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Abstract 

Mutations in the tumour suppressor protein p53 are present in 70% of human pancreatic ductal adenocarcinomas 
(PDAC), subsequently to highly common activation mutation of the oncogene KRAS. These p53 mutations generate 
stable expression of mutant proteins, such as  p53R175H and  p53R273H, which do not retain p53 wild type function. 
In this study, we investigated the impact of two specific p53 mutant variants on lipid metabolism of pancreatic 
cancer. Lipids critically participate to tumorigenesis with to their roles in membrane biosynthesis, energy storage 
and production of signalling molecules. Using cell lines derived from mouse models of PDAC generated by knock‑in 
p53 alleles carrying point mutations at codons R172H and R270H (equivalent to R175H and R273H in humans), 
we found that silencing  p53R172H and  p53R270H in pancreatic cancer cells significantly alters lipid metabolism, 
with patterns of common and variant specific changes. Specifically, loss of  p53R172H in these cells reduces lipid 
storage. Additionally, silencing either  p53R172H or  p53R270H individually leads to marked increases in lysophospholipid 
levels. These findings offer new insights into the lipidome reprogramming induced by the loss of mutant p53 
and underscore changes in lipid storage as a potential key molecular mechanism in PDAC pathogenesis.

Keywords p53 mutant, Lipid, Cancer, Metabolism

Introduction
With a dismal 5-year survival rate of under 5%, pancre-
atic ductal adenocarcinoma (PDAC) ranks as the 5th 
most common cause of cancer-related mortality in both 
Europe and the United States [1, 2]. This prognosis is 
largely attributed to the disease’s aggressive progression, 

as nearly 90% of individuals are diagnosed when the can-
cer is already in an advanced, non-resectable state and 
demonstrates significant resistance to chemotherapy [3]. 
PDAC originates from precursor lesions termed pancre-
atic intraepithelial neoplasms (PanINs), which develop 
through a stepwise accumulation of genetic alterations. 
These typically involve mutations in the KRAS oncogene 
and the inactivation of tumor suppressor genes such as 
CDKN2A, TP53, and SMAD4 [4, 5]. Although these 
genetic changes are well-documented in PDAC, their 
precise contributions to cancer initiation and progression 
remain incompletely understood.

Mutations in the TP53 gene, encoding the tumour 
suppressor protein p53, are found in approximately 
70% of PDAC cases, often occurring subsequent to 
activating mutations in the KRAS gene [6–9]. A major 
consequence of p53 inactivation is the loss of capacity 
of cell cycle regulation and cell death, associated to 
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onset of genomic instability [10, 11]. Unlike many 
tumour suppressor genes that are inactivated by 
deletions or nonsense mutations, TP53 mutations 
typically result in the expression of stable mutant 
proteins rather than the complete loss of p53 protein 
levels [12, 13]. These mutant p53 proteins, such as 
 p53R175H and  p53R273H, not only lose their tumour-
suppressing functions but can also acquire new 
oncogenic properties that drive cancer progression 
[14, 15], although the significance of these gain-of-
function effects remain controversial [16–18].

Recent studies have highlighted the importance of 
lipid metabolism in several cancers, including PDAC 
[19]. Lipids are essential for several key cellular 
processes; neutral lipids, for instance, serve as energy 
reserves that can be metabolised through β-oxidation to 
meet the high energy demands of rapidly proliferating 
cancer cells [20]. Furthermore, phospholipids, which 
constitute the primary components of cell membranes, 
are critical for maintaining membrane integrity 
and facilitating cancer cell migration and invasion 
[21]. Lysophospholipids act as bioactive signalling 
molecules, playing a role in cell communication, 
proliferation, and survival [22].

Aberrant lipid metabolism is a newly accepted 
hallmark of cancer and has been implicated in key 
aggressive characteristics such as survival, growth, 
and metastasis [23–25]. In PDAC, alterations in lipid 
metabolism can support the biosynthesis of new 
membranes required for cell division, provide energy 
through fatty acid oxidation, and generate signalling 
molecules that promote required oncogenic pathways 
[26]. Despite the recognised importance of lipid 
metabolism in cancer, the specific impact of mutant 
p53 on lipid metabolism in PDAC has received limited 
research.

