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Abstract
M2 macrophages play a crucial role in the initiation and progression of various tumors, including diffuse large B-cell 
lymphoma (DLBCL). However, the characterization of M2 macrophage-related genes in DLBCL remains incomplete. 
In this study, we downloaded DLBCL-related datasets from the Gene Expression Omnibus (GEO) database and 
identified 77 differentially expressed genes (DEGs) between the control group and the treat group. We assessed 
the immune cell infiltration using CIBERSORT analysis and identified modules associated with M2 macrophages 
through weighted gene co-expression network analysis (WGCNA). Using the Least Absolute Shrinkage and 
Selection Operator (LASSO), Support Vector Machine Recursive Feature Elimination (SVM-RFE), and Random Forest 
(RF) algorithms, we screened for seven potential diagnostic biomarkers with strong diagnostic capabilities: SMAD3, 
IL7R, IL18, FAS, CD5, CCR7, and CSF1R. Subsequently, the constructed logistic regression model and nomogram 
demonstrated robust predictive performance. We further investigated the expression levels, prognostic values, and 
biological functions of these biomarkers. The results showed that SMAD3, IL7R, IL18, FAS and CD5 were associated 
with the survival of DLBCL patients and could be used as markers to predict the prognosis of DLBCL. Our study 
introduces a novel diagnostic strategy and provides new insights into the potential mechanisms underlying DLBCL. 
However, further validation of the practical value of these genes in DLBCL diagnosis is warranted before clinical 
application.
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Introduction
Diffuse Large B-cell Lymphoma (DLBCL) is the most 
common lymphoma in adults, accounting for 30–40% 
of non-Hodgkin lymphomas(NHL) [1, 2]. Approxi-
mately 50–70% of patients achieve long-term remission 
following combined immunochemotherapy with ritux-
imab, cyclophosphamide, doxorubicin, and prednisone 
(R-CHOP) [3–5]. However, a subset of patients relapse or 
fail to respond to the R-CHOP protocol [6, 7]. It is known 
that lymphoid malignancies possess clinically exploitable 
immune sensitivity, and their intrinsic tumor microenvi-
ronment (TME) renders them natural targets for immu-
notherapy [8]. In addition to novel antibodies targeting 
surface antigens and small molecule inhibitors aimed at 
oncogenic signaling pathways and tumor suppressor fac-
tors, immune checkpoint inhibitors and chimeric antigen 
receptor T (CAR-T) cells have also rapidly emerged as 
strategies targeting the tumor microenvironment [9].

The TME is a key regulatory factor in tumor growth, 
progression, and metastasis. Among the innate immune 
cells recruited to the tumor site, macrophages are the 
most abundant cell type and are present at various stages 
of tumor progression [10]. Tumor-associated macro-
phages (TAMs) are an important component of the TME 
[11] and play a pivotal role in establishing an immuno-
suppressive environment that promotes tumor growth 
and metastasis [12]. TAM can mediate immune sup-
pression, shape and remodel the tumor immune micro-
environment (TIME), and contribute to tumor immune 
evasion [13–15]. TAM consists of heterogeneous sub-
populations, including M1 anti-tumor phenotypes and 
M2 pro-tumor phenotypes [16]. However, the role of 
M2 macrophages in the development of DLBCL remains 
unknown. Therefore, investigating M2 macrophage-
related genes closely associated with DLBCL is of great 
significance for understanding its pathogenesis, enhanc-
ing diagnosis and treatment, and conducting prognostic 
assessments.

This study employs bioinformatics and machine learn-
ing approaches to identify M2 macrophage-related genes 
associated with DLBCL. These findings will aid in fur-
ther exploring the role of the tumor microenvironment 
in DLBCL and the significance of M2 macrophages in 
the onset, progression, and prognosis of the disease. This 
work provides critical insights into the molecular mecha-
nisms, diagnosis, treatment, and prognostic evaluation of 
DLBCL.

Materials and methods
Data sources
In the GEO database, we employed " DLBCL” as a key-
word to filtrate gene expression profile data associated 
with DLBCL. In this study, the experimental group con-
sisted of pathological tissues from patients diagnosed 

with DLBCL, while the control group comprised 
hyperplastic lymph node tissues. The datasets down-
loaded included GSE9327, GSE23647, GSE32018, and 
GSE83632. Additionally, we retrieved comprehensive 
clinical information for the patients from the GEO data-
set GSE181063, which included details such as age, gen-
der, disease stage, subtype, ECOG performance status, 
IPI score, B symptoms, LDH levels, number of extranodal 
sites, and survival data.

