potential for 
drug-repurposing and conducted molecular docking. 
Some promising drugs were proposed, which need to be 
further investigated. Finally, a PPI network and enrich-
ment analyses were conducted to investigate the inter-
actions of the identified targets with existing targets and 
their biological significance.
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Target Drug Name Druggability Action Type binding energy (kcal/mol) RMSD (Å) Tier
TNFRSF1B Theophylline Approved Background -3.92 0.001 1

Estradiol Approved increased expression -5.61 0.319
Ethinyl Estradiol Approved increased expression -5.28 0.350
Fenretinide Approved increased expression -5.10 1.509
Acetaminophen Approved increased expression -3.09 1.070
Valproic Acid Approved increased expression -3.10 1.577
Ketoconazole Approved increased expression -2.82 1.224
Decitabine Approved increased expression -3.33 0.479
Hydroquinone Approved increased expression -2.81 3.242
Menthol Approved increased expression -3.54 1.779
Mitotane Approved increased expression -4.07 0.492
Mycophenolic Acid Approved increased expression -2.03 0.855
Obeticholic Acid Approved increased expression -3.56 1.297
Pioglitazone Approved increased expression -3.19 1.358
Propylthiouracil Approved increased expression -3.01 0.825
Streptozocin Approved increased expression -1.64 2.009
Zoledronic Acid Approved increased expression -0.51 2.791

NCF1 Theophylline Approved Background -4.06 0.000 1
Dextromethorphan Approved Inhibitor -6.09 0.000
Telmisartan Approved decreased expression -9.72 0.153
Aspirin Approved decreased expression -6.46 1.533
Benazepril Approved decreased expression -6.25 3.799
Eplerenone Approved decreased expression -6.89 0.000
Ethinyl Estradiol Approved decreased expression -6.38 0.464
Niacin Approved decreased expression -5.67 0.000
Pitavastatin Approved decreased expression -6.02 0.884
Trandolapril Approved decreased expression -4.46 1.689
Miconazole Approved decreased expression -4.89 1.006
Metformin Approved decreased expression -4.14 0.773

APEH Theophylline Approved Background -3.77 0.000 1
Ethinyl Estradiol Approved increased expression -6.90 0.441
Methimazole Approved increased expression -2.96 2.176
Propylthiouracil Approved increased expression -4.15 0.780
Sulfadimethoxine Approved increased expression -4.74 0.693

ACADSB Theophylline Approved Background -4.41 0.000 2
Acetaminophen Approved increased expression -5.04 1.039
Belinostat Approved increased expression -7.68 1.548
Calcitriol Approved increased expression -8.15 0.289
Ethinyl Estradiol Approved increased expression -8.87 0.000
Rosiglitazone Approved increased expression -7.25 1.822
Tetracycline Approved increased expression -7.16 0.000
Topiramate Approved increased expression -6.64 0.671
Zidovudine Approved increased expression -5.58 0.436
Valproic Acid Approved increased expression -3.85 1.497
Lamivudine Approved increased expression -4.95 1.326

FAM3B Theophylline Approved Background -3.68 0.001 2
Acetaminophen Approved decreased expression -3.44 1.004
Azathioprine Approved decreased expression -3.14 1.232
Urethane Approved decreased expression -2.56 0.477

ADD1 Theophylline Approved Background -3.77 0.000 2
Finasteride Approved increased expression -5.20 1.683
Testosterone Approved increased expression -5.01 3.131
Ethinyl Estradiol Approved increased expression -5.28 0.472

Table 3 Molecular Docking results for potential drugs
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NCF1, a regulatory subunit essential for activating 
latent NADPH oxidase, primarily NOX2, in the kidney 
to mediate the production of reactive oxygen species 
(ROS) [53]. Upregulation of NOX2 abundance and NCF1 
expression is observed in various animal models of AKI 
and is accompanied by tissue damage due to excess ROS 
production and oxidative stress [54, 55]. Deletion of the 
NCF1 gene effectively reduced ROS levels and attenuated 
oxidative stress in kidney-injured mice, significantly ame-
liorating adverse outcomes such as albuminuria and renal 
fibrosis, and reducing the risk of AKI [56, 57]. The AKI-
promoting effect of NCF1 was supported by the top tier 
of evidence in our study. Along with another tier 1 target, 
TNFRSF1B, involved in the regulation of inflammatory 
response pathway, a key component in the pathogenesis 
of AKI [12]. Furthermore, NCF1 exhibited robust inter-
actions with experimental AKI drug targets in the PPI 
network, suggesting that it could be a promising thera-
peutic target.