In this study, we employed cell lines derived from 
a genetically engineered mouse model of pancreatic 
cancer with knock-in p53 alleles harbouring point 
mutations at codons R172H and R270H (equivalent 
to R175H and R273H in humans) to investigate 
the effects of mutant p53 on lipid metabolism. We 
revealed that silencing these mutant p53 proteins in 
pancreatic cancer cells leads to significant alterations 
in lipid storage and composition, particularly in 
lysophospholipid levels. Specifically, the loss of 
 p53R172H reduces lipid storage, while silencing either 
 p53R172H or  p53R270H individually results in marked 
increases in lysophospholipid levels.

Our study provides an atlas of the mutant p53-induced 
lipid landscape in PDAC, suggesting changes in lipid 
storage and signalling may be critical molecular mecha-
nisms in PDAC pathogenesis.

Results
p53 mutant‑dependent lipidome of pancreatic cancer cells
The two most common mutations in the p53 protein 
in human pancreatic cancer, R175H and R273H 
(equivalent to R172H and R270H in mouse), result in 
the expression of a stable mutant protein [27, 28]. To 
test the regulatory role of these mutant p53 forms 
on the pancreatic cancer lipid profile, we carried 
out a global untargeted lipidomic profiling in KPC 
cells derived from mouse PDAC, generated by the 
pancreas-specific expression of the constitutively active 
 KRASG12D (pdx1-CRE LSL-KRASG12D) and mutant-p53 
R172H or R270H expression. Here, we depleted KPC 
cells from the respective p53 mutant with an siRNA-
mediated silencing. 884 different lipid compounds were 
identified and compared upon p53 mutant silencing 
with their scramble transfected respective control 
condition (Fig.  1A–C). This initial analysis indicated 
that depletion of mutant-p53 extensively remodels the 
lipidome of pancreatic cancer cells.

We next grouped lipids in 33 individual classes to 
produce an overview of those groups with differential 
expression following depletion of each mutation 
(Table 1). Sphingolipids play an essential structural role 
in cell membranes, as well as being potent signalling 
molecules [29]. An increase in Hex1Cer and SM were 
observed in  p53R172H depleted cells, and a similar trend 
was observed for Hex1Cer levels upon silencing of 
R270H (Fig. 1D). A significant increase in sphingolipid 
levels, such as hexosylceramides (Hex1Cer), 
sphingomyelin (SM), and disialoganglioside (GD1a), 
was observed after silencing of mutant  p53R270H, when 
compared with control groups (Fig. 1D).

Additionally, we looked into the effect of silencing 
mutant p53 on expression of neutral lipids such as 
diacylglycerols (DGs), triacylglycerols (TGs) and 
monoacylglycerols (MGs), which provide cancer 
cells with inert forms of energy used in conditions of 
nutrient deprivation [20]. Interestingly, we observed 
that silencing of R172H and R270H has significant 
effects on neutral lipids. A significant decrease in 
DG (18:1_22:1) and an increase in DG  (40:7) levels 
were observed after silencing R172H but, conversely, 
an increase in DG levels, namely DG  (16:1_16:1) 
and DG  (34:4e), and a decrease in DG  (19:1) were 
observed after silencing R270H. MG (22:2) and 
TG  (16:0_16:0_24:0) were found to be upregulated 
whilst MG (32:1) was significantly downregulated after 
silencing of R172H. Also, MG (18:1) was significantly 
upregulated after silencing of  p53R270H (Fig. 1E). Thus, 
divergence in the role of the two p53 mutant variants 
emerged in the regulation of neutral lipids.
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Furthermore, acylcarnitine (AcCa) and carboxy-
lesterase (CarE) as constituents of fatty acyl compounds 
showed a dramatic reduction in silenced R270H cells 
(Fig.  1F). AcCa levels are essential for beta oxidation 
within cancer cells and thus these data indicate that dif-
ferent mutant p53 proteins can differentially impact the 
energy stores required for the rapid proliferation of pan-
creatic cancer cells.