Data preprocessing and differential gene expression 
analysis
The platform annotation file was utilized to convert the 
probe expression matrix into a gene expression matrix. 
The “sva” packag (V.3.54.0) was employed to eliminate 
heterogeneity in the training dataset caused by variations 
in experimental platforms and batches. We assessed the 
effectiveness of the correction among samples through 
two-dimensional principal component analysis (PCA) 
clustering. Ultimately, we obtained a merged normalized 
gene expression matrix and conducted further analy-
ses using the “limma” package (V.3.62.2). The thresholds 
for identifying differentially expressed genes (DEGs) 
were set at adj.p.Val < 0.05 and |log FC| > 0.585. Heat-
maps and volcano plots for DEGs were generated using 
the “pheatmap“(V.1.0.12) and “ggplot2“(V.3.5.1) pack-
ages, respectively, to illustrate the patterns of differential 
expression.

Immune infiltration analysis
CIBERSORT is a method used to characterize the cellular 
composition of complex tissues based on gene expression 
profiles [17]. In this study, we utilized CIBERSORT soft-
ware to predict the proportions of 22 infiltrating immune 
cell types in each tissue from the merged dataset (see 
Table S1). For each sample, the sum of scores for all eval-
uated immune cell types equaled 1 [18]. Subsequently, 
the results from CIBERSORT were visualized using 
the R packages “reshape2(V.1.4.4),” “ggpubr(V.0.6.0),” 
“ggplot2(V.3.5.1),” and “dplyr(V.1.1.4).”

Weighted gene co-expression network analysis (WGCNA)
WGCNA uses the correlation coefficients of normalized 
expression levels for each gene to assess the co-expres-
sion relationships among genes, defining genes with co-
expression relationships as a module. Genes within the 
same module exhibit similar expression levels, while 
genes in different modules show significant differences 
in expression levels. This approach allows for the sim-
plification of complex high-throughput data into man-
ageable modules for dimensionality reduction analysis. 
Ultimately, we can explore the relationships between 
these gene co-expression modules and immune cells, 
revealing the biological significance of these modules. 
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We conducted the analysis using the WGCNA package 
(V.1.73) [19], setting the minimum module size to 50, 
the soft threshold to an optimal value of 10, the module 
merging cutoff height to 0.2, and the minimum distance 
to 0.2. This method was employed to derive co-expres-
sion modules containing DEGs associated with M2 mac-
rophages in the DLBCL group. Functional enrichment 
analysis was performed using the clusterProfiler package 
(V.4.14.4) in R, with a filtering criterion of p < 0.05 for 
Gene Ontology (GO)and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses of M2 mac-
rophage-related DEGs (see Table S2). Finally, the results 
were visualized using the “ggplot2” package (V.3.5.1) in R.

Construction of protein-protein interaction network 
analysis
To analyze the interactions between M2 macrophages 
genes and associated proteins, we constructed a pro-
tein-protein interaction (PPI) network by utilizing the 
STRING online database to intersect the M2 macro-
phages module with DEG. To further investigate the 
interactions between M2 macrophages and DEGs, we 
employed the cytoHubba plugin in Cytoscape software 
to identify closely connected gene hubs [20]. For in-depth 
analysis, we selected the top 10 node genes based on their 
scoring rankings.

Identification of M2 macrophages biomarkers
We employed the Least Absolute Shrinkage and Selec-
tion Operator (LASSO) algorithm in conjunction with 
the glmnet package (V.4.1.8) to perform dimensionality 
reduction [21], preserving the M2 macrophage-related 
DEGs that differentiate DLBCL patients from normal 
samples for feature selection. Subsequently, we estab-
lished a Support Vector Machine Recursive Feature 
Elimination (SVM-RFE) model using the e1071 package 
(V.4.3.1) and compared the model’s performance through 
the average misclassification rate obtained via 10-fold 
cross-validation [22]. Random Forest (RF), a recursive 
partitioning algorithm based on binary trees, was utilized 
for the selection of hub genes using the “randomForest” 
package (V.4.7.1.2), which ranked the DEGs and selected 
genes with importance scores greater than 10 for down-
stream analyses. Furthermore, overlapping biomarkers 
identified by the three algorithms were used to determine 
the optimal gene biomarkers for DLBCL.