APEH and TNFRSF1B are two other tier 1 targets. 
APEH, a serine peptidase belonging to the prolyl oligo-
peptidase family, plays a crucial role in protein metabo-
lism by catalyzing the hydrolysis of N-acetylated peptides 
and proteins [58]. Emerging evidence suggests that it 
may play a protective role in mitigating oxidative stress. 
APEH can degrade oxidatively damaged proteins [59, 60], 
and reduced APEH activity has been detected in diseases 
associated with inflammation, oxidative stress, lipid per-
oxidation, and oxidative damage, such as type 2 diabetes 
and Alzheimer’s disease [61, 62]. Aberrant expression of 
APEH has also been observed in AKI, and in the present 
study, lower expression levels of APEH were associated 
with an increased risk of AKI. TNFRSF1B, also known as 
TNFR2, is a member of the tumor necrosis factor (TNF) 
receptor superfamily. TNFRSF1B is primarily expressed 
in endothelial cells and immune cells, where it plays a role 
in cell survival [63]. Studies have shown that the interac-
tion between TNFα and TNFRSF1B inhibits ischemia-
reperfusion injury [64], a significant risk factor for AKI 
[65]. Additionally, TNFRSF1B mediates the activating 
effect of TNFα on regulatory T (Treg) cells [66], which 
helps reduce the risk of ischemic AKI and aids in injury 
repair [67, 68]. Notably, up-regulation of the expression 

level of TNFRSF1B was observed in AKI tissues, which 
may be a sign that TNFRSF1B achieves its protective 
effect against AKI by suppressing excessive immune 
response or inhibiting inflammatory response [69].

The remaining druggable genes could provide further 
insights into the discovery of drug targets. ACADSB func-
tions to catalyze the initial step in each cycle of fatty acid 
(FA) β-oxidation in mitochondria [70]. As the primary 
site of injury in AKI, the proximal tubule has high energy 
demand, and FA β-oxidation is its most efficient mecha-
nism for producing ATP [71]. A decrease in ACADSB 
expression level can lead to impaired FA β-oxidation and 
a reduction in ATP production [72]. Furthermore, the 
reduction of FA β-oxidation can cause intrarenal lipid 
accumulation, inducing lipotoxicity and impairing renal 
function [73], which is associated with AKI in numerous 
animal experimental [74, 75]. Studies have shown that 
ADD1 polymorphisms were associated with decreased 
renal plasma flow [76], decreased glomerular filtration 
rate [76], increased urinary protein [77], and poor prog-
nosis in IgA nephropathy [78]. In addition, ADD1 phos-
phorylation is increased in cisplatin-induced apoptosis 
of renal proximal tubular epithelial cells [79]. FAM3B 
is considered a promising therapeutic target for non-
alcoholic fatty liver disease and type 2 diabetes mellitus 
[80]. However, the role of FAM3B in the kidney is poorly 
studied. In our study, FAM3B was found to be enriched 
in CD-PC, with higher protein levels correlating with 
an increased risk of developing AKI. It has been shown 
that knockdown of ESR2 inhibits ketone body produc-
tion and exacerbate ischemic AKI [81]. Frehmaglutinin D 
and rehmaionoside C can ameliorate LPS-induced acute 
kidney injury in vivo and in vitro via the ESR2-mediated 
TLR4 pathway [82]. LTF may exert nephroprotective 
effects in glycerol-induced AKI or chromium-induced 
AKI via anti-inflammatory and antioxidant pathways [83, 
84]. In addition, a multi-ancestry proteome-wide MR 
study implicates that higher genetically predicted con-
centration of TCN2 was associated with a higher esti-
mated glomerular filtration rate [85]. Predictive models 
using CD244 as one of the frameworks have been used 
to predict the risk of AKI after cardiac surgery [86]. In 

