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Abstract 

Background The “psychedelic renaissance” is sparking growing interest in clinical research, along with a rise in clinical 
trials. Substances such as 3,4-methylenedioxymethamphetamine (MDMA), psilocybin and N,N-dimethyltryptamine 
(DMT) are involved. The focus of this paper is on indolethylamine N-methyltransferase (INMT), a crucial enzyme 
in the biosynthesis of key compounds, including DMT, which meets science, medicine and spirituality. The presence 
of DMT in animals and plants raises many questions about its biological role. Meanwhile, the distribution of INMT 
in various organs and its involvement in diseases like cancer and mental disorders also fuel investigations worldwide. 
However, INMT remains largely unexplored, particularly its enzymatic mechanism and structural properties, leaving 
a significant gap in potential applications.

Results This study examines for the first time the catalytic activity of the human INMT (hINMT) using a simple fluoro-
metric steady-state assay employing the substrate quinoline. The findings are supported by thermal shift and docking 
analyses, providing valuable information about optimal chemical conditions and potential binding sites for substrates. 
The thermal shift assays indicate that recombinant hINMT is unstable and requires acidic or near-neutral pH and low 
salt levels. These experiments also allow for the estimation of dissociation constants for its natural coenzymes SAM 
and SAH, helping to determine the appropriate setup for the fluorometric assays and calculate kinetic constants, 
which are comparable to other methyltransferases. The docking indicates that quinoline occupies the same site 
as the natural substrate tryptamine, further validating the fluorometric approach.

Conclusions The paper provides a foundation for thoroughly studying hINMT under consistent conditions, which 
is crucial for obtaining reliable kinetic data and maintaining molecular stability for future structural analysis. This rep-
resents a valid alternative over previous endpoint radioactive-based and chromatography-mass spectrometry assays, 
which can provide only apparent steady-state parameters. Given the polymorphisms observed in hINMT and their 
potential association with psychiatric disorders, e.g., schizophrenia, and cancer, this strategy could serve as an invalu-
able tool for understanding the structure–function relationship of enzyme mutants and their role in diseases. 
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Background
Methylases or methyltransferases (MTs), the enzymes 
responsible for the addition of methyl groups  (CH3) to 
various substrates, play pivotal roles in biological pro-
cesses ranging from gene expression regulation to cel-
lular signaling. These enzymes catalyze the transfer of 
methyl groups from S-adenosylmethionine (SAM) to 
specific targets, including DNA, RNA, proteins, and 
small molecules [57].

Among the others, indolethylamine N-methyl-
transferase (INMT, EC 2.1.1.49) is a crucial enzyme 
involved in the biosynthesis of various neuroactive 
molecules within the human body. INMT belongs to 
class I MTs and catalyzes the methylation of indolethyl-
amine compounds, tryptamine and structurally related 
substances such as serotonin, to produce N-methyl-
tryptamine (NMT), N,N-dimethyltryptamine (DMT), 
and N-methylserotonin (NMS) [56]. It is shown that the 
enzyme also possesses Selenium- and Tellurium-meth-
yltransferase activity [26, 39, 68, 64].

DMT, a naturally occurring psychedelic in mammals, 
is biosynthesized via aromatic-L-amino acid decar-
boxylase (AADC) and INMT enzymes [20]. Belonging 
to the tryptamine family, DMT occurs also in various 
plant species, including Psychotria viridis, essential 
component of ayahuasca, a traditional entheogenic 
brew [8]. Research explores its effects on consciousness 
and potential therapeutic uses for depression, anxiety, 
and addiction [10]. As our understanding grows, DMT 
provides insight into the interplay of chemistry, con-
sciousness, and spirituality.

Several hypotheses have emerged regarding the phys-
iological role of endogenous DMT, such as its func-
tion as an immunomodulator or involvement in altered 
states of consciousness similar to schizophrenia [50], 
although a clear relationship between DMT and altered 
states of consciousness has not yet been established 
[9, 31], primarily due to the challenges in fully charac-
terizing the enzymatic properties of INMT. However, 
it is possible to link alterations in specific genes with 
behavioral phenotypes. For instance, single nucleo-
tide polymorphisms (SNPs) in INMT could influence 
the synthesis and thus the endogenous levels of DMT, 
generating altered states in the individual [21]. Further-
more, emerging evidence suggests that INMT may have 
broader implications beyond its role in neurotrans-
mitter metabolism, with potential links to psychiatric 

disorders, neurodegenerative diseases, and even cellu-
lar regulation processes [47, 61].

Interest in INMT in psychiatry has grown in part due 
to its connection with the serotonin signaling path-
way and specific receptors such as the sigma-1 receptor, 
which have been implicated in a variety of psychiatric 
disorders [47]. Further insights into the potential periph-
eral roles of INMT/DMT in mammalian systems, involv-
ing yet the sigma-1 receptor, are reported, especially in 
tissue protection, regeneration and immunity [24]. The 
colocalization of INMT with the sigma-1 receptor in 
primate spinal motor neurons suggests that it could be a 
target for treating schizophrenia and amyotrophic lateral 
sclerosis [31].

INMT exhibits widespread expression throughout the 
body, with high levels observed in lungs, thyroid, and 
adrenal gland. Intermediate levels are found in the pla-
centa, skeletal muscle, heart, small intestine, stomach, 
pancreas, and lymph nodes. Moreover, INMT is densely 
localized at the anterior horn of the spinal cord [48, 65]. 
There is evidence that DMT is produced in the rat brain, 
with concentrations comparable to those of other mono-
amine neurotransmitters [20]. Additionally, the presence 
of INMT mRNA in various human brain regions, includ-
ing the cerebral cortex, choroid plexus, and pineal gland 
is reported [20]. However, the exact function of INMT in 
biological systems remains uncertain at present. Never-
theless, numerous observations suggest the multifaceted 
significance of the INMT gene. For instance, researchers 
have revealed a decrease in the expression of the INMT 
gene in prostate cancer [40], lung cancer [38] and hepa-
tocarcinoma [43], suggesting a potential role of INMT in 
inhibiting tumor progression.

To date, the activity of the human INMT (hINMT) has 
been described solely through radiometric assay with 
radiolabeled S-adenosylmethionine (SAM) to quantify 
the transfer of the methyl group from SAM to indole in 
the mono- and dimethylated products [68]. Alternatively, 
a chromatography-mass spectrometry approach has been 
employed to investigate the hINMT-catalyzed methyla-
tion of Tellurium compounds [64]. Therefore, no direct 
and continuous assays of this methyltransferase activ-
ity have been reported that can provide information on 
kinetic parameters and other biochemical characteristics 
of hINMT. Moreover, the existence of a single structure 
of hINMT in complex with S-adenosylhomocysteine 
(SAH), released over 20  years ago (PDB entry 2A14, 

Furthermore, these findings for the first time provide insights into the interaction modalities of hINMT with its sub-
strates and lay the groundwork for inhibition experiments aimed at practical applications.

Keywords Psychedelic, Indolethylamine N-methyltransferase assay, Quinoline, S-adenosylmethionine



Page 3 of 18Ardini et al. Biology Direct           (2025) 20:50  

unpublished), highlights the significant gap in our under-
standing of this crucial yet underappreciated enzyme. 
Thus, unveiling the biochemical mechanisms and regu-
latory pathways of INMT, would offer valuable insights 
into the intricate interplay between neurotransmitter sys-
tems and brain function, with implications for both basic 
neurobiology and therapeutic interventions.