Subsequently, we annotated the positions of the iden-
tified biomarker genes on human chromosomes using 
the “circlize” package (V.0.4.16). To assess the diagnos-
tic ability of the optimal gene biomarkers, we calculated 
the Receiver Operating Characteristic (ROC) curve and 
measured the area under the curve (AUC), as well as 
accuracy, sensitivity, and specificity. Building on this, 
we constructed a logistic regression model based on 

the seven biomarker genes using the glm package in R, 
employing the prediction function to forecast sample 
types within the merged dataset, while also utilizing the 
ROC curve to evaluate the diagnostic performance of the 
logistic regression model. Additionally, we established a 
nomogram using the “rms” R package to predict the risk 
of DLBCL based on the feature genes and estimated the 
predictive efficacy of the nomogram through calibration 
curves.

Survival analysis and independent prognostic analysis
We utilized the GSE181063 dataset to analyze the prog-
nostic value of the identified biomarker genes in DLBCL. 
First, we determined the threshold for each biomarker 
gene based on the median expression values. Subse-
quently, survival analysis was performed using the 
“survival“(V.3.8.3) and “survminer” (V.0.5.0) packages. 
Following this, we conducted Cox regression analysis to 
evaluate the potential of these biomarker genes as inde-
pendent prognostic factors for DLBCL patients.

Gene set enrichment analysis (GSEA)
This analysis was conducted using the GSEA (V.4.4.1) 
package in R. To further explore the differentially asso-
ciated pathways between the high and low infiltration 
groups of M2 macrophages, we calculated the correlation 
of M2 macrophages with all other genes in the integrated 
dataset. Subsequently, we ranked all genes from high to 
low based on their correlation and treated these ranked 
genes as the gene set for testing. Meanwhile, we utilized 
the KEGG pathway collection as a predefined set to 
assess the degree of enrichment within the gene set. The 
specific enrichment results are summarized in Table S3.

Gene set variation analysis (GSVA)
This analysis was conducted using the GSVA (V.4.4.1) 
package in R. GSVA is a method for analyzing gene set 
variation [23]. In this study, we used the KEGG path-
way collection as the background gene set for GSVA 
analysis. Additionally, we employed the limma pack-
age to analyze the differences in GSVA scores between 
samples with high and low infiltration of M2 macro-
phages. The filtering criteria were set as follows: t > 2 
and p < 0.05. If t > 0, we considered that the pathway 
was activated in the high infiltration group; conversely, 
if t < 0, we considered that the pathway was activated in 
the low infiltration group.

Results
Identification of DEGs in DLBCL
A total of 278 samples (158 control samples and 120 
experimental samples) were used to identify DEGs 
in DLBCL. The batch effects of four GEO datasets 
(GSE9327, GSE23647, GSE32018, and GSE83632) were 
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addressed using the “sva” package, and normalization was 
performed using the “limma” package. Principal com-
ponent analysis (PCA) scatter plots demonstrated the 
changes in normalized gene expression data before and 
after batch effect removal (Fig. 1A and B). Furthermore, 
the results of the differential expression analysis revealed 
a total of 77 DEGs identified in the combined dataset, 
including 42 upregulated genes and 35 downregulated 
genes (Fig. 1C and D).

Immune infiltration analysis
A substantial body of evidence indicates an insepa-
rable link between the immune microenvironment 
and DLBCL [24–26]. Therefore, we applied the 

CIBERSORT algorithm to explore the differences 
in immune microenvironment between the control 
and experimental groups. Based on the results of the 
immune infiltration analysis, a bar chart was gener-
ated (Fig.  2A) that displays the infiltration status of 
22 immune cell types in each cancer patient sample. 
Additionally, we analyzed the differential expression 
of immune cells between the two groups, as shown in 
Fig. 2B. In the experimental group, the proportions of 
memory B lymphocytes, naïve CD4 + T lymphocytes, 
follicular helper T lymphocytes, γδ T lymphocytes, 
activated natural killer cells, M1 macrophages, M2 
macrophages, and neutrophils were higher than those 
in the control group. Conversely, the proportions of 