Mutant p53 regulates the production 
of lysophospholipidome
It was demonstrated that lysophospholipid 
species such as lysophosphatidylethanolamine 
(LPE), lysophosphatidylcholine (LPC) and 
lysophosphatidylserine (LPS) are influenced by wild-
type p53 in pancreatic cancer [19]. The levels of such 
species have already been implicated in numerous 
pathophysiological conditions such as cancer, fibrosis, 
inflammation neurodegenerative diseases as well as 
autoimmune diseases [22, 30]. Therefore, we looked into 
lysophospholipids level upon mutant p53 manipulation 
in pancreatic cancer.

Our analysis, however, revealed also 
altered lysophospholipids abundance, with 

lysophosphatidylinositol (LPI), LPE, and 
lysophosphatidylglycerols (LPG) being the most affected 
lysophospholipids after silencing of p53 R172H (Fig. 2A). 
 p53R270H appears to mainly affect some species of LPI 
and LPG (Fig.  2B). LPC, the most abundant class of 
lysophospholipids in plasma, was notably increased also 
after silencing of R172H (Fig. 2A). Conversely, LPS (18:0) 
was decreased whilst LPS (18:1) was increased upon 
 p53R172H depletion, although the change in absolute LPS 
was relatively small (Fig. 2A).

Consistently, we observed an increase of 
phospholipid species such as, phosphatidylserine (PS), 
phosphatidylglycerol (PG), phosphatidylinositol (PI), 
phosphatidylethanolamine (PE), p, after silencing 
 p53R270H. In contrast,  p53R172H depletion caused the 
reduction of PG levels but overall, the silencing of this 
specific mutant did not massively affected phospholipid 
species (Table 1). Phospholipids, which form the bilayer 
structures of all cellular membranes, have been shown 
to increase during periods of cell transformation and 
tumour progression [21]. Our analysis revealed a larger 
general cohort of intracellular PC, PE and PI species 
indicating that these species are the most affected by 
 p53R270H (Table  1). To gain deeper insights into the 
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Fig. 1 p53 silencing remodels the lipidome of pancreatic cancer cells. A, B Volcano plots and heat‑maps were obtained from all identified lipid 
compounds in KPC cells expressing  p53R172H or  p53R270H following transfection with siRNA Control or siRNA against p53. Heat maps of endogenous 
metabolites between control groups and sip53 (n = 5). In the heat map, red‑filled and bleu‑filled lines indicate increased or decreased levels of lipids, 
respectively. C Western blot analysis reports silencing efficiency of p53 mutants in KPC cells following transfection of siRNA Control or siRNA 
against p53. D–F Box plots show the significantly modulated lipid entities after p53 mutant knockdown. *p value < 0.05; **p value < 0.01; ***p 
value < 0.001; ****p value < 0.0001. p value was calculated by unpaired two‑sample t‑test
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impact of mutant p53 on phospholipid composition, 
we conducted a comprehensive analysis comparing 
lipid species that exhibited differential abundance 
upon silencing of the R172H and R270H variants 
in pancreatic cancer cells (Fig.  3A, B). The most 
significantly altered phospholipids after the depletion 
of R172H were the PG(18:1), PG(22:6), PI(18:1) and 
PS(22_4). On the other hand, the most significantly 

altered phospholipids after loss of R270H were the 
PC(31:2), PC(32:2), PI(18:1) (Fig. 3A, B).

The formation of lysophospholipids is a consequence 
of the oxidative lipid damage and enzymatic activity 
associated with ferroptosis [31, 32]. During ferroptosis, 
the lipid peroxidation of polyunsaturatedfattyacids 
(PUFAs) in phospholipids generates lipid hydroperoxides 
[33]. This oxidative stress can lead to the cleavage of 

Table 1 Summary signals for the identified lipid classes between sip53 and control groups

The identified lipids influenced by silencing of mutant p53 (172H and 270H) were grouped into four lipid categories: neutral lipids, sphingolipids, phospholipids 
and fatty acyl and other lipids. The 33 lipid classes were as follows: phospholipids: lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), 
phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidylglycerol (PG), Phosphatidic acid (PA), phosphatidylethanolamine (PE), phosphatidylcholine (PC), 
lysophosphatidylinositol (LPI), monolysocardiolipin (MLCL), dilysocardiolipins (DLCL) and cardiolipin (CL); sphingolipids: sphingomyelin (SM), ceramides (Cer), 
sphingomyelin (SM), hexosylceramides (Hex1Cer), gangliosides (GM3), disialoganglioside (GD1a), trisialosyl lactosylceramide (GT3) and sphingosine (SPH), neutral 
lipids: cholesterol ester (ChE), sterol (ST), monoglycerol (MG), diglyceride (DG), and triglyceride (TG); and fatty acyl and other lipids: N-acylethanolamine (AEA), 
O-Acyl-ω-hydroxy Fatty Acid (OAHFA), fatty acids (FA), lyso-phosphatidyl-glycerols (LPG), lyso-phosphatidylserine (LPS) and coenzyme (Co) and acyl carnitine (AcCa). 
The summary signals for the identified lipid classes between silencing of mutant p53 and control groups are presented in Table 1