This study proposes an approach for the analysis of 
recombinant hINMT by elucidating its kinetic and struc-
tural characteristics. The core of the study is a noncou-
pled, continuous fluorescent assay, which has been yet 
employed to monitor the activity of a similar class I MT, 
nicotinamide N-methyltransferase (NNMT, EC 2.1.1.1) 
[51]. The fluorometric assay utilizes the substrate qui-
noline, which undergoes SAM-dependent hINMT-
catalyzed methylation to produce 1-methylquinoline 
(1-MQ), exhibiting distinctive fluorescent properties 
that can be recorded using a standard spectrofluorom-
eter. The assay is facilitated by straightforward thermal 
shift analysis employing a conventional PCR apparatus, 
which is well-known to assessing the stability of proteins 
[63] and determining affinity constants [54]. These analy-
ses consistently yield thermal stability of hINMT under 
various conditions for the first time, as well as the disso-
ciation constants associated with its natural coenzymes, 
SAM and SAH. Finally, open-access webservers are used 
to dock hINMT with quinoline (the assay substrate) or 
tryptamine (the natural substrate), to foresee the puta-
tive enzyme–substrate complexes and providing initial 
insights into the interactions, which further support the 
fluorometric dosage.

This approach serves as an alternative to the previously 
mentioned noncontinuous techniques, i.e., radiometric 
and chromatography-mass spectrometry assays. It offers 
functional and structural analysis under consistent con-
ditions, which represents a novel contribution and would 
facilitate the investigation of hINMT SNPs, as well as the 
analysis of enzyme inhibition. Furthermore, the docking, 
guided by the known crystal structure of the hINMT-
SAH complex (PDB code 2A14, unpublished), and the 
thermal shift data would enable the optimization of crys-
tallization conditions to expand the limited structural 
information currently available.

Methods
cDNA cloning
The human INMT gene is 5471 base pairs long and con-
sists of three exons. It shares structural similarities with 
the rabbit INMT gene, as well as with the genes encoding 
NNMT and phenylethanolamine N-methyltransferase 
(PNMT) across various species. All the exon–intron 
splice junctions in the hINMT gene followed the “GT-
AG” rule, and there was no standard TATA or CAAT 

sequences in the 5’-flanking region of the gene. Human 
INMT cDNA (isoform 1, Gene ID: 11,185) has a 792-
bp open reading frame that encodes a 263-amino-acid 
protein. After codon optimization for the heterologous 
expression in E. coli bacterial cells, the hINMT cDNA 
sequence was synthesized and inserted into pET28b plas-
mid by 5’-NdeI and 3’-XhoI cloning sites. The resulting 
hINMT-pET28b vector was obtained from MWG Bio-
tech (Eurofins Genomics).

Protein expression and purification
The hINMT enzyme was obtained through heterolo-
gous expression and purification, based on the procedure 
reported for hNNMT [51]. The hINMT-pET28b vector 
was transformed into competent E. coli BL21(DE3) pLysS 
cells (Novagen, Merck KGaA) via heat shock treatment, 
before plating on solid LB-Agar medium (Merck KGaA) 
containing kanamycin 30 μg/mL (Merck KGaA).

After overnight incubation at 37 °C, a single colony was 
selected and transferred into 20 mL of LB liquid medium 
containing kanamycin (Merck KGaA) and grown over-
night at 37  °C with continuous shaking. The resulting 
cell suspension was then transferred into 1 L of fresh LB 
liquid medium supplemented with kanamycin, 0.5  mM 
 MgCl2, and 0.5  mM  CaCl2 (Merck KGaA). Cells were 
cultured until reaching an  OD600 of 0.7–0.8, at which 
point protein expression was induced by adding 0.5 mM 
isopropyl-β-d-1-thiogalactopyranoside (IPTG, Thermo 
Fisher Scientific, Inc.), followed by an additional 3-h 
incubation.

The culture was then centrifuged at 8 °C and 3000 rpm 
for 30 min to collect cells and resuspended in lysis buffer 
containing 20  mM TRIS-HCl pH 7.9 (Merck KGaA), 
0.5  M NaCl (Merck KGaA), 5  mM imidazole (Merck 
KGaA), 10% glycerol (Merck KGaA), 1 mM dithiothreitol 
(DTT, Merck KGaA) and 1 mM phenylmethanesulfonyl-
fluoride (PMSF, Thermo Fisher Scientific, Inc.).

After sonicating the sample at 30% amplitude with a 
pulse cycle of 3  s on and 9 s off to release the cytosolic 
content, while keeping the suspension on ice, debris and 
insoluble cell fractions were removed by centrifugation 
at 8  °C and 20,000  rpm for 45  min. The resulting solu-
ble fraction was filtered through 0.45  µm filters (Merck 
KGaA) and loaded onto a 5 mL Sepharose affinity column 
(GE Healthcare), pre-treated with 100 mM NiSO₄ (Fisher 
Scientific) and equilibrated with a binding buffer: 20 mM 
TRIS–HCl (pH 7.9), 0.5 M NaCl, 5 mM imidazole, 10% 
glycerol, and 1  mM DTT. The protein was eluted using 
a gradient of elution buffer containing 500  mM imida-
zole at a flow rate of 2 mL/min, with fractions collected 
in small aliquots. The eluted fractions were analyzed 
by denaturing SDS-PAGE in 12% Mini-PROTEAN® 
TGX™ Precast Protein Gels (Bio-Rad Laboratories, Inc.) 
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alongside with a commercial PageRuler Plus Prestained 
Protein Ladder (Thermo Fisher Scientific, Inc.) and 
stained with a solution of Coomassie® Blu R 250 (Merck 
KGaA). The protein-containing fractions were enriched 
with 5  mM ethylenediaminetetraacetic acid (EDTA, 
Merck KGaA) to eliminate any eventual nickel ion etched 
by the protein, according to previous studies [5] and pre-
served at 8 °C for further use.

Protein quantification
The protein content was measured by UV–Vis spectro-
photometry and bicinchoninic acid assay (BCA).

The former method involved a Cary-60 UV–VIS spec-
trophotometer (Agilent Technologies, Inc.) in a 1  cm 
quartz cuvette (Hellma GmbH & Co. KG). An extinction 
coefficient of 29,910   M−1   cm−1 and a protein molecular 
weight of 28.8 kDa were considered, as calculated using 
the ProtParam online tool from Expasy (https:// web. 
expasy. org/ protp aram/) [27].

The BCA-based quantification was carried out using 
the commercial colorimetric Pierce™ BCA Protein Assay 
Kit (Thermo Fisher Scientific, Inc.). Briefly, the process 
involved detecting the protein-dependent reduction of 
 Cu+2 to  Cu+1, which in turn forms a complex with bicin-
choninic acid that absorbs light at 562 nm, proportionally 
to the protein concentration. Known amounts of bovine 
serum albumin have been used as reference samples. The 
absorbances were measured spectrophotometrically in 
triplicates.

Steady‑state kinetic assays for hINMT activity
The enzymatic reactions were carried out at room tem-
perature (30 °C) using a 50 mM HEPES buffer at pH 7.5, 
supplemented with 1  mM DTT. Freshly purified INMT 
enzyme was introduced to the reaction buffer at a final 
concentration of 3.8 μM.