Fig. 1 Principal component analysis (PCA) showing patterns of gene expression across datasets and differential gene expression analysis. (A) The distri-
bution of the four datasets before batch effect was removed. (B) Removed all confounding factors from the corrected samples. (C) A heatmap illustrating 
the expression patterns of DEGs across the samples. (D) Volcanic plots for differentially expressed genes. Red and blue dots denote significantly upregu-
lated and downregulated genes, respectively, while black dots indicate non-significant genes
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naïve B lymphocytes, CD8 + T lymphocytes, rest-
ing CD4 + memory T lymphocytes, regulatory T lym-
phocytes, resting natural killer cells, monocytes, and 
resting mast cells were lower than those in the con-
trol group. Furthermore, a more detailed analysis of 
immune cell infiltration revealed complex correlations 
among the cells (Fig. 2C). For instance, the correlation 
between monocytes and γδ T lymphocytes was 0.55, 
the correlation between monocytes and neutrophils 
was 0.56, and the correlation between naïve B lympho-
cytes and memory B lymphocytes was 0.56.

Identification of 60 potential genes associated with M2 
macrophage infiltration
We employed the WGCNA method to identify modules 
associated with M2 macrophages in DLBCL. When the 
soft threshold β was set to 8, the scale-free topology fit-
ting index R² reached 0.9. Subsequently, we used the 
“dynamic merging” algorithm to obtain three modules 
(Fig.  3A and B). The analysis results indicated a strong 
correlation between the turquoise module and M2 mac-
rophages (cor = 0.38; P < 0.001; Fig.  3C). Additionally, 
the characteristic genes of M2 macrophages showed a 

Fig. 2 Immune Infiltration Analysis. (A) The bar chart displays immune cell infiltration results of 22 immune cells in two groups. (B) The group comparison 
chart illustrates differences in the abundance of immune cell infiltration in two groups. (C) The correlation matrix of immune cell proportions
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significant correlation with the modular genes in the tur-
quoise module (cor = 0.33; P < 0.001; Fig. 3D). Therefore, 
for downstream analysis, we selected the turquoise mod-
ule from the integrated dataset as the key module related 
to M2 macrophages. Next, we overlapped the differen-
tially expressed genes (DEGs) with the genes of the tur-
quoise module, ultimately identifying 60 potential genes 
(Fig. 4A).

Functional analysis of potential genes and identification of 
core network genes
To elucidate the biological functions and pathways 
associated with the potential genes, we conducted GO 
and KEGG enrichment analyses. The results of the GO 
functional enrichment analysis are presented in Fig. 4B. 
In the biological process category, the potential genes 
were associated with the positive regulation of leuko-
cyte cell-cell adhesion, cell adhesion, inflammatory 
response modulation, and T cell activation. In terms of 
cellular components, the changes were mainly related 

to the exterior side of the plasma membrane, tertiary 
granule lumen, specific granule lumen, and replication 
fork. Regarding molecular functions, the potential genes 
exhibited activities related to cytokine binding, immune 
receptor activity, cytokine receptor activity, and G pro-
tein-coupled chemoreceptor activity. The results of the 
KEGG pathway enrichment analysis are shown in Fig. 4C, 
indicating that the potential genes are linked to tran-
scriptional dysregulation in cancer, hematopoietic cell 
lineage, p53 signaling pathway, and the cell cycle. Nota-
bly, the potential genes were also significantly enriched 
in various immune-related features. This evidence sug-
gests that the potential genes may play a crucial role in 
the pathogenesis of DLBCL by participating in cell adhe-
sion, modulating immune cells, and influencing various 
enzymatic activities. Finally, we performed PPI analysis 
of the 60 potential genes using the STRING database and 
Cytoscape software (Fig. 4D). Ten hub genes were identi-
fied using the cytoHubba plugin in Cytoscape, as shown 
in Fig. 4E.