Class KPCR172H siControl KPCR172H sip53 t‑test KPCR270H siControl KPCR270H sip53 t‑test

AcCa 2.60E+06 2.84E+06 0.20139 2.74E+06 2.34E+06 0.20186

AcylCoA 3.55E+05 4.36E+05 0.04952 4.39E+05 3.57E+05 0.05155

AEA 4.18E+05 4.05E+05 0.51956 2.12E+05 1.92E+05 0.59221

CarE 3.42E+05 4.46E+05 0.43697 2.03E+05 9.01E+04 0.00969

Cer 5.87E+06 5.30E+06 0.00059 5.66E+06 7.37E+06 0.00004

ChE 8.15E+05 9.14E+05 0.70490 8.73E+05 6.41E+05 0.30994

CL 1.35E+07 1.40E+07 0.30651 1.32E+07 1.76E+07 0.01083

Co 5.91E+05 5.27E+05 0.32791 3.77E+05 5.91E+05 0.07582

DG 6.79E+06 5.99E+06 0.00640 9.17E+06 1.04E+07 0.00416

DLCL 1.58E+06 2.06E+06 0.00377 2.39E+06 2.74E+06 0.74871

FA 2.89E+08 2.74E+08 0.26061 2.77E+08 2.78E+08 0.28493

GD1a 1.92E+06 2.01E+06 0.31994 3.67E+06 5.51E+06 0.07963

GM3 5.14E+05 5.56E+05 0.92182 9.88E+04 2.30E+05 0.03891

GT3 1.48E+06 1.58E+06 0.59084 2.17E+06 3.50E+06 0.03091

Hex1Cer 2.41E+06 3.57E+06 0.03370 3.40E+06 7.04E+06 0.01095

LPC 3.98E+06 4.30E+06 0.18253 3.11E+06 2.79E+06 0.00264

LPE 8.90E+05 1.09E+06 0.01563 2.60E+06 2.76E+06 0.09759

LPG 4.48E+05 6.90E+05 0.09905 1.05E+06 1.28E+06 0.12826

LPI 1.94E+06 2.28E+06 0.00188 5.31E+06 5.91E+06 0.06143

LPS 1.68E+06 1.36E+06 0.33132 1.94E+06 1.81E+06 0.58922

MG 3.39E+06 2.75E+06 0.07715 1.03E+07 1.03E+07 0.87416

MLCL 2.62E+06 2.65E+06 0.85808 4.32E+06 4.54E+06 0.31699

OAHFA 3.98E+06 3.91E+06 0.70963 4.22E+06 3.90E+06 0.04667

PA 1.31E+06 1.09E+06 0.00418 1.66E+06 2.33E+06 0.00100

PC 3.78E+07 3.88E+07 0.16859 3.22E+07 3.55E+07 0.00003

PE 3.08E+07 3.31E+07 0.03162 2.65E+07 3.26E+07 0.00392

PG 9.62E+06 6.46E+06 0.29773 7.67E+06 9.27E+06 0.09447

PI 7.57E+06 7.12E+06 0.05216 8.70E+06 9.72E+06 0.00177

PS 1.82E+07 1.73E+07 0.10862 1.62E+07 2.14E+07 0.02495

SM 2.42E+07 2.09E+07 0.02189 3.08E+07 3.07E+07 0.86963

SPH 2.83E+06 3.02E+06 0.19443 1.37E+06 1.18E+06 0.55418

ST 1.12E+06 1.16E+06 0.91563 2.97E+06 3.20E+06 0.16045

TG 1.36E+06 1.42E+06 0.02054 1.54E+06 1.52E+06 0.29237
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fatty acid chains from phospholipids, resulting in the 
formation of lysophospholipids. Ferroptosis can activate 
phospholipases, such as phospholipase A2 (PLA2), 
which hydrolyses the sn-2 acyl bond of phospholipids 
to produce lysophospholipids and free fatty acids [34]. 
This activity is part of the cellular response to oxidative 
damage and contributes to the breakdown of membrane 
integrity during ferroptosis. Hence, lysophospholipids 
abundancy can be linked to ongoing ferroptosis. 
Together, these results show that p53 gain of function 
mutations may drive aberrant phospholipid metabolism 
in pancreatic cancer cells.

Mutant p53 regulates acyl‑CoA levels in cancer cells
Altered lipid metabolism, starting with acyl-CoA 
formation, is a key factor in the progression of 
various diseases, including cancer. For fatty acids to 
participate in metabolic pathways, they must first be 

converted into acyl-CoA. This activation enables their 
involvement in essential processes such as membrane 
phospholipid synthesis, energy storage, oxidation for 
energy production, and the generation of signaling 
lipids [35]. To explore the dysregulation of fatty acid 
metabolism in pancreatic cancer, we measured acyl-