To determine the Michaelis constant  (KM) for quino-
line, initial reaction velocities were measured in separate 
reactions with quinoline (Merck KGaA) at various con-
centrations of 25, 100, 200, 400, 600, 800 and 2000 μM. 
These reactions were conducted at a fixed concentration 
of SAM (Merck KGaA) at 625 μM.

The  KM value for the co-substrate SAM was deter-
mined by measuring the initial reaction velocities varying 
SAM concentrations of 5, 25, 50, 100, 200, 400, 600, 800 
and 2000 μM. These measurements were carried out with 
a fixed quinoline concentration of 800 μM.

The enzymatic reaction product 1-MQ was moni-
tored by recording its fluorescence emission at 405  nm 
using a spectrofluorometer (Perkin Elmer LS 50 B), with 
an excitation wavelength λex = 330  nm, according to the 
assay reported elsewhere for hNNMT [51]. The data were 
analyzed by KaleidaGraph v4.1 (Synergy Software). The 

methylation of quinoline was monitored in the presence 
of varying amounts of tryptamine (200, 400, and 800 μM) 
added to the previously described reaction mixture.

Thermal shift assay (TSA)
The thermal stability of hINMT was evaluated by meas-
uring its melting temperature  (Tm) in response to pH, 
additives and ligands, as commonly reported [29, 33, 71, 
55]. Each condition involved preparing 25 µL of sample 
in triplicate within dark-bottomed 96-well plates, seal-
ing with transparent tape to prevent evaporation, briefly 
centrifuging to remove bubbles, and loading into a CFX 
Opus thermocycler (Bio-Rad Laboratories, Inc.).

In the first series of experiments, hINMT at concen-
tration 2 µM was mixed with the fluorescent dye SYPRO 
Orange 5X (Merck KGaA) in 50 mM MES pH 6.0 (Merck 
KGaA), Bis–TRIS pH 6.5 (Merck KGaA), MOPS pH 7 
(Merck KGaA), HEPES pH 7.5 (Merck KGaA), TRIS–Cl 
pH 8.0 (Merck KGaA) or Bicine pH 9.0 (Merck KGaA). 
After sealing and centrifugation, the plates were sub-
jected to thermal treatment including 1  min pre-warm-
ing at 25 °C followed by a steady gradient 25–95 °C with 
0.5 °C increments every 5 s. As the protein unfolded, the 
dye lit up because it was binding to the protein. The emis-
sion fluorescence at 570 nm was recorded as the unfold-
ing process happened.

The second round of tests was carried out similarly 
after incorporating NaCl into the buffers at concentration 
50, 100, 150 or 200 mM.

The third series of experiments were performed 
on samples mixed with SAM, SAH (Merck KGaA), 
tryptamine (Merck KGaA) or quinoline at concentrations 
4, 8, 16, 32, 64, 128, 256, 512, 1024 or 2048 µM under the 
condition ensuring the utmost level of stability (maxi-
mum  Tm) found in the previous assays. In these experi-
ments, all the samples were also supplemented with 
1 mM DTT to guarantee complete reduction of the pro-
tein, due to the high number of cysteines (12 out of 263 
amino acids), according to the deposited sequence (PDB 
entry 2A14, unpublished).

TSA data analysis and Kd determination
The TSA data were analyzed with the CFX Maestro soft-
ware (Bio-Rad Laboratories, Inc.) to generate fluores-
cence curves and their first derivatives for determining 
the average  Tm from triplicates of each experimental con-
dition. By exploring  Tm changes regarding pH, additives 
and ligands, a better understanding of favorable condi-
tions for hINMT and ligand interactions was gained, 
provided that a significant thermal shift was recorded, 
according to the sensitivity of the assay (ΔT ≥ 1 °C) [59]. 
The examination of  Tm shifts based on varying ligand 

https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
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concentrations also provided additional insights into the 
binding affinity.

To analyze the relationship between  Tm and ligand con-
centration, KaleidaGraph v4.1 was utilized for nonlinear 
curve fitting, leading to the calculation of the  Kd values. 
The curve fitting was based on the following hyperbolic 
Eq.  1 assuming a binding regime and one-site ligand 
binding conditions:

where  Tin is the starting  Tm (no ligands added), ΔT is 
the utmost shift observed, [L] is the ligand concentration 
and  Kd is the dissociation constant for the hINMT-ligand 
complex. This approach is well-known to assess the bind-
ing between ligands or inhibitors with their targets [6, 12, 
46, 55, 69].

Molecular docking
The docking study aimed to reveal the putative interac-
tions between hINMT and tryptamine or quinoline. In 
this context, the 1.9  Å crystal structure of hINMT in 
complex with SAH (PDB entry 2A14, unpublished) was 
used as the starting template. The simulations were per-
formed using the online integrative modeling server 
HADDOCK2.4 (https:// wenmr. scien ce. uu. nl/ haddo 
ck2.4) [34] to support the thermal shift and kinetics data 
and provide initial hypotheses about how the substrates 
might bind to the enzyme.

Prior to docking, the hINMT-SAH PDB file was modi-
fied by removing water and ion molecules using UCSF 
ChimeraX v1.6.1 [49] and ensuring proper atom names, 
numbering as well as the presence of the target chain, as 
required by the server rules. The PDB files of tryptamine 
(PubChem CID 1150) and quinoline (PubChem CID 
7047) were used as substrates, after verifying that they 
met the necessary server’s requirements.

The amino acids Tyr20, Tyr24, Leu164, Cys168, Thr198, 
Tyr204 and Tyr242 were selected as active residues to 
generate ambiguous interaction restraints, and the rela-
tive solvent accessibility threshold was set to 8%, while 
allowing the server to automatically find passive residues.

The three-dimensional models generated after dock-
ing were visually inspected by UCSF ChimeraX v1.6.1, 
provided that their HADDOCK scores and z-scores were 
both negative.

Additional computing models were generated using 
the online tool protein–ligand interaction profiler (PLIP, 
https:// plip- tool. biotec. tu- dresd en. de/ plip- web/ plip/ 
index) [2] to identify non-covalent interactions between 
hINMT and substrates, thus highlighting potential 
residues involved in the binding. For this purpose, the 
best models obtained by docking were used as entry 

(1)T = Tin +�T • [L]/[L]+ Kd

structures, without changing the default parameters pro-
vided by the server.

Results
The quinoline‑based fluorescent method provides kinetics 
parameters for hINMT activity
Approximately 5  mg of purified hINMT was obtained 
per liter of bacterial culture. The specific activity of the 
enzyme was found to vary between 55.26 and 10 µmoles 
per  minute−1  mg−1 of enzyme, indicating a certain insta-
bility of the protein in solution, regardless of temperature 
(− 20 °C, 4 °C) and/or different types of buffer solutions. 
The highest activity and best stability were obtained by 
dialyzing the protein immediately after chromatographic 
elution with 50  mM HEPES pH 7.5 supplemented with 
50 mM NaCl and 1 mM DTT. The protein showed better 
stability when stored at 4  °C in the same buffer supple-
mented with 1 mM DTT for a maximum of 48 h. Con-
sistently, the Expasy ProtParam determined an instability 
index of 48.22 based on the protein amino acid sequence 
(PDB entry 2A14, unpublished), which classifies it as 
unstable.