Target Drug Name Druggability Action Type binding energy (kcal/mol) RMSD (Å) Tier
Coumarin Approved increased expression -4.29 0.375
Acetaminophen Approved increased expression -3.77 0.982
Tretinoin Approved increased expression -4.25 0.997
Flutamide Approved increased expression -3.44 1.496
Methotrexate Approved increased expression -1.93 1.865
Nefazodone Approved increased expression -2.54 2.303
Nimesulide Approved increased expression -3.46 1.705
Sulindac Approved increased expression -4.15 1.068

Table 3 (continued) 
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Fig. 7 Molecular docking results for potential drugs. Drug docking results that exhibit high binding affinity to candidate targets (binding energy <-5 kcal/mol)
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Fig. 8 (See legend on next page.)

 



Page 18 of 22Liu et al. Biology Direct           (2025) 20:38 

conclusion, multiple previous studies support the drug 
targets identified in our study.

Regarding drug-repurposing, we prioritized tier 1 and 
tier 2 targets for evaluation. We incorporated approved 
drugs corresponding to these targets, thereby ensuring a 
robust safety profile. The high binding activity of molecu-
lar docking indicates the great potential of these targets. 
Indeed, numerous drugs identified through molecular 
docking have shown protective effects in various types 
of AKI, including telmisartan [87], aspirin [88], benad-
ryl [89], eplerenone [90], pitavastatin [91], estradiol [92], 
acetaminophen [93], calcitriol [94], rosiglitazone [95], 
and testosterone [96]. Some drugs that act on multiple 
targets or pathways simultaneously may perform better 
in the treatment of AKI. Some tier 3 targets, although 
not supported by SMR and colocalization for various rea-
sons, still deserve attention. For example, the drug target-
ing ESR2, spironolactone, is in Phase III trials for AKI. 
Additionally, we further constructed a PPI network and a 
“candidate target-experimental drug target-experimental 
drug” association network containing the 19 candidate 
targets of this study and the 92 experimental drug tar-
gets. Since candidate targets do not act independently 
but rather in combination with a complex network of 
interrelated pathways that determine disease progres-
sion [97], when the candidate targets in this study is not 
available, other proteins in the shared pathway may also 
provide therapeutic options. Moreover, interlinking the 
novel targets identified in this study with known targets 
may also provide new insights for combination therapy 
involving multiple targets.

Notably, in this study, we augmented the confidence 
of our identified druggable targets with several sensitiv-
ity analyses. In our colocalization analysis, we applied 
prior probabilities (p1, p2 = 1 × 10⁻⁴), which are com-
monly used in similar studies and are the default settings 
in the coloc R package [24, 25, 98]. To assess the robust-
ness of our findings, we performed a sensitivity analysis 
by varying the prior probabilities (p1, p2) across a range 
of values (1 × 10⁻³ to 1 × 10⁻5). As summarized in Table 
S5, we observed that the posterior probability for colo-
calization (PP4) remained stable regardless of the prior 
settings, indicating that our findings are largely driven by 
the observed association signals rather than the choice of 
prior probabilities. This result is consistent with previous 
studies [99], where strong signal overlap renders varia-
tions in prior probabilities negligible in colocalization 

analyses. These findings further support the robustness 
of our colocalization results and confirm that the identi-
fied colocalized loci are unlikely to be artifacts of prior 
selection.

For Mendelian randomization, we applied a 1,000  kb 
cis-window to select instrumental variables, which is a 
commonly used threshold in pQTL/eQTL-based MR 
analyses [25, 98, 100]. This window size ensures the 
inclusion of potentially regulatory genetic variants that 
may affect gene expression or protein levels within cis-
regulatory regions while balancing the risk of linkage 
disequilibrium (LD) contamination. Some studies have 
used stricter thresholds (e.g., 500 kb or 250 kb) to mini-
mize the inclusion of variants that may be in LD with 
but not causally related to the exposure gene [101, 102]. 
However, evidence suggests that regulatory elements 
and enhancer-promoter interactions may extend beyond 
500 kb in some contexts, particularly for genes with com-
plex regulatory landscapes [103]. Thus, overly restrictive 
cis-windows could lead to the exclusion of valid instru-
ments, potentially limiting statistical power.