CoA levels after silencing the mutant p53 gene. We 
observed increased acyl-CoA levels following the 
silencing of the mutant p53 R172H variant (Table 1 and 
Fig. 4A). These data suggest a reduced use of the lipid 
pathway or increased incorporation of free fatty acids. 
Conversely, decreased acyl-CoA levels were observed 
after silencing the mutant R270H variant, indicating 
a higher demand for signalling lipids (Table  1 and 
Fig.  4B). Overall, these findings suggest that mutant 
p53 induces significant changes in lipid metabolism in 
pancreatic cancer cells and that these changes can vary 
depending on the specific p53 mutation.
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Fig. 2 Lisophospholipids are affected by p53 mutant. A Box plots show the significantly modulated lipid entities after  p53R172H knockdown. *p 
value < 0.05; **p value < 0.01; ***p value < 0.001; ****p value < 0.0001. B Box plots show the significantly modulated lipid entities after  p53R270H 
knockdown. *p value < 0.05; **p value < 0.01; ***p value < 0.001; ****p value < 0.0001. pvalue was calculated by unpaired two‑sample t‑test
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Cholesterol level is influenced by Mutant p53
Cholesterol is crucial for the survival and growth of 
mammalian cells [36]. It also modulates signalling 
pathways involved in tumorigenesis and metastasis by 
covalently modifying proteins, including those in the 
Hedgehog and Smoothened pathways, as well as the Rho 
signalling pathway [37]. Interestingly, we did not observe 
any significant change in cholesterol ester (ChE) levels 
after silencing the mutant p53 R172H variant, despite 
it being described as a common metabolic pathway 
regulated by p53 [36], potentially through increased 
uptake of cholesterol (Table  1, Fig.  4A). However, 
decreased ChE levels were observed after silencing the 
mutant R270H variant (Table 1, Fig. 4B). This finding is 
consistent with RNA sequencing data showing reduced 
levels of 3-hydroxy-3-methylglutaryl coenzyme-A 
reductase (HMGCR), the rate-limiting enzyme in the 
cholesterol synthesis pathway (Fig.  4C). Consistently 
with this regulation, expression level of HMGCR 
correlated with p53 mutational status in PDAC patients, 
as indicated by the analysis of cancer genomic dataset 
(CPTAC) (Fig. 4D). HMGCR was previously shown to be 
regulated and influenced as expression level by different 
p53 mutant forms in breast cancer [38, 39].

Overall, these results suggest that mutant p53 
induces significant changes in cholesterol metabolism 
in pancreatic cancer cells and again highlights a clear 

divergence in metabolic profiles between the two 
mutations.

Conclusion
Substantial progress has been made in the past years 
understanding the regulatory mechanisms of p53 in lipid 
metabolism. These metabolic processes, while supporting 
substrate availability for the rapid proliferation of 
tumour cells, might also present unique therapeutic 
opportunities. The role of mutant p53 in modulating 
the mevalonate pathway, particularly through enhanced 
activation of SREBP-2, already suggested a significant 
impact on isoprenoid and cholesterol biosynthesis [39], 
pioneering this area.