As reported in the literature [51], NNMT is able to 
methylate quinoline via SAM, producing 1-MQ, which 
is fluorescent and thus allows for continuous monitoring 
of the activity. Alike, the same assay performed using the 
hINMT showed that the enzyme is also capable of meth-
ylating quinoline and the increase in fluorescence is sta-
ble over time and proportional to the amount of enzyme. 
These experiments allowed for the calculation of the 
catalytic parameters  KM and  kcat related to both quinoline 
and SAM under steady-state conditions using an enzyme 
concentration of 3.8  µM. Graphing the initial veloc-
ity for 1-MQ formation at different quinoline amounts 
(0–2000  µM) under fixed SAM concentration (625  µM) 
resulted in hyperbolic fitting according to a classical 
Michaelis–Menten trend (Fig.  1A). The calculated  KM 
value was 259.3 ± 42.7  µM. Similarly, steady-state runs 
at fixed quinoline concentration (800  µM), and variable 
SAM amounts (0–2000  µM) showed hyperbolic curves 
with calculated  KM of 64.1 ± 3.9 µM (Fig. 1B). No changes 
in fluorescence were recorded in enzyme-free control 
experiments (data not shown). To note, the  KM related to 
SAM was comparable to the  Kd (55.6 ± 2.6 µM) measured 
by thermal shift assays (see below).

According to the measured  Vmax and enzyme con-
centration the values of the  kcat for quinoline resulted 
3 ×  10–4   s−1 and concerning SAM 7 ×  10–4   s−1. Specific-
ity constants,  kcat/KM for quinoline and SAM resulted 
1.15   s−1·M−1 and 10.9   s−1·M−1, respectively. The enzy-
matic activity of recombinant human INMT was meas-
ured at various temperatures (Figure S1) and pH values 
(Figure S2), showing that pH 7.5 and 37 °C were optimal.

https://wenmr.science.uu.nl/haddock2.4
https://wenmr.science.uu.nl/haddock2.4
https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index
https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index
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The methylation of quinoline in the presence of vary-
ing amounts of the natural substrate tryptamine showed 
strong inhibition (Figure S3), as shown in Table 1, which 
reports on the residual activity of the hINMT enzyme in 
the formation of 1-MQ.

Further outcomes about the kinetic behavior of hINMT 
were obtained by testing the inhibitor activity of the 
molecule Naratriptan, which is known to hinder the 
MTs-catalyzed transmethylation reaction [66]. Steady-
state state experiments using the quinoline fluorometric 
method have emerged that Naratriptan inhibited con-
spicuously the hINMT activity with an estimated  IC50 of 
188.5 ± 1.8 µM.

Reducing, acid and neutral pH conditions stabilize hINMT
The thermal stability of hINMT was investigated by 
TSA, examining the effects of pH (6.0–9.0) and NaCl 
(0–200  mM). Though its small size (263 amino acids, 
MW = 28.8  kDa), the protein exhibited two distinct  Tm 
under all pH and saline conditions, as observed in the 
double peaks of the fluorescence derivative curves (Fig-
ure S4,  Tm1 and  Tm2). For comparative analyses, the  Tm 
associated with the first peak  (Tm1) was considered the 
relevant data point.

In the absence of salt, the highest melting tempera-
tures were observed between pH 6.0 and 7.0, with 
the latter providing the maximum stability, reaching 
 Tm1 = 44.3 ± 0.2 °C. Conversely, the protein exhibited sub-
stantial instability at alkaline pH, with pH 9.0 causing the 
 Tm1 to drop to the minimum value of 39.2 ± 0.8 °C (Figure 
S4A). Outside the pH range 6.0–9.0, the protein visibly 
began to precipitate (data not shown).

To note, the addition of NaCl led to a significant 
decrease in thermal stability, proportional to the salt 
concentration. The maximum  Tm1 was observed at pH 
7.0 and 50  mM NaCl, reaching  Tm1 = 43.7 ± 0.2  °C and 
decreasing conspicuously to 34 ± 0.4  °C at pH 9.0 and 
200 mM NaCl (Figure S4B).

The data gathered from these experiments demon-
strated that acidic and neutral environments favored 
the thermal stability of the enzyme. Conversely, alkaline 

Fig. 1 Steady-state kinetics for SAM-dependent 1-MQ synthesis 
catalyzed by hINMT. The graphs report on the changes of initial 
velocity of 1-MQ formation when increasing amounts of A quinoline 
or B SAM are added to hINMT. The data have been fitted using 
the Michaelis–Menten equation to estimate the  KM values

Table 1 Percentage of residual enzymatic activity of hINMT in methylating quinoline in the presence of tryptamine

Residual hINMT activity in the presence of tryptamine

100 µM quinoline 200 µM quinoline 400 µM quinoline 800 µM quinoline

0 µM
tryptamine

100% 100% 100% 100%

200 µM tryptamine 80% ± 16.5 65% ± 10.8 81.2% ± 2.15 85.2% ± 5.65

400 µM tryptamine 51.6% ± 1.75 52.2% ± 13.95 63.4% ± 9.3 78.8% ± 8.4

800 µM tryptamine 12.9% ± 1.95 27.8% ± 0.25 47.6% ± 10.45 44.8% ± 0.45
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conditions and high salt concentrations caused substan-
tial instability (Table 2).

To note, simultaneous inclusion of 1  mM DTT par-
tially restored the  Tm1 by 0.5  °C on average even in the 
presence of NaCl across all tested pH values, with pH 7.0 
still being optimal, giving a  Tm1 = 43.7 ± 0.2  °C (data not 
shown), likely due to the reduction of the many cysteines 
present in hINMT. For this reason, to strike a balance 
between protein stability and maintaining the correct 
ionic strength and reducing environment, mimicking 
the cytoplasm, the next experiments were conducted at 
pH 7.5, with 50  mM sodium chloride and 1  mM DTT. 
This condition offered a fair balance satisfying both 
aspects and ensuring  Tm1 = 43.2 ± 0.4  °C, still considered 
acceptable.

The double  Tm detected over all experimental condi-
tions could be related to the anticipated instability of 
hINMT, as computed by the ProtParam tool. Indeed, 
based on its amino acid sequence (PDB entry 2A14, 
unpublished), the instability index of hINMT is 48.22, 
which classifies it as unstable. Thus, there could be a het-
erogeneous population of molecules, each with distinct 
thermal stability. Alternatively, the denaturation process 
itself may cause multiple thermal transitions. This is often 
due to different structural domains responding separately 
to temperature changes [11, 19]. Supporting this hypoth-
esis, it should be recalled that hINMT might possess sev-
eral domains as observed in other similar enzymes, such 
as NNMT from humans, monkeys and mice (see below 
the structural description paragraph). Finally, the co-
purification of hINMT along with host cells’ endogenous 

ligands could also result in a heterogeneous population of 
the enzyme. In fact, there is evidence that E. coli, engi-
neered to express hINMT, can produce DMT without 
addition of SAM [25]. In such cases, proteins that exhibit 
a single  Tm may show multiple thermal transitions upon 
ligand binding or vice versa [69], especially in the case of 
high-affinity binding events [44].