Fig. 3 Identification of related modules. (A) Scale Independence and average connectivity in integrated dataset. (B) Cluster dendrogram in integrated 
dataset. (C) Heatmap of correlation between modules and important immune cells in integrated dataset. (D)Scatter plot showing the relationship be-
tween the associated genes of M2 macrophages and the module members of MEturquoise
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Seven differentially expressed genes identified as 
diagnostic genes for DLBCL
Considering the differences between DLBCL patients and 
healthy individuals, we aimed to evaluate the diagnostic 
potential of the DEGs. Subsequently, we implemented 
three machine learning algorithms—LASSO, SVW-RFE, 
and RF—to select significant DEGs that could distin-
guish DLBCL patients from healthy individuals within 
the integrated dataset. Using the LASSO logistic regres-
sion algorithm with 10-fold cross-validation, we identi-
fied 9 feature genes associated with DLBCL (Fig. 5A and 
B). Next, the SVW-RFE algorithm identified 10 genes 
(maximum accuracy = 0.871, minimum RMSE = 0.129) as 
the optimal feature genes (Fig.  5C and D). Additionally, 
the RF algorithm determined 8 genes as the best feature 
genes (Fig. 5E and F). Finally, we performed a cross-anal-
ysis of the marker genes obtained from the three machine 
learning algorithms, identifying 7 signature genes—
SMAD3, IL7R, IL18, FAS, CD5, CCR7, and CSF1R—for 
further analysis (Fig. 6A).

Subsequently, we annotated the locations of the 7 sig-
nature genes on the human chromosomes and visualized 
them using a pie chart (Fig. 6B). The results showed that 
IL7R and CSF1R are located on chromosome 5, while 
IL18 and CD5 are located on chromosome 11. We fur-
ther explored the expression levels of these 7 signature 
genes between the control and experimental groups, 
as depicted in Fig.  6C. Compared to the control group, 
the expression levels of SMAD3, IL7R, CD5, CCR7, and 
CSF1R were reduced in the experimental group, whereas 
the expression levels of IL18 and FAS were increased.

Based on the aforementioned 7 signature genes, we 
constructed a logistic regression model using the R pack-
age glm. Subsequent ROC curve analysis demonstrated 
that this logistic regression model effectively distin-
guished DLBCL patients from healthy individuals, with 
an AUC of 0.921 (Fig. 7A). Furthermore, to evaluate the 
ability of each individual gene to differentiate between 
DLBCL and normal samples, we generated ROC curves 
for each of the 7 signature genes. As shown in Fig. 7B, all 

Fig. 4 Identification of ten hub genes. (A) Wayne diagram showing the 60 potential genes shared by DEGs and MEturquoise modules. (B) Barplot chart 
of GO analyses of potential genes. (C) Barplot chart of KEGG analyses of potential genes. (D) Cytoscape visualization showing the network diagram of 
protein-protein interactions. (E) Network diagram of hub gene junctions generated by cytoHubba plugin
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Fig. 6 Expression of the 7 signature genes in DLBCL dataset. (A) Wayne diagram showing the 7 signature genes shared by LASSO、SVW-RFE and RF. (B) 
Chromosome location map of the 7 signature genes. (C) The expression levels of the 7 signature genes in control and treat samples

 

Fig. 5 Identification of diagnostic genes. (A and B) The LASSO logistic regression algorithm was utilized, with penalty parameter tuning performed 
through 10-fold cross-validation, leading to the selection of 9 genes associated with DLBCL characteristics. (C and D) The SVW-RFE algorithm was applied 
to determine the optimal combination of feature genes and ultimately identifying 10 genes (maximum accuracy = 0.871, minimum RMSE = 0.129) as the 
optimal feature set. (E and F) The RF algorithm determined 8 genes as the best feature genes
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genes exhibited AUC values greater than 0.7, indicating 
good discriminatory power. This evidence suggests that 
the logistic regression model provides higher accuracy 
and specificity in differentiating DLBCL samples from 
normal samples compared to individual signature genes. 
Subsequently, we developed a nomogram model based 
on these 7 signature genes to predict the risk of disease 
in DLBCL patients, as illustrated in Fig. 7C. Additionally, 
the calibration curve of the nomogram further confirmed 
the good predictive performance of our model (Fig. 7D).