To ensure independence among instrumental variables, 
we applied an LD pruning window of 10 Mb, which aligns 
with the default setting in PLINK, a widely used tool for 
LD-based SNP clumping [104–106]. This threshold is fre-
quently used in GWAS and MR studies to remove SNPs 
in high LD while preserving the most strongly associated 
independent variants. Although some MR studies have 
employed smaller pruning windows (250  kb − 1,000  kb) 
to minimize LD confounding, overly restrictive thresh-
olds may result in the exclusion of valid weak instru-
ments, reducing statistical power [107]. To assess the 
impact of LD pruning choices, we performed sensitivity 
analyses using alternative pruning windows (500 kb) and 
compared MR estimates across different settings. The 
results demonstrated that 83.3% of eQTL targets and 
85.7% of pQTL targets remained statistically significant, 
with effect directions fully consistent with our original 
findings (Table S6). These results confirm that our instru-
ment selection approach is robust to variations in LD 
pruning settings and that LD-related confounding does 
not significantly impact our core conclusions.

To our knowledge, this is the first MR study on QTLs 
and AKI outcomes, with several strengths as outlined 
below. First, we integrated druggable eQTLs and pQTLs 
with the largest AKI GWAS to perform systematic pro-
teome-wide and transcriptome-wide analysis. Second, 

(See figure on previous page.)
Fig. 8 Target-drug-target association networks and enrichment analysis. (A) Protein-protein interaction network of 19 candidate targets and 92 ex-
perimental AKI drug targets using the STRING database. (B) PPI network mapped using Cytoscape software. Small circles represent candidate targets 
identified in this study, medium circles denote experimental AKI drug targets associated with the candidate targets, and large circles indicate drug targets 
without such associations. Edges represent protein-protein interactions retrieved from the STRING database (confidence score > 0.7). The size of each 
node corresponds to its degree of connectivity, with larger nodes indicating more interactions. (C) Association between candidate targets and experi-
mental AKI drug targets. Using the Sankey diagram, we mapped a “candidate target-experimental drug target-experimental drug” network. (D, E) GO and 
KEGG enrichment analysis (only the most significant pathways are shown)
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by integrating evidence of colocalization, transcript-level 
validation, protein interactions, and pathway enrich-
ment, insights into the potential roles of these proteins 
and genes were obtained from various perspectives. 
Third, we identified some approved drugs with repur-
posing potential that have already passed fundamental 
stages of drug discovery, development, and clinical tri-
als, offering significant time and cost advantages over 
novel drug-development. Some limitations should also 
be noted. First, the limited number of pQTLs and eQTLs 
meant that many proteins or genes were excluded from 
the analysis, restricting the identification of additional 
candidate targets and validation of those identified. Sec-
ond, although database queries and molecular docking 
offer suggestive evidence for identifying potential drugs, 
they cannot ensure the effectiveness of these candidates 
in clinical settings. Third, due to the lack of relevant bio-
logical data, this study did not conduct an analysis of 
the various AKI subtypes. Last, our study used the Fer-
kingstad et al. pQTL dataset, which is derived exclusively 
from an Icelandic population. Its generalizability to other 
populations may be limited due to differences in allele 
frequencies, LD structures, and genetic diversity. These 
population-specific characteristics could introduce bias 
in the selection of instrumental variables and the inter-
pretation of colocalization results, potentially affecting 
the robustness of our findings. To address this limitation, 
future studies should aim to replicate our analyses in 
more genetically diverse populations, which would help 
assess the applicability of our conclusions across different 
genetic backgrounds and enhance the generalizability of 
the results.

Conclusions
In conclusion, our systematic proteome-wide and tran-
scriptome-wide analyses identified seven proteins and 
twelve genes as potential therapeutic targets for AKI. Fol-
low-up analyses also proposed several promising drugs 
for further investigation. Future research should focus 
on larger studies across diverse AKI subtypes and popu-
lations with different genetic backgrounds, as well as in-
depth mechanistic studies to validate our findings and 
elucidate the underlying biological pathways.
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