The destabilizing effect of alkaline pH and high NaCl 
concentrations on hINMT might be ascribed to its amino 
acids content and net charge. According to the ProtParam 
tool, in fact, the enzyme has a theoretical pI = 5.23, due to 
40 acid residues (15 aspartates, 20 glutamates and 5 histi-
dines) and 27 positively charged residues (17 lysines and 
10 arginines). The acid pI puts hINMT within the large 
cluster of cytosolic human proteins [67]. Additionally, 
based on the Prot Pi online tool (https:// www. protpi. ch/ 
Calcu lator/ Prote inTool), hINMT exhibits net negative 
charges of −  4.7 (pH 6.0), −  6.85 (pH 6.5), −  8.54 (pH 
7.0), − 10.4 (pH 7.5), − 13.37 (pH 8.0) and − 22.53 (pH 
9.0). The stability of a protein is primarily determined 
by the balance between repulsive forces between similar 
charges and attractive forces between opposite charges in 
its folded state. This delicate equilibrium, in fact, can be 
manipulated by modifying the surface charges of the pro-
tein, allowing for potential changes in its overall stabil-
ity [3, 32]. Therefore, the instability of hINMT observed 
upon rising the pH would probably come from the repul-
sion among the many acid residues becoming more and 
more negatively charged. Furthermore, the steric hin-
drance may also play a role. Lysines are extended, flexible 
amino acids often found on the surface of proteins, where 

Table 2 Average  Tm1 values of hINMT in response to pH and NaCl

The  Tm is determined at the first peak of each fluorescence derivative curve  (Tm1) illustrated in Figure S4. The values are highlighted from green indicating the highest 
 Tm1 (maximum stability) to red representing the lowest value (minimum stability).

https://www.protpi.ch/Calculator/ProteinTool
https://www.protpi.ch/Calculator/ProteinTool
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they can readily interact with the surrounding solvent. 
This positioning allows them to be easily protonated at 
low pH, resulting in complete shielding of the positive 
charges by the solvent. In contrast, carboxyl residues, i.e., 
glutamates and aspartates, are generally less extended 
and more compact and this can lead to unfavorable struc-
tural effects when the charges on these residues become 
desolvated at high pH [41].

The stabilizing effect provided by DTT on hINMT 
is likely due to its role in preserving the reduced state 
of the twelve cysteine residues found in the amino acid 
sequence (PDB entry 2A14, unpublished; see below the 
structural description paragraph). Indeed, the structure 
shows all cysteines with reduced thiols, where the resi-
dues Cys44 and Cys254 as well as Cys168 and Cys213 
lie close to each other (Sulphur-Sulphur distance = 4.3 
and 4.2 Å, respectively). Moreover, it is reported that the 
reduction of the Cys44–Cys254 disulfide bond increases 
the catalysis of hINMT [68]. Though this assumption 
is speculative due to the poor availability of structural 
data, it is likely that DTT prevents covalent disulfide 
bridges that could destabilize the enzyme. Nevertheless, 
the diverse oxidation states of the numerous cysteines 
that might be still present could lead to a heterogenous 
population. This, alongside the chance that the enzyme 
is composed of multiple distinct domains, might account 
for the two different melting temperatures.

SAM and SAH stabilize and bind to hINMT with micromolar 
affinity
After selecting the ideal setup to guarantee acceptable 
stability of hINMT while mimicking a native environ-
ment (pH 7.5, 50  mM NaCl, 1  mM DTT), additional 
TSA experiments were performed to get deeper into 
the effects of the coenzymes SAM and SAH as well 
as the substrates tryptamine and quinoline. The data 
showed that an increase in SAM concentration (0 to 
2048 µM) led to a remarkable increase in  Tm1, rising from 
43.3 ± 0.2  °C (no SAM) to 50.5 ± 0  °C (2048  µM SAM), 
resulting in ΔTm1 =  + 7.2 °C (Figure S5A). A similar trend 
was observed when assessing the effect of SAH, reach-
ing ΔTm1 =  + 8.5 °C (Figure S5B). To note, in this case the 
second  Tm  (Tm2) value was clearly absent.

On the other hand, both tryptamine and quino-
line did not induce significant thermal transitions at 
any of the concentrations tested (0 to 2048  µM), giving 
ΔTm1 = 0.7 °C and 0.8 °C, respectively (data not shown).

The remarkable positive temperature shifts induced 
by SAM and SAH (Table  3) made it possible to graph 
the changes of the  Tm1 values relative to the concen-
tration of coenzymes. Fitting the curve based on a 
single-binding site and the hyperbolic Eq.  1 resulted 

in appropriate fitting and provided the estimation of 
 Kd values of 55.6 ± 2.6 and 53.1 ± 4.8 µM, for SAM and 
SAH, respectively (Fig. 2). No  Kd could be estimated for 
tryptamine and quinoline, likely because they are pro-
cessed and released by the enzyme during turnover.

The  Tm1 shift caused by SAM and SAH indicates a 
stable interaction with the enzyme for it is consistent 
with other findings, showing that the binding of natu-
ral ligands to their targets typically has a measurable, 
stabilizing influence [6, 12, 46, 69]. This effect is due 
to thermodynamically favored binding that releases 
free energy (ΔG < 0), pushing the protein–ligand com-
plex into a lower, stable energy level [23, 52]. Therefore, 
when hINMT binds to coenzymes, it stabilizes in a way 
that requires higher temperatures to reach the melting 
point.

Nonetheless, the calculated  Kd values (55.6 ± 2.6 and 
53.1 ± 4.8  µM for SAM and SAH, respectively) were 
determined based on measures under in  vitro condi-
tions that most likely do not reflect the physiologi-
cal environment. Therefore, these should be viewed 
as “apparent” values. Anyway, the order of magnitude 
(µM) is comparable with those determined elsewhere 
for other MTs [4, 14, 15, 51, 70]. Moreover, these val-
ues can be considered trustworthy as the TSA analyses 
have been performed using a protein concentration 
(2 µM) significantly lower than the calculated  Kd, there-
fore satisfying a binding regime [35].

The kinetics and ligand affinity parameters related 
to substrates, coenzymes and the inhibitor reported in 
this paper are collected altogether for a more compre-
hensive understating of hINMT (Table 4).

Table 3 Average  Tm1 values of hINMT in response to SAM and 
SAH

The  Tm is determined at the first peak of each fluorescence derivative curve 
 (Tm1) illustrated in Figure S5. The results related to tryptamine and quinoline are 
omitted due to no significant effects

SAM
(ΔTm1 =  + 7.2 °C)

SAH
(ΔTm1 =  + 8.5 °C)