In this study, we present an atlas of lipid regulation 
influenced by two highly frequent p53 mutant variants 
in pancreatic cancer (Fig.  4E). Our analysis reveals 
both shared regulatory patterns and distinct variant-
specific effects. This descriptive analysis underscores 
the necessity of a systematic assessment of p53 mutant 
variants to fully explore their potential as therapeutic 
targets and to determine the most effective strategies 
for targeting them. By mapping the lipidome regulation, 
this work aims to provide a comprehensive overview 
of the variant-specific effects of p53 mutants on lipid 
metabolism [12]. Our work aims to guide future research 
in this area, particularly studies that could uncover 
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Fig. 3 Other phospholipid species are altered by  p53R172H or  p53R270H. A, B Box plots show the significantly modulated phospholipid content 
after  p53R172H (in A) or  p53R270H (in B) knockdown. *p value < 0.05; **p value < 0.01; ***p value < 0.001; ****p value < 0.0001. p value was calculated 
by unpaired two‑sample t‑test
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vulnerabilities in cancer and lead to viable therapeutic 
options. Such research would benefit from the careful 
selection of cancer patient cohorts harbouring p53 
mutations.

Materials and methods
Cell culture
Pancreatic cancer cell lines from mouse models (KPC270 
and KPC172) were cultured in DMEM (Gibco). Each 
medium was further supplemented with 10% (FBS, 
Gibco) and penicillin/streptomycin (2 units/ml) (Gibco), 
and the cell lines were maintained at 37 °C under 5%  CO2.

Transfection and gene silencing
siRNA transfection was carried out using Lipofectamine 
RNAiMAX (Invitrogen, Waltham, MA, USA). The 
transfection was performed with 50 nM of Silencer Select 
Predesigned trp53 (Ambion, siRNA ID s75472, Waltham, 
MA, USA), and Silencer Select Negative Control No. 1 
siRNA (Ambion).

RNA extraction, reverse transcription, and qPCR analysis
Total RNA was isolated using the RNeasy Mini Kit 
(Qiagen) according to the protocol provided by the 
manufacturer. One microgram of RNA was subsequently 
used for reverse transcription using the SensiFAST 
cDNA Synthesis Kit (Meridian Bioscience, BIO-65054), 
following the manufacturer’s guidelines. Quantitative 
real-time PCR (qRT-PCR) was conducted with Fast SYBR 
Green PCR Master Mix (Applied Biosystems). Relative 
gene expression levels were calculated using the  2−ΔΔCt 
method, with normalization to the expression of mouse 
TATA-binding protein (TBP).

Lipidomics
For lipidomics analysis via mass spectrometry (MS), 
KPC270 and KPC172 were transfected with siRNA 
against p53 or siRNA Negative Control. Cells were 
collected 72  h after trasnfection, and pellets containing 
1 ×  106 cells per replicate were snap-frozen and stored at 
− 80 °C. Five biological replicates were prepared for each 
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Fig. 4 AcylCoA levels are significantly affected after loss of mutant p53. Violin plots showing the significantly modulated lipid classes after p53 
knockdown. A AcylCoA species found significantly increased in sip53 (R172H) or sip53 (R270H) cells comparing with control groups. B Cholesterol 
ester (ChE) species found after sip53 (R172H) or sip53 (R270H) comparing with control groups. No significant changes in ChE levels were 
observed. C HMGCR mRNA level is influence by  p53R270H expression level. D HMGCR expression correlates with p53 mutant status in Pancreatica 
adenocarcinoma patients (CPTAC). E Summary of the lipid profiling changes after loss of mutant p53 in pancreatic cancer cells. Changes induced 
after sip53 (R172H) is shown in blue and after sip53 (R270H) are shown in red. Arrow up indicate increase and arrows down indicate reduction. *p 
value < 0.05; ***p value < 0.001. p value was calculated by unpaired two‑sample t‑test
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condition. Ultra-high-pressure liquid chromatography 
coupled to high-resolution tandem mass spectrometry 
(UHPLC-MS/MS—Vanquish and QExactive, Thermo 
Fisher, San Jose, CA, USA) was used for lipidomic 
analysis, as extensively described in prior technical notes 
[40].
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