Survival and prognostic analysis of seven biomarker genes
We analyzed the prognostic value of the signature genes 
in DLBCL using the GSE181063 dataset. As shown in 
Fig.  8, patients in the low-expression group had sig-
nificantly shorter overall survival compared to those in 
the high-expression group for CD5 (p < 0.001; Fig.  8A), 
FAS (p = 0.004; Fig.  8B), IL7R (p < 0.001; Fig.  8C), IL18 
(p < 0.001; Fig.  8D), and SMAD3 (p = 0.004; Fig.  8E). In 
contrast, the expression of CCR7 (p = 0.882, Fig.S1A) 
and CSF1R (p = 0.056, Fig.S1B) did not show a significant 

Fig. 7 Logistic regression model and nomogram model of DLBCL patients were constructed based on 7 signature genes. (A) The AUC of the logistic 
regression model for identifying DLBCL samples is shown. (B) The ROC curves for the 7 signature genes are displayed. (C) A nomogram model combined 
with based on 7 signature genes was constructed to predict the risk of DLBCL patients. (D) The calibration curve of the nomogram tests the predictive 
performance of the model
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correlation with overall survival. Additionally, we 
assessed the impact of signature gene expression on 
the survival of DLBCL patients through univariate Cox 
regression analysis. The results indicated that low expres-
sion of CD5 (HR: 0.820; 95% confidence interval [CI]: 
0.752–0.895; p < 0.001; Fig. 8F), FAS (HR: 0.873; 95% CI: 
0.797–0.956; p = 0.003; Fig. 8G), IL7R (HR: 0.854; 95% CI: 
0.803–0.908; p < 0.001; Fig. 8H), IL18 (HR: 0.781; 95% CI: 
0.698–0.874; p < 0.001; Fig.  8I), CSF1R (HR: 0.858; 95% 
CI: 0.764–0.964; p = 0.010; Fig.S1D), and SMAD3 (HR: 
0.832; 95% CI: 0.739–0.937; p = 0.002; Fig.  8J) was asso-
ciated with poorer survival probabilities. However, the 
expression of CCR7 (p = 0.260, Fig.S1C) was not signifi-
cantly correlated with patient survival. These results sug-
gest that SMAD3, IL7R, IL18, FAS, and CD5 can serve as 
biomarkers for predicting the prognosis of DLBCL.

M2 macrophage infiltration is closely associated with 
various pathways related to DLBCL
To further explore the relationship between M2 mac-
rophage infiltration and DLBCL-related pathways, we 
conducted GSEA-KEGG pathway analysis, as shown 
in the figures. The results indicated that the cytosolic 
DNA sensing pathway, oxidative phosphorylation, and 
ribosome pathway were primarily enriched in the high-
expression group of M2 macrophages (Fig.  9A), while 
the calcium signaling pathway, hematopoietic cell lin-
eage, melanogenesis, Notch signaling pathway, and tight 
junctions were mainly enriched in the low-expression 
group of M2 macrophages (Fig.  9B). Next, we exam-
ined the differential activation pathways between the 
high-expression and low-expression groups based on 
the expression levels of M2 macrophages, incorporat-
ing GSVA. The results showed that the high-expression 
group of M2 macrophages might activate pathways 

such as peroxisome, PPAR signaling pathway, pyrimi-
dine metabolism, and the metabolism of exogenous 
substances via cytochrome p450. In contrast, in the low-
expression group of M2 macrophages, pathways related 
to meiosis, focal adhesion, T cell receptor signaling, and 
proximal tight junctions might be activated (Fig. 9C).

Discussions
DLBCL is the most common type of lymphoma, char-
acterized by extensive heterogeneity. Despite significant 
advancements in diagnosis and treatment, particularly 
with the application of CAR-T therapy, which has nota-
bly improved survival rates for DLBCL patients, some 
patients still face poor treatment outcomes. Relapse and 
treatment resistance remain significant challenges in the 
management of DLBCL [27, 28]. Therefore, there is an 
urgent need for new early diagnostic methods, effective 
treatment strategies, and accurate prognostic assessment 
tools, and research on the immune microenvironment of 
DLBCL has gained increasing attention. A recent tran-
scriptome-based expression clustering analysis estab-
lished two immune-related epigenetic clusters, termed 
EC1 and EC2, with EC1 associated with poorer progno-
sis. Furthermore, EC1 and EC2 exhibit differing sensi-
tivities to various drugs [29]. This new immune-related 
epigenetic characterization has strong clinical predictive 
value for DLBCL, particularly in guiding epigenetic ther-
apeutic strategies.