0 µM 43.3 ± 0.2 °C 43.3 ± 0.2 °C

4 µM 44.3 ± 0.2 °C 44.3 ± 0.2 °C

8 µM 45.2 ± 0.2 °C 45.3 ± 0.2 °C

16 µM 46 ± 0 °C 46 ± 0 °C

32 µM 46.5 ± 0 °C 46.7 ± 0.2 °C

64 µM 47.3 ± 0.2 °C 47.3 ± 0.2 °C

128 µM 48 ± 0 °C 48.2 ± 0.2 °C

256 µM 49 ± 0 °C 49 ± 0 °C

512 µM 49.8 ± 0.2 °C 49.8 ± 0.2 °C

1024 µM 50.7 ± 0.2 °C 50.5 ± 0 °C

2048 µM 50.5 ± 0 °C 51.8 ± 0.2 °C
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Structural description of hINMT: a comparison with similar 
MTs
The crystal structure of hINMT bound to SAH (PDB 
code 2A14, unpublished) is characterized by the Ross-
mann fold, a common feature of class I MTs. The cofac-
tor attaches within an inner cavity surrounded by Ala169, 
Phe86, Val143, Ala165, Tyr204, Asp142, Asp85, Thr87, 
Leu163, Gly63, Tyr20, Tyr25 and Tyr69 (Fig.  3A). This 
area should also accommodate the substrate, tryptamine 
or quinoline, and the residues that it binds to, as sug-
gested by the docking analysis reported herein (see 
below Fig.  4B). Since structural information on hINMT 
is limited to a single PDB entry, a comparison with par-
alogous enzymes, whose structure–function relationship 
is better characterized, could reveal interesting insights. 
The hINMT shares significant similarity with its close 
relative, hNNMT, with 67.4% sequence identity and 53% 
overall similarity [26] (see below Fig.  4C). hNNMT has 
been extensively studied, with 27 distinct PDB entries 
available. Notably, hNNMT features a region previously 
described as the “cap”, which is not present in the canoni-
cal Rossmann fold [53]. This structural element is also 
present in hINMT (Fig.  3B), thus representing an extra 
domain in MTs. Furthermore, other hINMT’s paralogs, 
like NNMTs found in monkeys and mice (PDB codes 
5XVQ and 5XVK, respectively), have been shown to have 
three main parts: an N-terminal, a central, and a C-ter-
minal domain [62]. Because of this, hINMT probably 
has those same three separate parts, along with the “cap”. 
Namely, the N-terminal, central and C-terminal domains 
in hINMT would correspond to residues in position 5 to 
51, 52 to 189 and 190 to 261, respectively (Fig. 3B). 

Finally, it is worth noting that the hINMT structure 
contains a high number of cysteines, with 12 out of 263 
amino acids. Among these, the Sulphur atoms of Cys254 
and Cys44 are separated by 4.3 Å, and a rotation around 
the Cα-Cβ bond could bring them within disulfide bond-
forming distance (not shown). Similarly, Cys213 and 
Cys168, located near the active site, may also interact 
covalently in a comparable manner, given their Sulphur-
Sulphur distance (4.2 Å). To note, both cysteine couples 
localize at the boundaries amongst domains. Specifically, 
Cys168 belongs to the central domain and Cys213 takes 
part of the C-terminal one, while Cys44 and Cys254 are 

Fig. 2 Tm1 shift in response to SAM or SAH, fitting and  Kd estimation. 
The graphs depict the change in  Tm1 when increasing amounts of A 
SAM or B SAH are added, based on the information in Table 3. The 
data have been fitted using the hyperbolic, single-binding site Eq. 1 
to estimate the  Kd values

Table 4 Kinetics and ligand affinity parameters experimentally obtained in this paper

Ligand Kd KM kcat kcat/KM IC50

Quinoline – 259.3 ± 42.7 µM 3 ×  10–4  s−1 1.15  s−1  M−1 –

SAM 55.6 ± 2.6 µM 64.1 ± 3.9 µM 7 ×  10–4  s−1 10.93  s−1  M−1 –

SAH 53.1 ± 4.8 µM – – – –

Naratriptan – – – – 188.5 ± 1.8 µM
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in the N-terminal and C-terminal domains, respectively 
(Fig.  3C). Though disulfide bonds are generally consid-
ered stabilizing, their location at domain boundaries may 
also allow for a degree of flexibility, enabling the domains 
to reorient themselves in response to ligand binding 
or other environmental changes. In this scenario, the 
disulfide bridges would not provide structural support 
but also contribute to the dynamic nature of hINMT, 
facilitating its interaction with other molecules and ena-
bling it to carry out its biological function.

Tryptamine and quinoline share the same binding site 
in hINMT
The docking analyses have been carried out to get infor-
mation about the putative positioning of tryptamine 
(the native substrate) or quinoline (the assay substrate) 
within the enzyme. The docking generated at least two 
acceptable models in both cases. The first model for 
the hINMT-SAH-tryptamine complex (HADDOCK 
score = −  41.4 ± 1.2, z-score = −  1.6) showed the sub-
strate located in a channel-like site bordered by the resi-
dues Phe5, Thr6, Asp8, Tyr11, Phe86, Asp142, Val143, 
His144, Cys168 and Ala169. Similarly, the first hINMT-
SAH-quinoline model (HADDOCK score = − 23.42 ± 1.3, 
z-score = − 1.5) also showed the compound in the same 
site (Fig. 4A).

The second docking models of the hINMT-
SAH-tryptamine (HADDOCK score = −  35.1 ± 1.7; 
z-score = −  1) and hINMT-SAH-quinoline complex 
(HADDOCK score = − 18.53 ± 1.9; z-score = − 1.1) posi-
tioned both substrates within an inner cavity of the 
enzyme, near SAH. In this position, the substrates’ amine 
acceptor was close to the coenzyme’s Sulphur (Nitrogen-
Sulphur distance = 4.1  Å and 3.7  Å for tryptamine and 
quinoline, respectively). Note that in SAM the Sulphur 
atom binds the methyl involved in transmethylation 
(Fig. 4B).

Supporting these results, structural alignments showed 
that the position of tryptamine and quinoline matched 
the site where two competitive inhibitors, i.e., 6-methox-
ynicotinamide and 5-cholorobenzoimidazole, have been 
found in the crystal structures of hNNMT-SAH (PDB 
entry 5YJF) [37] and hPNMT-SAH (PDB entry 3KQW) 
[22], also belonging to class I MTs (Fig. 4C).

A more detailed understanding of the interaction 
between quinoline or tryptamine and hINMT has been 
achieved by analyzing the amino acids surrounding the 
ligands when bound to the inner cavity of the enzyme 
using the protein–ligand interactions identifier PLIP [2]. 
The models showed several residues involved in these 
interactions, with hydrophobic bonds being the predomi-
nant type. Many of these residues were shared between 

Fig. 3 Structural features of hINMT. A Structure overview of hINMT 
(PDB code 2A14, unpublished) showing the protein fold, the binding 
site of SAH (pink) and its ligands (in sticks). B The “cap”, N-terminal, 
central and C-terminal domains proposed for hINMT, based 
on the similarity to related proteins, i.e., NNMT from humans (PDB 
code 5YJF), mice (PDB code 5XVK) and monkeys (PDB code 5XVQ). C 
The four non-conserved cysteine residues in hINMT (in sticks). Due 
to their proximity, Cys213 and Cys168 probably create a disulfide 
bond. Alike, Cys254 and Cys44 can bind covalently
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Fig. 4 Docking of hINMT-SAH with tryptamine or quinoline and putative interactions involved. A First and B second docking models 
of hINMT-SAH-tryptamine and hINMT-SAH-quinoline. The enzyme structure is shown as a continuous grey surface or ribbons; the two substrates 
and the coenzyme are represented as colored sticks. Models were generated using the HADDOCK webserver. C Superposition of the second 
hINMT-SAH-tryptamine and hINMT-SAH-quinoline models (grey) with the crystal structures of hNNMT-SAH (pink) and hPNMT-SAH (green) bound 
to competitive inhibitors. Images visualized using ChimeraX. D) Putative residues at the active site involved in the interactions between hINMT 
and quinoline (left) or tryptamine (right). Models were generated by the PLIP webserver
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the two substrates, namely Tyr24, Leu164, Leu201, 
Thr198, Tyr204 and Tyr242 (Fig. 4D).

The experimental crystal structure (PDB entry 2A14, 
unpublished) revealed that replacing the SAH elec-
tron density with SAM clearly highlights the proximity 
between the amine group of the docked substrates and 
the methyl group. Additionally, the binding site of the 
substrates substantially overlaps with several water mole-
cules observed experimentally, which are likely displaced 
upon substrate binding (Figure S6).

To note, by comparing the amino acid sequences of 
hINMT, hNNMT and hPNMT, it was found that some 
of the residues lining the channel-like site were fully 
conserved, such as Asp142 and Val143, or replaced by 
conservative substitutions, i.e., Thr6 and Phe86 (Fig.  5, 
residues highlighted in yellow). The sequence alignment 
also revealed resemblances in the amino acids surround-
ing the substrates when placed in the inner site, close to 
the Sulphur atom of SAH. In this site, the fully conserved 
residues included Tyr20, Tyr69 and Tyr204, while con-
servative substitutions were found on Leu164, Glu167 
and Thr198 (Fig. 5, residues highlighted in green).

Computational docking results, while unable to pro-
vide precise information about the enzyme’s mechanistic 
model, support the fluorometric method. Namely, the 
docking models indicate that the potential binding site 
of quinoline overlaps with the binding site of hINMT’s 
natural substrate, i.e., tryptamine, and that the residues 
are shared. Therefore, given that all known MTs undergo 
the same  SN2 or  SN2-like transmethylation mechanism 
[1, 42] the configuration adopted by quinoline would 
also align with this. Moreover, the distance between the 
SAM’s donor Sulphur atom and the quinoline’s accep-
tor Nitrogen is 3.7 Å, a distance compatible for efficient 
transmethylation [42].

The models also showed that the binding site is char-
acterized by an abundance of aromatic and hydropho-
bic amino acid residues, similar to other enzymes like 
hPNMT and hNNMT. This chemical environment would 
be well-suited to accommodate and bury molecules with 
a degree of hydrophobicity, as well as the coenzyme’s 
methyl group. Accordingly, the methylation of quinoline 
might plausibly occur through proximity and desolva-
tion effects or general acid–base mechanisms, but this 

Fig. 5 Sequence alignment between hINMT (UniProt code O95050), hNNMT (UniProt code P40261) and hPNMT (UniProt code P11086). The 
conserved amino acids lining the channel-like region (see above Fig. 4A) are highlighted in yellow, while those surrounding the ligands in the inner 
cavity and potentially forming the active site (see above Fig. 4B) are in green. Alignment created using Clustal Omega [58]
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remains an assumption without direct experimental evi-
dence to support the claim.

Discussion
DMT and INMT are attracting growing interest, espe-
cially within the emerging “psychedelic renaissance” 
[13, 28]. Hence, the need for trustworthy, straightfor-
ward approaches to explore the role of DMT and INMT 
became significant.

DMT is found ubiquitously in plants and animals, with 
its presence detected in the cerebrospinal fluid and brain 
of the latter. Its levels fluctuate throughout the day and 
with age and even increase during times of stress [36]. 
INMT appears even more complicated. This enzyme is 
found in many different organs including brain, lungs, 
kidneys, heart, retina, and the testes, among many others 
[36]. Furthermore, though numerous single SNPs in the 
INMT gene are associated with various behavioral traits 
and medical conditions, yet little research has explored 
how these genetic differences relate to the synthesis of 
DMT [21]. Moreover, only one structure, related to the 
hINMT-SAH complex and released now 20 years ago, is 
available so far (PDB entry 2A14, unpublished), limiting 
the information about the structure–function relation-
ships in hINMT mutants.

In such a captivating but still challenging scenario, 
this paper aimed to provide a route for studying hINMT 
under consistent conditions, without the need for deri-
vatization or extrapolation of the enzymatic reaction 
product. This is significant, as past research on the enzy-
matic activity of hINMT has revealed substantial vari-
ations in the enzyme’s kinetic parameters, such as the 
 KM for its natural substrate, tryptamine. This parameter, 
indeed, was quantified in a wide range (430–2290  µM), 
using indirect methods like radioactive assays [17, 45, 65] 
or gas chromatography-mass spectrometry [56].

The TSA results reported in this paper represent one 
major improvement over previous studies. In fact, the 
kinetics assays presented in the afore-mentioned stud-
ies employing recombinant hINMT [17, 65] were carried 
out under alkaline conditions (8.5), while others used tis-
sue extract [45, 56], which could suffer of poor reliability. 
In any case, the TSA clearly demonstrated that pH lev-
els above 7.5 significantly reduce the enzyme’s stability 
(Figure S4 and Table 2) and potentially hinder the kinetic 
measurements. Consequently, the accuracy of the  KM 
values published until now may be questioned.

Moreover, finding the right conditions in vitro by TSA 
would assist in discovering suitable conditions for future 
structural studies, e.g., screening of hINMT SNPs, using 
a common PCR device. It must be recalled, indeed, 
that hINMT is inherently unstable for its amino acid 

composition, regardless of the conditions used (instabil-
ity index = 48.22, see above).

The findings from the TSA also provided insights into 
the coenzymes’ affinities for hINMT. The  Kd values for 
both SAM and SAH are determined for the first time 
(Fig. 2). While these must be considered “apparent” val-
ues, they are consistent with the parameters observed for 
other MTs from different organisms [4, 14, 15, 51, 70]. 
This information can provide valuable insights for future 
structural analysis, potentially assisting in the develop-
ment of new protein-coenzyme-inhibitor complexes for 
practical applications. However, the evident resemblance 
between the  Kd of SAM and SAH raises a question. SAH 
should easily detach from the enzyme to facilitate the 
turnover, a process that would be hindered if the coen-
zymes exhibit similar affinities. To explain this result, one 
might speculate that the affinity of SAM for hINMT con-
siderably improves in the presence of the substrate. As an 
example, it is reported that SAM undergoes up to 20-fold 
affinity increase for hNNMT when the enzyme is pre-
bound to quinoline [51]. Given the high sequence iden-
tity (67.4%) and similarity (53%) between hINMT and 
hNNMT [64], it is likely that this may occur in hINMT 
as well. Moreover, the plasma and intracellular SAM con-
centrations are usually higher than SAH [60]. Thus, the 
binding of the substrate likely displaces the water mol-
ecules found experimentally in the active site (Figure S6). 
This increases the hydrophobicity of the site, allowing the 
methyl group of SAM to properly orient itself. Therefore, 
under normal physiological conditions, SAM may bind 
more strongly to hINMT than SAH, potentially facilitat-
ing the turnover process.

In previous studies, kinetic parameters of hINMT from 
other animal species either recombinant or purified from 
tissues, were calculated using a non-continuous assay 
with radioactive SAM. The  KM value of hINMT for the 
natural substrate tryptamine resulted 0.93–1.64  mM 
depending on experimental conditions [68]. Other 
authors have measured the kinetic parameters of INMT 
from different species, showing a  KM of 499 ± 68 μM for 
the enzyme from rabbit lung [18] and 122  μM in Bufo 
gargarizans [72]. The extreme variability reflects the dif-
ferences across animal species regarding the function of 
the produced amines but also the low reproducibility of 
a non-continuous assay with measurement of products 
separated using extraction or chromatographic tech-
niques. In fact,  KM values for tryptamine were highly var-
iable and in the micromolar range, indicating low affinity 
of the methyltransferase for its natural substrate.