The components of the TME, including tumor-asso-
ciated macrophages (TAMs), myeloid-derived suppres-
sor cells (MDSCs), and tumor-associated neutrophils 
(TANs), interact in complex ways with tumor cells and 
may contribute to treatment failures [30]. Recent stud-
ies have identified the significant role of macrophages in 
DLBCL; however, the specific mechanisms and targets 

Fig. 8 Survival analysis and independent prognostic analysis for individual genes: Kaplan-Meier curve of CD5 (A), FAS (B), IL7R (C) IL18(D) and SMAD3 (E). 
The univariate Cox regression analyses of CD5 (F), FAS (G), IL7R (H), IL18(I) and SMAD3 (J)
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of their action have not been thoroughly investigated. 
Utilizing bioinformatics methods for comprehensive 
analysis of expression profile data is one of the effective 
approaches to identify disease pathogenesis, biomark-
ers, and prognostic features, offering advantages of low 
cost and high efficiency. Machine learning, as an artifi-
cial intelligence approach, applies statistical algorithms to 
datasets, and is widely used for feature selection in high-
throughput data. The combination of bioinformatics 

methods with machine learning provides a more reli-
able and effective technique for screening disease-
related genes, making it a technological hotspot in omics 
research.

This study combines bioinformatics and machine 
learning to explore the mechanisms of immune cell 
infiltration in DLBCL, particularly focusing on the infil-
tration of M2 macrophages. Using the CIBERSORT 
algorithm, we revealed differences in the immune 

Fig. 9 The relative pathways between M2 macrophage infiltration and DLBCL. (A) The pathways enriched in the high-expression group of M2 macro-
phages. (B) The pathways enriched in the low-expression group of M2 macrophages. (C) The results of GSVA
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microenvironment between DLBCL patients and control 
samples, notably finding a significantly higher proportion 
of M2 macrophages in the experimental group compared 
to the control group. This suggests that the infiltra-
tion of M2 macrophages may be closely related to the 
occurrence and development of DLBCL. Subsequently, 
we identified genes associated with M2 macrophages 
through WGCNA and intersected them with differen-
tially expressed genes to obtain M2 macrophage-related 
differentially expressed genes. After performing GO and 
KEGG analyses on these genes, we discovered that they 
are associated with positive regulation of cell adhesion, 
positive regulation of T-cell activation, cytokine recep-
tor activity, and pathways related to DLBCL. This further 
indicates that M2 macrophages play a crucial role in the 
pathogenesis of DLBCL.

Next, we utilized Cytoscape to identify key hub genes 
and further screened SMAD3, IL7R, IL18, FAS, CD5, 
CCR7, and CSF1R as key signature genes through 
machine learning algorithms. Survival analysis and inde-
pendent prognostic analysis of these signature genes 
revealed a significant association between these genes 
and the survival rates of DLBCL patients, further sup-
porting the importance of these genes in DLBCL.

Although this study reveals the important role of M2 
macrophage-related genes in DLBCL, several limitations 
should be noted. First, the sample size used in this study 
is relatively small, which may affect the generalizability 
and reliability of the results. At the same time, we did not 
query the subtype information of DLBCL samples in the 
data set, and we could not determine the proportion of 
various subtypes. Therefore, the model we established 
may not be effective in predicting a certain subtype of 
DLBCL. Secondly, the research primarily relies on bioin-
formatics analysis and lacks essential in vitro and in vivo 
experimental validation, limiting a deeper understanding 
of the functions of the signature genes. Additionally, the 
expression differences of M2 macrophage-related genes 
across different subtypes of DLBCL and their clinical sig-
nificance have not been thoroughly explored. To address 
these limitations, future research should focus on the 
following directions: first, laboratory studies should be 
conducted to validate the functions and mechanisms of 
the signature genes, particularly through investigations in 
cellular and animal models to ensure the validity of the 
results. And the relationship between marker genes and 
patient outcomes should be validated in our own clini-
cal patient cohort. In addition, exploring the relation-
ship between M2 macrophage-related genes and different 
subtypes of DLBCL will aid in developing personalized 
treatment strategies. Finally, the efficacy of targeted 
drugs against the signature genes in clinical applications 
should be evaluated to improve the prognosis of DLBCL 
patients.

Conclusion
In summary, this study provides new insights into the 
molecular mechanisms of DLBCL, particularly regarding 
the role of signature genes in the immune microenviron-
ment and the potential therapeutic strategies targeting 
these genes, all of which warrant further exploration. 
Future research should focus on validating the functions 
of these signature genes and elucidating their mecha-
nisms of interaction with immune cells, thereby pro-
viding new avenues for the diagnosis and treatment of 
DLBCL.
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