Bar-Even et al. analyzed the  kcat and  KM values of sev-
eral thousand enzymes collected from the literature. 
They identified that the “average enzyme” has a  kcat of 
approximately ~ 10   s−1 and a  kcat/KM ratio of around 
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 10–5   s−1   M−1, well below the diffusion limit and what is 
typically reported in textbooks [7]. Moreover, the phys-
icochemical properties of substrates influence kinetic 
parameters; specifically, low molecular mass and hydro-
phobicity appear to limit the optimization of  KM. Fur-
thermore, tryptamine is enzymatically dimethylated 
and might exhibit different kinetic parameters if tested 
with an unmethylated or monomethylated substrate 
(mono-methyl-tryptamine).

The results obtained in this paper with hINMT using 
quinoline transformed into a monomethylated product 
(1-MQ) indicate a low affinity of the enzyme for qui-
noline  (KM = 259.3 ± 42.7 µM). The  KM value for SAM is 
64.10 ± 3.95 μM indicating a higher affinity of the enzyme 
for its natural co-substrate.

The  KM value for quinoline was about 40% lower 
than the value measured for the enzyme NNMT, while 
the  KM value for SAM was approximately twice that of 
NNMT [51]. These data are consistent with the fact that, 
although the two enzymes belong to the same family 
of SAM-dependent MTs, they have different roles and 
specificity. The  kcat values for both quinoline and SAM 
resulted in the order of  10–4   s−1. Similarly, Neelakantan 
et al. reported a comparably low value for hNNMT [51]. 
This data indicates that the catalysis is inefficient and that 
the rate-limiting step of the reaction may be particularly 
slow. Consequently, values of  kcat/KM known as the speci-
ficity constant, resulted in a range of 1–10, far respect to 
the value of the “average enzyme”, indicating how slowly 
the enzyme can convert the substrates into the product 
when they are at low concentrations. A low efficiency 
regarding an artificial substrate is expected, while for the 
SAM substrate, it could indicate that the “in vivo” reac-
tion is regulated by other factors.

The effect of tryptamine on the enzymatic activity of 
hINMT, monitored using the artificial substrate qui-
noline, is inhibitory. As the concentration of tryptamine 
increases, the inhibition also increases (Table 1). Namely, 
preliminary data have shown competitive inhibition (Fig-
ure S3), as expected, confirming that tryptamine and 
quinoline share the same binding site, as observed by 
docking analysis (Fig. 4B).

Finally, it must be noted that the  IC50 of Naratriptan 
(188.5 ± 1.8 µM) estimated by the quinoline-based fluoro-
metric on hINMT method is highly consistent with pre-
vious results related to the rabbit INMT  (IC50 = 167 µM) 
[66].

The lack of exhaustive structural data on hINMT, cur-
rently available as a single crystal structure in complex 
with SAH (PDB entry 2A14, unpublished), is likely the 
most significant obstacle in a comprehensive understand-
ing of some of the enzyme SNPs, described in literature 
[21, 68]. However, the preliminary structure–function 

analysis presented in this study provides valuable insights 
that may guide future investigations.

The existence of four domains in hINMT (the “cap”, 
N-terminal, central and C-terminal domain), obtained by 
comparative analysis with similar paralogs (Fig. 3), might 
explain the double transition observed during TSA (Fig-
ure S4).

Besides this, one should also consider the presence of 
two couple of cysteines residues, i.e., Cys213–Cys168 and 
Cys44–Cys254, that localize at the boundaries of these 
domains. These cysteine couples are in a reduced state 
but close enough to potentially form two disulfide bridges 
(Fig.  3C). It was mentioned that the addition of 1  mM 
DTT increases the thermal stability of hINMT by 0.5 °C 
on average, likely due to an increased reduction of these 
cysteine couples (see above TSA results). While cysteines 
are typically associated with stabilization of the structure, 
a significant body of evidence suggests that cleavable 
disulfide bonds can modulate protein allostery, leading 
to the concept of “allosteric” disulfides [16]. An example 
can be found in cyclophilin A from Schistosoma mansoni, 
whose reduced cysteines triggers the isomerase activity 
while oxidation turns it off [30]. Interestingly, none of the 
four cysteines found in hINMT are conserved in its close 
paralogs, such as NNMT from humans, mice, and mon-
keys. Moreover, among the various hINMT SNPs, the 
Cys254Phe variant retains enzymatic activity even in the 
absence of reducing conditions [68], suggesting a poten-
tial physiological and redox role for these non-conserved 
cysteine residues, which warrants further investigation in 
future studies.

The docking analysis showed a channel-like site 
(Fig.  4A), highlighted for the first time, as well as the 
high degree of conservation of the amino acids lining it 
amongst hINMT and its paralogs hNNMT and hPNMT, 
all belonging to class I MTs (Fig. 5, residues highlighted 
in yellow). This suggests that the channel might have 
a functional role, potentially serving as an entry and/or 
exit route for tryptamine and quinoline. However, this 
hypothesis would diverge from the one put forward else-
where by molecular dynamics simulations, which pre-
sumes the existence of another channel responsible for 
the incorporation of substrates or the release of products 
[26].

The docking models also revealed for the first time the 
putative binding site of tryptamine in hINMT, which 
matches with the position of quinoline (Fig.  4B). It is 
worth nothing that the same residues also take part in 
binding to dimethylselenide (DMSe), a metabolite pro-
duced during the detoxification of Selenium excess, as 
shown elsewhere by molecular dynamics simulations 
[26]. Moreover, competitive inhibitors experimentally 
found in hNNMT (PDB entry 5YJF) [37] and hPNMT 
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(PDB entry 3KQW) [22], both in complex with SAH, 
occupy the same position (Fig.  4C), thus supporting 
the docking results. The highly conserved amino acids 
that make up the putative residues involved in binding 
tryptamine and quinoline in hINMT (Fig.  4D) further 
validate the docking models as they are highly conserved 
amongst the three MTs (Fig.  5, residues highlighted in 
green).

Conclusions
This research advances the understanding of the struc-
tural–functional relationships of hINMT by incorporat-
ing a novel continuous enzymatic assay, thermal shift 
experiments to determine the dissociation constants 
of SAM and SAH, and in silico bioinformatics analyses, 
including docking studies, structural, and sequence align-
ments, which support the use of quinoline as a model 
substrate for steady-state characterization. This advance-
ment is particularly significant compared to previous 
assays, as it allows for more precise and continuous mon-
itoring of enzymatic activity, which is essential for cap-
turing subtle kinetic differences. In short, the assay of the 
hINMT enzyme using the artificial substrate quinoline 
has provided key kinetic properties that until now had 
resulted in variable outcomes and lengthy procedures.

The type of assay presented in this work is suitable for 
studying the activities and kinetics of protein mutants, 
analyzing specificities and active site characteristics, and 
testing potential inhibitors. Combined with the ability 
to determine dissociation constants through a straight-
forward method like TSA, this opens new avenues for 
investigating how polymorphisms may influence enzyme 
function—an area that remains largely unexplored. 
Consequently, it may provide deeper insights into the 
molecular basis of psychiatric diseases linked to genetic 
variations in hINMT. By connecting structural and func-
tional alterations to disease phenotypes, this research 
lays the groundwork for developing targeted therapeutic 
interventions and offers a more comprehensive under-
standing of enzyme behavior and its role in pathology.
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